高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合硅改性热处理杨木的制备及性能

刘强强 吕文华 石媛 杜浩佳

刘强强, 吕文华, 石媛, 杜浩佳. 复合硅改性热处理杨木的制备及性能[J]. 北京林业大学学报, 2021, 43(1): 136-143. doi: 10.12171/j.1000-1522.20200266
引用本文: 刘强强, 吕文华, 石媛, 杜浩佳. 复合硅改性热处理杨木的制备及性能[J]. 北京林业大学学报, 2021, 43(1): 136-143. doi: 10.12171/j.1000-1522.20200266
Liu Qiangqiang, Lü Wenhua, Shi Yuan, Du Haojia. Preparation and properties of heat-treated poplar wood modified with composite silicon modifier[J]. Journal of Beijing Forestry University, 2021, 43(1): 136-143. doi: 10.12171/j.1000-1522.20200266
Citation: Liu Qiangqiang, Lü Wenhua, Shi Yuan, Du Haojia. Preparation and properties of heat-treated poplar wood modified with composite silicon modifier[J]. Journal of Beijing Forestry University, 2021, 43(1): 136-143. doi: 10.12171/j.1000-1522.20200266

复合硅改性热处理杨木的制备及性能

doi: 10.12171/j.1000-1522.20200266
基金项目: 中央级公益性科研院所基本科研业务费专项资金重点项目(CAFYBB2018SZ013)
详细信息
    作者简介:

    刘强强。主要研究方向:木材改性。Email:1214802312@qq.com 地址:100091 北京市海淀区东小府1号中国林业科学研究院木材工业研究所

    责任作者:

    吕文华,博士,副研究员。主要研究方向:木材改性。Email:lwhlily@caf.ac.cn 地址:同上

  • 中图分类号: S781.7

Preparation and properties of heat-treated poplar wood modified with composite silicon modifier

  • 摘要:   目的  针对木材树脂改性剂释放甲醛不环保,无机改性材吸湿性高等问题,将廉价易得的硅石粉溶液化,再有机杂化,制得高渗透、环保、防火的水溶性木材复合硅改性剂,通过真空加压浸渍处理和热处理联合改性,可以有效提高木材的物理力学和阻燃等性能。  方法  分别制备硅油复合硅改性剂(SC2)和偶联剂杂化硅改性剂(HS2),对人工林杨木进行浸渍处理,再将浸渍材进行高温热处理,测试分析复合硅改性材及其热处理材的物理力学性能和阻燃性能。  结果  热处理使未处理材和改性材的质量与绝干密度均下降,硅油复合硅改性材(W-SC2)热处理后的质量损失率与绝干密度损失率最大。与W-SC2相比,硅油复合硅改性热处理材(TW-SC2)的吸湿率增大;偶联剂杂化硅改性热处理材(TW-HS2)的吸湿率较偶联剂杂化硅改性材(W-HS2)明显降低,抗吸湿性改善明显。与杨木未处理材(W)相比,各组改性材的力学性能均显著提高,且明显优于TW-SC2。W-HS2的点燃时间比W延迟8 s,火灾指数由0.043 m2s/kW增大至0.140 m2s/kW,TW-HS2的点燃时间比W延后9 s,火灾指数比W-HS2提高了64.3%。与W相比,TW-HS2的总热释放量减小29.4%,热释放速率峰值下降,且第二热释放速率峰值出现时间延后;W-HS2和TW-HS2的总生烟量比W大;HS2浸渍改性联合热处理,可以提升木材阻燃性能。改性材的热降解速率较未处理材降低明显,热稳定性提高,说明HS2改性剂具有明显的促进成炭作用。  结论  以硅石资源为主要原料,有机杂化制得环保、高效的木材复合硅改性剂HS2,通过真空加压浸渍−热处理联合改性工艺,可有效改善人工林杨木的物理力学和阻燃等性能,实现其绿色改性,应用前景广阔。

     

  • 图  1  改性杨木的吸湿率变化

    Figure  1.  Changes in moisture absorption rate of modified poplar wood

    图  2  杨木改性材的热释放速率和总热释放量曲线

    Figure  2.  Heat release rate and total heat release curves of modified wood

    图  3  杨木改性材的生烟速率曲线

    Figure  3.  Smoke release rate curve of modified wood

    图  4  未处理材与TW-HS2的残炭照片

    Figure  4.  Pictures of combustion residues of untreated wood and TW-HS2

    图  5  杨木改性材的热重和微分热重曲线

    Figure  5.  TG and DTG curves of modified wood

    表  1  改性杨木的绝干密度和质量损失率

    Table  1.   Oven-dry density and mass loss rate of modified poplar wood

    试件组别
    Specimen group
    绝干密度
    Oven-dry density/
    (g·cm−3)
    绝干密度损失率
    Oven-dry density
    loss rate/%
    质量
    Mass/g
    质量损失率
    Mass loss rate/%
    杨木未处理材
    Untreated poplar wood (W)
    0.325 (3.5%) 2.873 (2.8%)
    杨木热处理材
    Heat-treated poplar wood (TW)
    0.321 (1.6%) 1.2 2.712 (2.1%) 5.6
    硅油复合硅改性材
    Silicone oil combined with silica treated wood (W-SC2)
    0.613 (2.3%) 4.806 (5.8%)
    硅油复合硅改性热处理材
    Heat treated silicone oil composite silica modified wood (TW-SC2)
    0.513 (2.4%) 16.3 3.610 (4.9%) 24.9
    偶联剂杂化硅改性材
    Coupling agent hybrid silica treated wood (W-HS2)
    0.528 (1.4%) 4.344 (4.6%)
    偶联剂杂化硅改性热处理材
    Heat treatment coupling agent hybrid silica modified wood (TW-HS2)
    0.516 (1.3%) 2.3 4.196 (3.6%) 3.4
    注:括号内为变异系数。下同。Notes: data in brackets are variation coefficients. Same as below.
    下载: 导出CSV

    表  2  改性杨木的抗吸湿率

    Table  2.   Anti-moisture efficiency of modified poplar wood %

    试件组别
    Specimen group
    时间 Time/h
    12 24 36 60 84 120 156 204 264 528
    W-SC258.854.754.247.941.629.021.95.7−2.1−29.9
    TW-SC242.937.640.634.730.116.93.5−10.8−29.4−61.3
    W-HS250.039.041.639.932.419.720.3−2.8−21.9−58.3
    TW-HS251.040.144.645.542.129.324.213.1−6.2−23.6
    下载: 导出CSV

    表  3  改性材的力学性能

    Table  3.   Mechanical properties of the modified wood

    组别
    Group
    抗弯强度
    Modulus of
    rapture/MPa
    弹性模量
    Modulus of
    elasticity/GPa
    顺纹抗压强度 Compressive strength along grain/MPa
    W 57.7 (5.45%) 7.2 (0.31%) 43.7 (2.19%)
    W-SC2 96.9 (7.03%) 12.9 (0.90%) 87.2 (4.54%)
    TW-SC2 79.8 (3.46%) 9.3 (0.89%) 70.2 (1.37%)
    W-HS2 127.8 (4.57%) 14.1 (1.10%) 97.4 (1.23%)
    TW-HS2 121.9 (3.25%) 13.3 (1.28%) 90.3 (4.15%)
    下载: 导出CSV

    表  4  复合硅改性热处理杨木的燃烧性能

    Table  4.   Combustion properties of composite silicon modified heat-treated poplar wood

    组别 GrouptTI/sp1/(kW·m−2)p2/(kW·m−2)FPI(m2·s·kW−1)TH/(MJ·m−2)TS/m2
    W 8 184.9 178.0 0.043 112.3 1.60
    W-HS2 16 114.2 159.2 0.140 94.9 2.80
    TW-HS2 17 74.0 96.8 0.230 79.3 1.85
    注:tTI为点燃时间;p1为第一热释放速率峰值;p2为第二热释放速率峰值;FPI为火灾指数;TH为总热释放量;TS为总生烟量。Notes:tTI is the time to ignition, p1 is the first heat release rate peak, p2 is the second heat release rate peak, FPI is the fire performance index, TH is total heat release, TS is total smoke release.
    下载: 导出CSV

    表  5  样品的热降解特征值

    Table  5.   Thermal degradation characteristic values of samples

    组别 GroupTA/℃mLA/%TF/℃mLF/%Tp/℃mLp/%TFTA/℃mLFmLA/%R/%
    W 222.0 6.9 454.7 83.9 366.3 65.7 232.7 77.0 13.3
    W-HS2 166.8 4.3 524.2 53.4 273.8 27.7 357.4 49.1 45.3
    TW-HS2 193.3 4.9 499.7 48.4 273.3 23.1 306.4 43.5 49.6
    注:TA为第三阶段的起始温度;mLA为第三阶段起始温度时的质量损失率;TF为第三阶段的结束温度;mLF为第三阶段结束时的质量损失率;Tp为DTG曲线的峰值温度;mLp为温度达到Tp时的质量损失率;R为热解最终剩余物质量占热解前质量的百分数。Notes:TA is the start temperature of the third stage, mLA is the mass loss rate at the start temperature of the third stage, TF is the end temperature of the third stage, mLF is mass loss rate at the end of the third phase, Tp is the expectation of the DTG curve temperature, mLp is mass loss rate when the temperature reaches Tp, R is the mass percentage final residue.
    下载: 导出CSV
  • [1] Yu X, Sun D, Li X. Preparation and characterization of urea-formaldehyde resin-sodium montmorillonite intercalation-modified poplar[J]. Journal of Wood Science, 2011, 57(6): 501−506. doi: 10.1007/s10086-011-1203-0.
    [2] 时尽书, 李建章, 周文瑞, 等. 脲醛树脂与纳米二氧化硅复合改善木材性能的研究[J]. 北京林业大学学报, 2006, 28(2):123−128. doi: 10.3321/j.issn:1000-1522.2006.02.022.

    Shi J S, Li J Z, Zhou W R, et al. Improvement of wood properties by urea-formaldehyde resin and nano-SiO2[J]. Journal of Beijing Forestry University, 2006, 28(2): 123−128. doi: 10.3321/j.issn:1000-1522.2006.02.022.
    [3] 卞雪桐, 蔡英春, 孔繁旭, 等. 糠醇树脂浸渍强化人工林速生杨树木材的性能[J]. 东北林业大学学报, 2019, 47(2):74−80. doi: 10.3969/j.issn.1000-5382.2019.02.016.

    Bian X T, Cai Y C, Kong F X, et al. Properties of fast-growing poplar wood by impregnation strengthening of furfuryl alcohol resin[J]. Journal of Northeast Forestry University, 2019, 47(2): 74−80. doi: 10.3969/j.issn.1000-5382.2019.02.016.
    [4] 石媛, 吕文华, 刘强强. 木材硅石改性剂的制备工艺[J]. 东北林业大学学报, 2020, 48(2):104−108.

    Shi Y, Lü W H, Liu Q Q. Prepartion technology of wood silica modifier[J]. Journal of Northeast Forestry University, 2020, 48(2): 104−108.
    [5] 周亚, 李萍, 左迎峰, 等. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17):2989−2996. doi: 10.11896/cldb.19010184.

    Zhou Y, Li P, Zuo Y F, et al. Research progress and development trend of inorganic reinforced wood[J]. Materials Reports, 2019, 33(17): 2989−2996. doi: 10.11896/cldb.19010184.
    [6] 丁涛, 顾炼百, 蔡家斌. 热处理对木材吸湿特性及尺寸稳定性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(2):143−147.

    Ding T, Gu L B, Cai J B. Effects of heat treatment on the moisture adsorption characteristic and dimensional stability of wood[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(2): 143−147.
    [7] Duygu K, Sandor P, Yaman B. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen[J]. Bioresources, 2008, 3(2): 517−537.
    [8] Awoyemi L, Westermark U. Effects of borate impregnation on the response of wood strength to heat treatment[J]. Wood Science and Technology, 2005, 39(6): 484−491. doi: 10.1007/s00226-005-0001-5.
    [9] Nguyen T T, Ji X, Nguyen T H V, et al. Wettability modification of heat-treated wood (HTW) via cold atmospheric-pressure nitrogen plasma jet (APPJ)[J]. Holzforschung, 2018, 72(1): 37−43.
    [10] Pétrissans M, Gérardin P, Bakali I E, et al. Wettability of heat-treated wood[J]. Holzforschung, 2003, 57(3): 301−307. doi: 10.1515/HF.2003.045.
    [11] 张南南, 许民. 二氧化硅联合热处理改性对橡胶木性能的影响[J]. 林业工程学报, 2019, 4(2):38−42.

    Zhang N N, Xu M. Effects of silicon dioxide combined heat treatment on properties of rubber wood[J]. Journal of Forestry Engineering, 2019, 4(2): 38−42.
    [12] 袁利萍, 黄自知, 胡云楚. 木材试样形态对CONE热释放特性参数的影响[J]. 林业科学, 2016, 52(3):75−81.

    Yuan L P, Huang Z Z, Hu Y C. Influence of wood sample forms on CONE calorimeter results[J]. Scientia Silvae Sinicae, 2016, 52(3): 75−81.
    [13] Marney D C O, Russell L J, Mann R. Fire performance of wood (Pinus radiata) treated with fire retardants and a wood preservative[J]. Fire and Materials, 2008, 32(6): 357−370. doi: 10.1002/fam.973.
    [14] Wang J, Zhang M, Chen M, et al. Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass[J]. Thermochimica Acta, 2006, 444(1): 110−114. doi: 10.1016/j.tca.2006.02.007.
    [15] Nguyen T T, Nguyen T V K, Xiao Z, et al. Combustion behavior of poplar (Populus adenopoda Maxim.) and radiata pine (Pinus radiata Don.) treated with a combination of styrene-acrylic copolymer and sodium silicate[J]. Holz Als Roh-Und Werkstoff, 2019, 77(3): 439−452. doi: 10.1007/s00107-019-01401-2.
    [16] Xiao Z, Xu J, Mai C, et al. Combustion behavior of Scots pine (Pinus sylvestris L.) sapwood treated with a dispersion of aluminum oxychloride-modified silica[J]. Holzforschung, 2016, 70(12): 1165−1173. doi: 10.1515/hf-2016-0062.
    [17] Xie Y, Xu J, Militz H, et al. Thermo-oxidative decomposition and combustion behavior of Scots pine (Pinus sylvestris L.) sapwood modified with phenol- and melamine-formaldehyde resins[J]. Wood Science & Technology, 2016, 50(6): 1125−1143.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  170
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-10-11
  • 网络出版日期:  2020-12-24
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回