高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

戴云山南坡不同海拔森林土壤优势细菌群落特征及影响因素

何中声 谷新光 江蓝 徐道炜 刘金福 李文周 陈文伟

何中声, 谷新光, 江蓝, 徐道炜, 刘金福, 李文周, 陈文伟. 戴云山南坡不同海拔森林土壤优势细菌群落特征及影响因素[J]. 北京林业大学学报, 2022, 44(7): 107-116. doi: 10.12171/j.1000-1522.20200278
引用本文: 何中声, 谷新光, 江蓝, 徐道炜, 刘金福, 李文周, 陈文伟. 戴云山南坡不同海拔森林土壤优势细菌群落特征及影响因素[J]. 北京林业大学学报, 2022, 44(7): 107-116. doi: 10.12171/j.1000-1522.20200278
He Zhongsheng, Gu Xinguang, Jiang Lan, Xu Daowei, Liu Jinfu, Li Wenzhou, Chen Wenwei. Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 107-116. doi: 10.12171/j.1000-1522.20200278
Citation: He Zhongsheng, Gu Xinguang, Jiang Lan, Xu Daowei, Liu Jinfu, Li Wenzhou, Chen Wenwei. Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 107-116. doi: 10.12171/j.1000-1522.20200278

戴云山南坡不同海拔森林土壤优势细菌群落特征及影响因素

doi: 10.12171/j.1000-1522.20200278
基金项目: 国家自然科学基金项目(31700550、31770678),福建省自然科学基金项目(2019J01367),戴云山自然保护区管理局项目(KH1401450)
详细信息
    作者简介:

    何中声,博士,讲师。主要研究方向:森林生态学。Email:jxhzs85@fafu.edu.cn 地址:350002福建省福州市仓山区上下店路15号福建农林大学林学院

    责任作者:

    刘金福,教授,博士生导师。主要研究方向:野生动植物保护与利用。Email:fjljf@fafu.edu.cn 地址:同上

  • 中图分类号: S714.3

Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of eastern China

  • 摘要:   目的  探讨土壤细菌群落在戴云山保护区不同海拔梯度(900 ~ 1 500 m)分布特征,为理解海拔影响森林土壤结构和功能提供理论依据。  方法  基于高通量测序探讨不同海拔土壤细菌群落组成及多样性,并分析环境因子对土壤优势细菌群落结构的影响过程。  结果  (1)随海拔升高,土壤全磷含量总体呈逐渐递减;土壤有效磷含量整体呈单峰模式;土壤全碳和全氮含量呈双峰变化趋势。(2)不同海拔中土壤细菌优势菌门为变形菌门、酸杆菌门和放线菌门(相对丰度 > 10%)。(3)不同海拔梯度土壤细菌多样性指数如物种数、Chao1指数、Shannon-Wiener多样性指数和ACE指数沿海拔梯度呈先上升后下降的趋势,均在1 100 m处达到峰值,且达到显著水平(P < 0.05)。(4)微生物共现网络分析表明戴云山不同海拔土壤优势细菌群落具有明显模块化结构,关键类群包括变形菌门、酸杆菌门、放线菌门、拟杆菌门和疣微菌门的部分属,其中变形菌门的细菌关键类群最多。  结论  海拔、坡度、pH值、土壤全氮、水解氮和土壤有效磷是驱动不同海拔森林土壤优势细菌群落结构及多样性的主要因子。

     

  • 图  1  研究区与采样点位置图

    DYS-900表示海拔900 m,以此类推。DYS-900 indicates the elevation of 900 m in Daiyun Mountain, and so on.

    Figure  1.  Location of the study area and sampling plots

    图  2  土壤细菌群落门水平的主要组成与相对丰度

    Figure  2.  Main composition of relative abundance of soil bacterial community on the phylum levels

    图  3  不同海拔土壤优势细菌群落的非度量多维标度(NMDS)分析

    Figure  3.  Nonmetric multidimensional scaling (NMDS) analysis of soil bacterial community at different elevations

    图  4  不同因子对土壤优势细菌群落β多样性的解释度

    ELE. 海拔;SWC. 土壤含水量;ST. 土壤表层温度;pH. pH值;AP.土壤有效磷;TC. 土壤全碳;HN. 水解氮;TN. 土壤全氮;TK. 土壤全K;SLO. 坡度;TP. 土壤全磷。**和***分别表示在P < 0.01和P < 0.001显著相关。下同。ELE, elevation; SWC, soil water content; ST, soil surface temperature; pH, pH value; AP, soil available phosphorous; TC, soil total carbon; HN, hydrolyzed nitrogen; TN, soil total nitrogen; TK, soil total potassium; SLO, slope; TP, soil total phosphorus. ** and *** indicate significant correlations at P < 0.01 and P < 0.001 level, respectively. The same below.

    Figure  4.  Interpretation rate of different factors to the beta diversity of soil dominant bacterial community

    图  5  不同海拔土壤细菌优势门群落与环境因子的冗余分析

    Figure  5.  Redundancy analysis of soil dominant phylum bacterial community and environmental factors at different elevations

    图  6  不同海拔土壤细菌优势OTUs的共现网络分析

    Figure  6.  Co-occurrence network analysis of soil dominant bacterial OTUs in different elevations

    表  1  戴云山样地基本概况

    Table  1.   Basic information of sample plots in Daiyun Mountain

    样地编号
    Sample plot No.
    经度
    Longitude
    纬度
    Latitude
    森林类型
    Forest type
    主要树种
    Main tree species
    海拔
    Elevation/m
    平均温度
    Average temperature/℃
    坡度
    Slope/(°)
    坡向
    Aspect
    DYS-900 118°10′36″E 25°38′46″N CEBF CG + CL 915 23.2 28 SW
    DYS-1000 118°10′38″E 25°38′51″N CEBF CL + CG 1 001 22.6 35 SW
    DYS-1100 118°10′43″E 25°38′57″N CEBF CL + CG 1 091 21.5 40 S
    DYS-1200 118°10′53″E 25°39′06″N CEBF CL + MT 1 201 21.4 35 S
    DYS-1300 118°10′55″E 25°39′22″N CEBF ER + PT 1 321 21.2 35 S
    DYS-1400 118°10′58″E 25°39′32″N CF PT + ER 1 411 20.4 30 S
    DYS-1500 118°10′57″E 25°39′47″N CF PT + RS 1 501 19.8 23 W
    注:CEBF.针阔混交林;CF.针叶林;CG.青冈;CL.杉木;MT.红楠;PT.黄山松;ER. 窄基红褐柃;RS.映山红;SW.西南;S.南;W.西。Notes: CEBF, coniferous and evergreen broadleaved forest; CF, coniferous forest; CG, Cyclobalanopsis glauca; CL, Cunninghamia lanceolata; MT, Machilus thunbergii; PT, Pinus taiwanensis; ER, Eurya rubiginosa var. attenuata; RS, Rhododendron simsii; SW, southwest; S, south; W, west.
    下载: 导出CSV

    表  2  不同海拔土壤理化性质

    Table  2.   Soil physical and chemical properties of soil at different elevations

    海拔
    Elevation/m
    pH土壤含水量
    Soil water content (SWC)/%
    全碳
    Total carbon (TC)/(g·kg−1)
    全氮
    Total nitrogen (TN)/(g·kg−1)
    全磷
    Total phosphorus (TP)/(g·kg−1)
    全钾
    Total potassium (TK)/(g·kg−1)
    水解氮
    Hydrolyzed nitrogen (HN)/(mg·kg−1)
    有效磷
    Available phosphorus (AP)/(mg·kg−1)
    9003.87 ± 0.01a35.51 ± 0.41c39.68 ± 0.6e3.66 ± 0.03d0.36 ± 0.002a20.91 ± 0.24a242.18 ± 12.00c1.18 ± 0.03c
    1 0003.66 ± 0.02c46.86 ± 2.65b90.59 ± 1.9a4.72 ± 0.04b0.28 ± 0.003ab13.41 ± 0.36d333.05 ± 89.54abc1.87 ± 0.01a
    1 1003.81 ± 0.05b44.01 ± 3.39b52.84 ± 0.6c3.02 ± 0.05e0.21 ± 0.002b13.54 ± 0.10d281.48 ± 26.89bc1.30 ± 0.01b
    1 2003.86 ± 0.01a43.50 ± 3.58b68.21 ± 0.0b4.85 ± 0.07b0.24 ± 0.064ab16.59 ± 0.13c385.62 ± 81.16ab0.74 ± 0.00d
    1 3003.51 ± 0.01d43.91 ± 3.68b89.64 ± 0.1a5.28 ± 0.24a0.20 ± 0.068b16.41 ± 0.34c377.75 ± 63.56ab0.46 ± 0.04e
    1 4003.52 ± 0.01d34.71 ± 0.96c50.07 ± 0.0d4.11 ± 0.03c0.20 ± 0.045b18.41 ± 0.25b325.68 ± 94.28abc0.43 ± 0.06e
    1 5003.67 ± 0.01c54.19 ± 3.66a34.66 ± 0.2f3.11 ± 0.08e0.19 ± 0.036b16.36 ± 0.13c418.52 ± 30.77a0.24 ± 0.04f
    注:同列不同字母表示差异显著(P < 0.05)。下同。Notes: different letters indicate significant difference in the same column (P < 0.05). The same below.
    下载: 导出CSV

    表  3  不同海拔土壤细菌的多样性指数

    Table  3.   Soil bacterial diversity indices at different elevations

    海拔
    Elevation/m
    物种数
    Species number
    Chao 1指数
    Chao 1 index
    香农指数
    Shannon index
    ACE指数
    ACE index
    9002 775.33 ± 8.97c3 001.18 ± 21.24d9.48 ± 0.02d3 028.24 ± 11.69c
    1 0003 017.33 ± 4.84b3 299.03 ± 12.63bc9.56 ± 0.01c3 310.89 ± 5.03b
    1 1003 222.00 ± 16.04a3 508.03 ± 22.30a9.77 ± 0.01a3 529.94 ± 21.80a
    1 2002 998.33 ± 18.48b3 341.49 ± 31.92b9.65 ± 0.01b3 315.42 ± 24.55b
    1 3003 031.33 ± 16.37b3 310.06 ± 24.92bc9.61 ± 0.02b3 329.75 ± 23.93b
    1 4003 026.33 ± 19.37b3 263.20 ± 30.45bc9.64 ± 0.02b3 296.76 ± 28.56b
    1 5002 992.33 ± 19.01b3 256.32 ± 26.72c9.62 ± 0.01b3 303.86 ± 25.17b
    下载: 导出CSV

    表  4  环境因子与土壤细菌优势门群落间的显著性检验

    Table  4.   Significant test between environmental factors and dominant phyla of soil bacterial communities

    环境因子
    Environmental factor
    模型检验F
    Model test F value
    显著性检验P
    Significance test P value
    海拔 Elevation 20.251 2 0.001***
    坡度 Slope 6.459 2 0.001***
    pH值 pH value 3.434 8 0.009**
    土壤全氮
    Soil total nitrogen
    3.309 6 0.015*
    水解氮
    Hydrolyzed nitrogen
    2.645 5 0.039*
    土壤有效磷
    Soil available phosphorus
    4.562 7 0.003**
    注:*表示在P < 0.05水平上显著相关;**表示在P < 0.01水平上显著相关;***表示在P < 0.001水平上显著相关。整个拟合方程显著度F = 6.772,P = 0.001***。Notes: * indicates significant correlation at P < 0.05 level, ** indicates significant correlation at P < 0.01 level, *** indicates significant correlation at P < 0.001 level. The significance of whole stimulated equation is F = 6.772, with P = 0.001***.
    下载: 导出CSV
  • [1] Young I M. Interactions and self-organization in the soil-microbe complex[J]. Science, 2004, 304: 1634−1637. doi: 10.1126/science.1097394
    [2] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979−988. doi: 10.3773/j.issn.1005-264x.2010.08.011

    Jiang J, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979−988. doi: 10.3773/j.issn.1005-264x.2010.08.011
    [3] 王颖, 宗宁, 何念鹏, 等. 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性[J]. 生态学报, 2018, 38(16): 5837−5845.

    Wang Y, Zong N, He N P, et al. Soil microbial functional diversity patterns and drivers along an elevation gradient on Qinghai-Tibet, China[J]. Acta Ecologica Sinica, 2018, 38(16): 5837−5845.
    [4] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. PNAS, 2006, 103(3): 626−631. doi: 10.1073/pnas.0507535103
    [5] 褚海燕, 冯毛毛, 柳旭, 等. 土壤微生物生物地理学: 国内进展与国际前沿[J]. 土壤学报, 2020, 57(3): 515−529.

    Chu H Y, Feng M M, Liu X, et al. Soil microbial biogeography: recent advances in China and research frontiers in the world[J]. Acta Pedologica Sinica, 2020, 57(3): 515−529.
    [6] 方精云, 唐志尧. 植物物种多样性的垂直分布格局[J]. 生物多样性, 2004, 12(1): 20−28. doi: 10.3321/j.issn:1005-0094.2004.01.004

    Fang J Y, Tang Z Y. A review on the elevational patterns of plant species diversity[J]. Biodiversity Science, 2004, 12(1): 20−28. doi: 10.3321/j.issn:1005-0094.2004.01.004
    [7] 潘红丽, 李迈和, 蔡小虎, 等. 海拔梯度上的植物生长与生理生态特性[J]. 生态环境学报, 2009, 18(2): 722−730. doi: 10.3969/j.issn.1674-5906.2009.02.059

    Pan H L, Li M H, Cai X H, et al. Plant growth and physiological and ecological characteristics at altitude gradient[J]. Ecology and Environmental Sciences, 2009, 18(2): 722−730. doi: 10.3969/j.issn.1674-5906.2009.02.059
    [8] Dharmesh S, Koichi T, Mincheol K, et al. A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan[J]. Microbial Ecology, 2012, 63(2): 429−437. doi: 10.1007/s00248-011-9900-1
    [9] Yang Y Y, Zhou Y, Shi Z, et al. Interactive effects of elevation and land use on soil bacterial communities in the Tibetan Plateau[J]. Pedosphere, 2020, 30(6): 817−831. doi: 10.1016/S1002-0160(19)60836-2
    [10] Lin Y T, Chiu C Y. Elevation gradient of soil bacterial communities in bamboo plantations[J]. Botanical Studies, 2016, 57(1): 1−6.
    [11] Li J B, Shen Z H, Li C N, et al. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China[J]. Frontiers in Microbiology, 2018, 9: 569. doi: 10.3389/fmicb.2018.00569
    [12] Nottingham A T, Fierer N, Turner B L, et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes[J]. Ecology, 2018, 99(11): 2455−2466. doi: 10.1002/ecy.2482
    [13] Shen C C, Ni Y Y, Liang W J, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology, 2015, 6: 582.
    [14] Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013, 57: 204−211. doi: 10.1016/j.soilbio.2012.07.013
    [15] 刘秉儒, 张秀珍, 胡天华, 等. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 2013, 33(22): 7211−7220. doi: 10.5846/stxb201208061110

    Liu B R, Zhang X Z, Hu T H, et al. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 2013, 33(22): 7211−7220. doi: 10.5846/stxb201208061110
    [16] Fierer N, McCain C M, Meir P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4): 797−804. doi: 10.1890/10-1170.1
    [17] Jiang L, He Z S, Liu J F, et al. Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis forest on Daiyun Mountain[J]. Forests, 2019, 10(12): 1089. doi: 10.3390/f10121089
    [18] 赵盼盼, 周嘉聪, 林开淼, 等. 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J]. 生态学报, 2019, 39(6): 2215−2225.

    Zhao P P, Zhou J C, Lin K M, et al. Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone[J]. Acta Ecologica Sinica, 2019, 39(6): 2215−2225.
    [19] 赵盼盼, 周嘉聪, 林开淼, 等. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响[J]. 生态学报, 2019, 39(8): 2676−2686.

    Zhao P P, Zhou J C, Lin K M, et al. Effects of different altitudes on soil microbial biomass and enzyme activities in Pinus taiwanensis forests on Daiyun Mountain, Fujian Province[J]. Acta Ecologica Sinica, 2019, 39(8): 2676−2686.
    [20] 李梦佳, 何中声, 江蓝, 等. 海拔与土壤因子驱动了戴云山南坡森林树木多样性与系统发育多样性[J]. 生态学报, 2021, 41(3): 1148−1157.

    Li M J, He Z S, Jiang L, et al. Distribution pattern and driving factors of species diversity and phylogenetic diversity along altitudinal gradient on the south slope of Daiyun Mountain[J]. Acta Ecologica Sinica, 2021, 41(3): 1148−1157.
    [21] 国家林业局. 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. Forest soil analysis method[M]. Beijing: China Standards Press, 1999.
    [22] R Core Team. R: a language and environment for statistical computing [Z]. Vienna: R Foundation for Statistical Computing, 2020.
    [23] Hartman W H, Richardson C J, Rytas V, et al. Environmental and anthropogenic controls over bacterial communities in wetland soils[J]. PNAS, 2008, 105: 17842−17847. doi: 10.1073/pnas.0808254105
    [24] Lundberg D S, Yourstone S, Mieczkowski P, et al. Practical innovations for high-throughput amplicon sequencing[J]. Nature Methods, 2013, 10: 999−1002. doi: 10.1038/nmeth.2634
    [25] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996−998. doi: 10.1038/nmeth.2604
    [26] Crawford P A, Crowley J R, Sambandam N, et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation[J]. PNAS, 2009, 106(27): 11276−11281. doi: 10.1073/pnas.0902366106
    [27] Csárdi G, Nepusz T. The igraph software package for complex network research[J]. International Journal of Complex Systems, 2006, 1695(5): 1−9.
    [28] 李相楹, 张维勇, 刘峰, 等. 不同海拔高度下梵净山土壤碳、氮、磷分布特征[J]. 水土保持研究, 2016, 23(3): 19−24. doi: 10.13869/j.cnki.rswc.2016.03.004

    Li X Y, Zhang W Y, Liu F, et al. The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain[J]. Research of Soil and Water Conservation, 2016, 23(3): 19−24. doi: 10.13869/j.cnki.rswc.2016.03.004
    [29] 陈志芳, 刘金福, 吴则焰. 戴云山不同海拔森林类型土壤理化性质与酶活性研究[J]. 河南科技学院学报, 2014, 42(2): 10−14.

    Chen Z F, Liu J F, Wu Z Y. Soil physico-chemical properties and enzyme activities at different elevation gradient forest type of Daiyun Mountain[J]. Journal of Henan Institute of Science and Technology, 2014, 42(2): 10−14.
    [30] 江蓝. 戴云山南坡木本植物功能性状海拔分布及其环境解释[D]. 福州: 福建农林大学, 2019.

    Jiang L. The elevation distribution of woody plant functional traits and its environmental interpretation on south slope of Daiyun Mountain[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [31] 邢 聪, 江蓝, 何中声, 等. 戴云山不同海拔黄山松群落的高度级结构研究[J]. 森林与环境学报, 2019, 39(4): 380−385.

    Xing C, Jiang L, He Z S, et al. Height class structure of a Pinus taiwanensis community growing at different elevations on Daiyun Mountain[J]. Journal of Forest and Environment, 2019, 39(4): 380−385.
    [32] 王平, 任宾宾, 易超, 等. 轿子山自然保护区土壤理化性质垂直变异特征与环境因子关系[J]. 山地学报, 2013, 31(4): 456−463. doi: 10.3969/j.issn.1008-2786.2013.04.011

    Wang P, Ren B B, Yi C, et al. The correlation between soil characteristics and environmental factors along altitude gradient of Jiaozi Mountain Nature Reserve[J]. Mountain Research, 2013, 31(4): 456−463. doi: 10.3969/j.issn.1008-2786.2013.04.011
    [33] Wang J T, Cao P, Hu H W, et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau[J]. Microbial Ecology, 2015, 69(1): 135−145. doi: 10.1007/s00248-014-0465-7
    [34] Barns S M, Cain E C, Sommerville L. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum[J]. Applied and Environmental Microbiology, 2007, 73(9): 3113−3116. doi: 10.1128/AEM.02012-06
    [35] Lü X F, Yu J B, Fu Y Q. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils[J/OL]. The Scientific World Journal, 2014, 2014, 437684[2020−12−11]. https://doi.org/10.1155/2014/437684.
    [36] 李聪杰, 郝彦斌, 韩丛英. 土壤中微生物含量影响因素的统计方法分析[J]. 微生物学通报, 2016, 43(12): 2594−2600.

    LI C J, Hao Y B, Han C Y. Statistical analysis of influencing factors of soil microbial content[J]. Microbiology China, 2016, 43(12): 2594−2600.
    [37] 乔沙沙, 周永娜, 刘晋仙, 等. 关帝山针叶林土壤细菌群落结构特征[J]. 林业科学, 2017, 53(2): 89−99. doi: 10.11707/j.1001-7488.20170211

    Qiao S S, Zhou Y N, Liu J X, et al. Characteristics of soil bacterial community structure in coniferous forests of Guandi Mountains, Shanxi Province[J]. Scientia Silvae Sinicae, 2017, 53(2): 89−99. doi: 10.11707/j.1001-7488.20170211
    [38] Zhang Y, Cong J, Lu H. Soil bacterial diversity patterns and drivers along an altitudinal gradient on Shennongjia Mountain, China[J]. Microbial Biotechnology, 2015, 8(4): 739−746. doi: 10.1111/1751-7915.12288
    [39] Zimmermann M, Leifeld J, Conen F, et al. Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity?[J]. Biogeochemistry, 2012, 107(1−3): 423−436. doi: 10.1007/s10533-010-9562-y
    [40] 陈法霖, 郑华, 阳柏苏, 等. 中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响[J]. 生态学报, 2010, 31(11): 3027−3035.

    Chen F L, Zheng H, Yang B S, et al. The decomposition of coniferous and broadleaf mixed litters significantly changes the carbon metabolism diversity of soil microbial communities in subtropical area, southern China[J]. Acta Ecologica Sinica, 2010, 31(11): 3027−3035.
    [41] 曾晓敏, 范跃新, 林开淼, 等. 亚热带不同海拔黄山松林土壤磷组分及微生物特征[J]. 生态学报, 2018, 38(18): 6570−6579.

    Zeng X M, Fan Y X, Lin K M, et al. Characteristics of soil phosphorus fractions and microbial communities in Pinus taiwanensis Hayata forests at different altitudes in a subtropical region of China[J]. Acta Ecologica Sinica, 2018, 38(18): 6570−6579.
    [42] Singh D, Lee-Cruz L, Kim W S, et al. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea[J]. Soil Biology and Biochemistry, 2014, 68: 140−149. doi: 10.1016/j.soilbio.2013.09.027
    [43] Lin Y T, Whitman W B, Coleman D C. Changes of soil bacterial communities in bamboo plantations at different elevations[J]. FEMS Microbiology Ecology, 2015, 91(5): 33−43.
    [44] Landesman W J, Nelson D M, Fitzpatrick M C. Soil properties and tree species drive ß-diversity of soil bacterial communities[J]. Soil Biology and Biochemistry, 2014, 76: 201−209. doi: 10.1016/j.soilbio.2014.05.025
    [45] Ramirez K S, Geisen S, Morriën E, et al. Network analyses can advance above-belowground ecology[J]. Trends in Plant Science, 2018, 23(9): 759−768. doi: 10.1016/j.tplants.2018.06.009
    [46] Banerjee S, Walder F, Büchi L, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J]. The ISME Journal, 2019(13): 1722−1736.
    [47] Banerjee S, Schlaeppi K, van der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018(16): 567−576.
    [48] Santolini M, Barabási A. Predicting perturbation patterns from the topology of biological networks[J]. PNAS, 2018, 115(27): E6375−E6383.
    [49] Wang J Q, Shi X Z, Zheng C Y, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest[J/OL]. Science of the Total Environment, 2021, 755(1): 142449[2021−08−15]. https://doi.org/10.1016/j.scitotenv.2020.142449.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  22
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 录用日期:  2022-06-20
  • 修回日期:  2021-06-07
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回