Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of eastern China
-
摘要:
目的 探讨土壤细菌群落在戴云山保护区不同海拔梯度(900 ~ 1 500 m)分布特征,为理解海拔影响森林土壤结构和功能提供理论依据。 方法 基于高通量测序探讨不同海拔土壤细菌群落组成及多样性,并分析环境因子对土壤优势细菌群落结构的影响过程。 结果 (1)随海拔升高,土壤全磷含量总体呈逐渐递减;土壤有效磷含量整体呈单峰模式;土壤全碳和全氮含量呈双峰变化趋势。(2)不同海拔中土壤细菌优势菌门为变形菌门、酸杆菌门和放线菌门(相对丰度 > 10%)。(3)不同海拔梯度土壤细菌多样性指数如物种数、Chao1指数、Shannon-Wiener多样性指数和ACE指数沿海拔梯度呈先上升后下降的趋势,均在1 100 m处达到峰值,且达到显著水平(P < 0.05)。(4)微生物共现网络分析表明戴云山不同海拔土壤优势细菌群落具有明显模块化结构,关键类群包括变形菌门、酸杆菌门、放线菌门、拟杆菌门和疣微菌门的部分属,其中变形菌门的细菌关键类群最多。 结论 海拔、坡度、pH值、土壤全氮、水解氮和土壤有效磷是驱动不同海拔森林土壤优势细菌群落结构及多样性的主要因子。 Abstract:Objective We aimed to explore the distribution characteristics of forest soil bacterial communities in different elevations (900−1500 m) in Daiyun Mountain, Fujian Province of eastern China. Method We used high-throughput sequencing to study the composition and diversity of soil bacterial communities at different elevations, and analyzed the effect of environmental factors on soil dominant bacterial communities. Result (1) With the increasing of elevation, the content of soil total phosphorus showed a monotonic decreasing trend, the content of soil available phosphorus showed an unimodal trend, and the contents of soil total carbon and nitrogen presented a bimodal distribution trend. (2) In Daiyun Mountain, the dominant phyla bacteria in soil were Proteobacteria, Acidobacteria and Actinobacteria (relative abundance > 10%). (3) The soil diversity indices, such as species number, Chao1 index, Shannon-Wiener index and ACE index, increased first and then decreased along the elevation gradients, reaching a maximum at 1100 m. (4) The co-occurrence network analysis further indicated that soil dominant bacterial community had an obviously modular structure at different elevations of Daiyun Mountain. The keystone taxa included the genera from the phylum of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Verrucomicrobia, and the phylum of Proteobacteria had the maximum keystone genera. Conclusion The elevation, slope, pH value, soil total nitrogen, hydrolysable nitrogen, and available phosphorus are the main factors affecting the forest soil dominant bacterial community structure and diversity at the different elevations of Daiyun Mountain. -
图 4 不同因子对土壤优势细菌群落β多样性的解释度
ELE. 海拔;SWC. 土壤含水量;ST. 土壤表层温度;pH. pH值;AP.土壤有效磷;TC. 土壤全碳;HN. 水解氮;TN. 土壤全氮;TK. 土壤全K;SLO. 坡度;TP. 土壤全磷。**和***分别表示在P < 0.01和P < 0.001显著相关。下同。ELE, elevation; SWC, soil water content; ST, soil surface temperature; pH, pH value; AP, soil available phosphorous; TC, soil total carbon; HN, hydrolyzed nitrogen; TN, soil total nitrogen; TK, soil total potassium; SLO, slope; TP, soil total phosphorus. ** and *** indicate significant correlations at P < 0.01 and P < 0.001 level, respectively. The same below.
Figure 4. Interpretation rate of different factors to the beta diversity of soil dominant bacterial community
表 1 戴云山样地基本概况
Table 1. Basic information of sample plots in Daiyun Mountain
样地编号
Sample plot No.经度
Longitude纬度
Latitude森林类型
Forest type主要树种
Main tree species海拔
Elevation/m平均温度
Average temperature/℃坡度
Slope/(°)坡向
AspectDYS-900 118°10′36″E 25°38′46″N CEBF CG + CL 915 23.2 28 SW DYS-1000 118°10′38″E 25°38′51″N CEBF CL + CG 1 001 22.6 35 SW DYS-1100 118°10′43″E 25°38′57″N CEBF CL + CG 1 091 21.5 40 S DYS-1200 118°10′53″E 25°39′06″N CEBF CL + MT 1 201 21.4 35 S DYS-1300 118°10′55″E 25°39′22″N CEBF ER + PT 1 321 21.2 35 S DYS-1400 118°10′58″E 25°39′32″N CF PT + ER 1 411 20.4 30 S DYS-1500 118°10′57″E 25°39′47″N CF PT + RS 1 501 19.8 23 W 注:CEBF.针阔混交林;CF.针叶林;CG.青冈;CL.杉木;MT.红楠;PT.黄山松;ER. 窄基红褐柃;RS.映山红;SW.西南;S.南;W.西。Notes: CEBF, coniferous and evergreen broadleaved forest; CF, coniferous forest; CG, Cyclobalanopsis glauca; CL, Cunninghamia lanceolata; MT, Machilus thunbergii; PT, Pinus taiwanensis; ER, Eurya rubiginosa var. attenuata; RS, Rhododendron simsii; SW, southwest; S, south; W, west. 表 2 不同海拔土壤理化性质
Table 2. Soil physical and chemical properties of soil at different elevations
海拔
Elevation/mpH 土壤含水量
Soil water content (SWC)/%全碳
Total carbon (TC)/(g·kg−1)全氮
Total nitrogen (TN)/(g·kg−1)全磷
Total phosphorus (TP)/(g·kg−1)全钾
Total potassium (TK)/(g·kg−1)水解氮
Hydrolyzed nitrogen (HN)/(mg·kg−1)有效磷
Available phosphorus (AP)/(mg·kg−1)900 3.87 ± 0.01a 35.51 ± 0.41c 39.68 ± 0.6e 3.66 ± 0.03d 0.36 ± 0.002a 20.91 ± 0.24a 242.18 ± 12.00c 1.18 ± 0.03c 1 000 3.66 ± 0.02c 46.86 ± 2.65b 90.59 ± 1.9a 4.72 ± 0.04b 0.28 ± 0.003ab 13.41 ± 0.36d 333.05 ± 89.54abc 1.87 ± 0.01a 1 100 3.81 ± 0.05b 44.01 ± 3.39b 52.84 ± 0.6c 3.02 ± 0.05e 0.21 ± 0.002b 13.54 ± 0.10d 281.48 ± 26.89bc 1.30 ± 0.01b 1 200 3.86 ± 0.01a 43.50 ± 3.58b 68.21 ± 0.0b 4.85 ± 0.07b 0.24 ± 0.064ab 16.59 ± 0.13c 385.62 ± 81.16ab 0.74 ± 0.00d 1 300 3.51 ± 0.01d 43.91 ± 3.68b 89.64 ± 0.1a 5.28 ± 0.24a 0.20 ± 0.068b 16.41 ± 0.34c 377.75 ± 63.56ab 0.46 ± 0.04e 1 400 3.52 ± 0.01d 34.71 ± 0.96c 50.07 ± 0.0d 4.11 ± 0.03c 0.20 ± 0.045b 18.41 ± 0.25b 325.68 ± 94.28abc 0.43 ± 0.06e 1 500 3.67 ± 0.01c 54.19 ± 3.66a 34.66 ± 0.2f 3.11 ± 0.08e 0.19 ± 0.036b 16.36 ± 0.13c 418.52 ± 30.77a 0.24 ± 0.04f 注:同列不同字母表示差异显著(P < 0.05)。下同。Notes: different letters indicate significant difference in the same column (P < 0.05). The same below. 表 3 不同海拔土壤细菌的多样性指数
Table 3. Soil bacterial diversity indices at different elevations
海拔
Elevation/m物种数
Species numberChao 1指数
Chao 1 index香农指数
Shannon indexACE指数
ACE index900 2 775.33 ± 8.97c 3 001.18 ± 21.24d 9.48 ± 0.02d 3 028.24 ± 11.69c 1 000 3 017.33 ± 4.84b 3 299.03 ± 12.63bc 9.56 ± 0.01c 3 310.89 ± 5.03b 1 100 3 222.00 ± 16.04a 3 508.03 ± 22.30a 9.77 ± 0.01a 3 529.94 ± 21.80a 1 200 2 998.33 ± 18.48b 3 341.49 ± 31.92b 9.65 ± 0.01b 3 315.42 ± 24.55b 1 300 3 031.33 ± 16.37b 3 310.06 ± 24.92bc 9.61 ± 0.02b 3 329.75 ± 23.93b 1 400 3 026.33 ± 19.37b 3 263.20 ± 30.45bc 9.64 ± 0.02b 3 296.76 ± 28.56b 1 500 2 992.33 ± 19.01b 3 256.32 ± 26.72c 9.62 ± 0.01b 3 303.86 ± 25.17b 表 4 环境因子与土壤细菌优势门群落间的显著性检验
Table 4. Significant test between environmental factors and dominant phyla of soil bacterial communities
环境因子
Environmental factor模型检验F值
Model test F value显著性检验P值
Significance test P value海拔 Elevation 20.251 2 0.001*** 坡度 Slope 6.459 2 0.001*** pH值 pH value 3.434 8 0.009** 土壤全氮
Soil total nitrogen3.309 6 0.015* 水解氮
Hydrolyzed nitrogen2.645 5 0.039* 土壤有效磷
Soil available phosphorus4.562 7 0.003** 注:*表示在P < 0.05水平上显著相关;**表示在P < 0.01水平上显著相关;***表示在P < 0.001水平上显著相关。整个拟合方程显著度F = 6.772,P = 0.001***。Notes: * indicates significant correlation at P < 0.05 level, ** indicates significant correlation at P < 0.01 level, *** indicates significant correlation at P < 0.001 level. The significance of whole stimulated equation is F = 6.772, with P = 0.001***. -
[1] Young I M. Interactions and self-organization in the soil-microbe complex[J]. Science, 2004, 304: 1634−1637. doi: 10.1126/science.1097394 [2] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979−988. doi: 10.3773/j.issn.1005-264x.2010.08.011Jiang J, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979−988. doi: 10.3773/j.issn.1005-264x.2010.08.011 [3] 王颖, 宗宁, 何念鹏, 等. 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性[J]. 生态学报, 2018, 38(16): 5837−5845.Wang Y, Zong N, He N P, et al. Soil microbial functional diversity patterns and drivers along an elevation gradient on Qinghai-Tibet, China[J]. Acta Ecologica Sinica, 2018, 38(16): 5837−5845. [4] Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. PNAS, 2006, 103(3): 626−631. doi: 10.1073/pnas.0507535103 [5] 褚海燕, 冯毛毛, 柳旭, 等. 土壤微生物生物地理学: 国内进展与国际前沿[J]. 土壤学报, 2020, 57(3): 515−529.Chu H Y, Feng M M, Liu X, et al. Soil microbial biogeography: recent advances in China and research frontiers in the world[J]. Acta Pedologica Sinica, 2020, 57(3): 515−529. [6] 方精云, 唐志尧. 植物物种多样性的垂直分布格局[J]. 生物多样性, 2004, 12(1): 20−28. doi: 10.3321/j.issn:1005-0094.2004.01.004Fang J Y, Tang Z Y. A review on the elevational patterns of plant species diversity[J]. Biodiversity Science, 2004, 12(1): 20−28. doi: 10.3321/j.issn:1005-0094.2004.01.004 [7] 潘红丽, 李迈和, 蔡小虎, 等. 海拔梯度上的植物生长与生理生态特性[J]. 生态环境学报, 2009, 18(2): 722−730. doi: 10.3969/j.issn.1674-5906.2009.02.059Pan H L, Li M H, Cai X H, et al. Plant growth and physiological and ecological characteristics at altitude gradient[J]. Ecology and Environmental Sciences, 2009, 18(2): 722−730. doi: 10.3969/j.issn.1674-5906.2009.02.059 [8] Dharmesh S, Koichi T, Mincheol K, et al. A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan[J]. Microbial Ecology, 2012, 63(2): 429−437. doi: 10.1007/s00248-011-9900-1 [9] Yang Y Y, Zhou Y, Shi Z, et al. Interactive effects of elevation and land use on soil bacterial communities in the Tibetan Plateau[J]. Pedosphere, 2020, 30(6): 817−831. doi: 10.1016/S1002-0160(19)60836-2 [10] Lin Y T, Chiu C Y. Elevation gradient of soil bacterial communities in bamboo plantations[J]. Botanical Studies, 2016, 57(1): 1−6. [11] Li J B, Shen Z H, Li C N, et al. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China[J]. Frontiers in Microbiology, 2018, 9: 569. doi: 10.3389/fmicb.2018.00569 [12] Nottingham A T, Fierer N, Turner B L, et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes[J]. Ecology, 2018, 99(11): 2455−2466. doi: 10.1002/ecy.2482 [13] Shen C C, Ni Y Y, Liang W J, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology, 2015, 6: 582. [14] Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013, 57: 204−211. doi: 10.1016/j.soilbio.2012.07.013 [15] 刘秉儒, 张秀珍, 胡天华, 等. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 2013, 33(22): 7211−7220. doi: 10.5846/stxb201208061110Liu B R, Zhang X Z, Hu T H, et al. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 2013, 33(22): 7211−7220. doi: 10.5846/stxb201208061110 [16] Fierer N, McCain C M, Meir P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4): 797−804. doi: 10.1890/10-1170.1 [17] Jiang L, He Z S, Liu J F, et al. Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis forest on Daiyun Mountain[J]. Forests, 2019, 10(12): 1089. doi: 10.3390/f10121089 [18] 赵盼盼, 周嘉聪, 林开淼, 等. 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J]. 生态学报, 2019, 39(6): 2215−2225.Zhao P P, Zhou J C, Lin K M, et al. Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone[J]. Acta Ecologica Sinica, 2019, 39(6): 2215−2225. [19] 赵盼盼, 周嘉聪, 林开淼, 等. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响[J]. 生态学报, 2019, 39(8): 2676−2686.Zhao P P, Zhou J C, Lin K M, et al. Effects of different altitudes on soil microbial biomass and enzyme activities in Pinus taiwanensis forests on Daiyun Mountain, Fujian Province[J]. Acta Ecologica Sinica, 2019, 39(8): 2676−2686. [20] 李梦佳, 何中声, 江蓝, 等. 海拔与土壤因子驱动了戴云山南坡森林树木多样性与系统发育多样性[J]. 生态学报, 2021, 41(3): 1148−1157.Li M J, He Z S, Jiang L, et al. Distribution pattern and driving factors of species diversity and phylogenetic diversity along altitudinal gradient on the south slope of Daiyun Mountain[J]. Acta Ecologica Sinica, 2021, 41(3): 1148−1157. [21] 国家林业局. 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999.State Forestry Administration. Forest soil analysis method[M]. Beijing: China Standards Press, 1999. [22] R Core Team. R: a language and environment for statistical computing [Z]. Vienna: R Foundation for Statistical Computing, 2020. [23] Hartman W H, Richardson C J, Rytas V, et al. Environmental and anthropogenic controls over bacterial communities in wetland soils[J]. PNAS, 2008, 105: 17842−17847. doi: 10.1073/pnas.0808254105 [24] Lundberg D S, Yourstone S, Mieczkowski P, et al. Practical innovations for high-throughput amplicon sequencing[J]. Nature Methods, 2013, 10: 999−1002. doi: 10.1038/nmeth.2634 [25] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996−998. doi: 10.1038/nmeth.2604 [26] Crawford P A, Crowley J R, Sambandam N, et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation[J]. PNAS, 2009, 106(27): 11276−11281. doi: 10.1073/pnas.0902366106 [27] Csárdi G, Nepusz T. The igraph software package for complex network research[J]. International Journal of Complex Systems, 2006, 1695(5): 1−9. [28] 李相楹, 张维勇, 刘峰, 等. 不同海拔高度下梵净山土壤碳、氮、磷分布特征[J]. 水土保持研究, 2016, 23(3): 19−24. doi: 10.13869/j.cnki.rswc.2016.03.004Li X Y, Zhang W Y, Liu F, et al. The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain[J]. Research of Soil and Water Conservation, 2016, 23(3): 19−24. doi: 10.13869/j.cnki.rswc.2016.03.004 [29] 陈志芳, 刘金福, 吴则焰. 戴云山不同海拔森林类型土壤理化性质与酶活性研究[J]. 河南科技学院学报, 2014, 42(2): 10−14.Chen Z F, Liu J F, Wu Z Y. Soil physico-chemical properties and enzyme activities at different elevation gradient forest type of Daiyun Mountain[J]. Journal of Henan Institute of Science and Technology, 2014, 42(2): 10−14. [30] 江蓝. 戴云山南坡木本植物功能性状海拔分布及其环境解释[D]. 福州: 福建农林大学, 2019.Jiang L. The elevation distribution of woody plant functional traits and its environmental interpretation on south slope of Daiyun Mountain[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. [31] 邢 聪, 江蓝, 何中声, 等. 戴云山不同海拔黄山松群落的高度级结构研究[J]. 森林与环境学报, 2019, 39(4): 380−385.Xing C, Jiang L, He Z S, et al. Height class structure of a Pinus taiwanensis community growing at different elevations on Daiyun Mountain[J]. Journal of Forest and Environment, 2019, 39(4): 380−385. [32] 王平, 任宾宾, 易超, 等. 轿子山自然保护区土壤理化性质垂直变异特征与环境因子关系[J]. 山地学报, 2013, 31(4): 456−463. doi: 10.3969/j.issn.1008-2786.2013.04.011Wang P, Ren B B, Yi C, et al. The correlation between soil characteristics and environmental factors along altitude gradient of Jiaozi Mountain Nature Reserve[J]. Mountain Research, 2013, 31(4): 456−463. doi: 10.3969/j.issn.1008-2786.2013.04.011 [33] Wang J T, Cao P, Hu H W, et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau[J]. Microbial Ecology, 2015, 69(1): 135−145. doi: 10.1007/s00248-014-0465-7 [34] Barns S M, Cain E C, Sommerville L. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum[J]. Applied and Environmental Microbiology, 2007, 73(9): 3113−3116. doi: 10.1128/AEM.02012-06 [35] Lü X F, Yu J B, Fu Y Q. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils[J/OL]. The Scientific World Journal, 2014, 2014, 437684[2020−12−11]. https://doi.org/10.1155/2014/437684. [36] 李聪杰, 郝彦斌, 韩丛英. 土壤中微生物含量影响因素的统计方法分析[J]. 微生物学通报, 2016, 43(12): 2594−2600.LI C J, Hao Y B, Han C Y. Statistical analysis of influencing factors of soil microbial content[J]. Microbiology China, 2016, 43(12): 2594−2600. [37] 乔沙沙, 周永娜, 刘晋仙, 等. 关帝山针叶林土壤细菌群落结构特征[J]. 林业科学, 2017, 53(2): 89−99. doi: 10.11707/j.1001-7488.20170211Qiao S S, Zhou Y N, Liu J X, et al. Characteristics of soil bacterial community structure in coniferous forests of Guandi Mountains, Shanxi Province[J]. Scientia Silvae Sinicae, 2017, 53(2): 89−99. doi: 10.11707/j.1001-7488.20170211 [38] Zhang Y, Cong J, Lu H. Soil bacterial diversity patterns and drivers along an altitudinal gradient on Shennongjia Mountain, China[J]. Microbial Biotechnology, 2015, 8(4): 739−746. doi: 10.1111/1751-7915.12288 [39] Zimmermann M, Leifeld J, Conen F, et al. Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity?[J]. Biogeochemistry, 2012, 107(1−3): 423−436. doi: 10.1007/s10533-010-9562-y [40] 陈法霖, 郑华, 阳柏苏, 等. 中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响[J]. 生态学报, 2010, 31(11): 3027−3035.Chen F L, Zheng H, Yang B S, et al. The decomposition of coniferous and broadleaf mixed litters significantly changes the carbon metabolism diversity of soil microbial communities in subtropical area, southern China[J]. Acta Ecologica Sinica, 2010, 31(11): 3027−3035. [41] 曾晓敏, 范跃新, 林开淼, 等. 亚热带不同海拔黄山松林土壤磷组分及微生物特征[J]. 生态学报, 2018, 38(18): 6570−6579.Zeng X M, Fan Y X, Lin K M, et al. Characteristics of soil phosphorus fractions and microbial communities in Pinus taiwanensis Hayata forests at different altitudes in a subtropical region of China[J]. Acta Ecologica Sinica, 2018, 38(18): 6570−6579. [42] Singh D, Lee-Cruz L, Kim W S, et al. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea[J]. Soil Biology and Biochemistry, 2014, 68: 140−149. doi: 10.1016/j.soilbio.2013.09.027 [43] Lin Y T, Whitman W B, Coleman D C. Changes of soil bacterial communities in bamboo plantations at different elevations[J]. FEMS Microbiology Ecology, 2015, 91(5): 33−43. [44] Landesman W J, Nelson D M, Fitzpatrick M C. Soil properties and tree species drive ß-diversity of soil bacterial communities[J]. Soil Biology and Biochemistry, 2014, 76: 201−209. doi: 10.1016/j.soilbio.2014.05.025 [45] Ramirez K S, Geisen S, Morriën E, et al. Network analyses can advance above-belowground ecology[J]. Trends in Plant Science, 2018, 23(9): 759−768. doi: 10.1016/j.tplants.2018.06.009 [46] Banerjee S, Walder F, Büchi L, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J]. The ISME Journal, 2019(13): 1722−1736. [47] Banerjee S, Schlaeppi K, van der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018(16): 567−576. [48] Santolini M, Barabási A. Predicting perturbation patterns from the topology of biological networks[J]. PNAS, 2018, 115(27): E6375−E6383. [49] Wang J Q, Shi X Z, Zheng C Y, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest[J/OL]. Science of the Total Environment, 2021, 755(1): 142449[2021−08−15]. https://doi.org/10.1016/j.scitotenv.2020.142449. -