高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

震后生态恢复初期植被−土壤的耦合关系研究

余杭 高若允 杨柳生 李松阳 刘颖 林勇明 王道杰 李键

余杭, 高若允, 杨柳生, 李松阳, 刘颖, 林勇明, 王道杰, 李键. 震后生态恢复初期植被−土壤的耦合关系研究——以汶川县威州镇、绵竹市汉旺镇为例[J]. 北京林业大学学报, 2021, 43(5): 53-63. doi: 10.12171/j.1000-1522.20200289
引用本文: 余杭, 高若允, 杨柳生, 李松阳, 刘颖, 林勇明, 王道杰, 李键. 震后生态恢复初期植被−土壤的耦合关系研究——以汶川县威州镇、绵竹市汉旺镇为例[J]. 北京林业大学学报, 2021, 43(5): 53-63. doi: 10.12171/j.1000-1522.20200289
Yu Hang, Gao Ruoyun, Yang Liusheng, Li Songyang, Liu Ying, Lin Yongming, Wang Daojie, Li Jian. Coupling relationship between vegetation and soil in the early stage of ecological restoration after earthquake: a case study of Weizhou Town in Wenchuan County and Hanwang Town in Mianzhu City of Sichuan Province, southwestern China[J]. Journal of Beijing Forestry University, 2021, 43(5): 53-63. doi: 10.12171/j.1000-1522.20200289
Citation: Yu Hang, Gao Ruoyun, Yang Liusheng, Li Songyang, Liu Ying, Lin Yongming, Wang Daojie, Li Jian. Coupling relationship between vegetation and soil in the early stage of ecological restoration after earthquake: a case study of Weizhou Town in Wenchuan County and Hanwang Town in Mianzhu City of Sichuan Province, southwestern China[J]. Journal of Beijing Forestry University, 2021, 43(5): 53-63. doi: 10.12171/j.1000-1522.20200289

震后生态恢复初期植被−土壤的耦合关系研究

——以汶川县威州镇、绵竹市汉旺镇为例

doi: 10.12171/j.1000-1522.20200289
基金项目: 国家自然科学基金项目(42071132、41790434),中国科学院山地灾害与地表过程重点实验室开放研究基金项目(2019),福建农林大学杰出青年科研人才计划项目(xjq2017016)
详细信息
    作者简介:

    余杭。主要研究方向:自然地理学。Email:15665309598@163.com 地址:350002 福建省福州市仓山区上下店路15号福建农林大学林学院

    责任作者:

    林勇明,副教授。主要研究方向:区域资源优化、生态学。Email:monkey1422@163.com 地址:同上

  • 中图分类号: S714.7;S154.4

Coupling relationship between vegetation and soil in the early stage of ecological restoration after earthquake: a case study of Weizhou Town in Wenchuan County and Hanwang Town in Mianzhu City of Sichuan Province, southwestern China

  • 摘要:   目的  探究汶川地震重灾区不同气候区恢复初始阶段植被与土壤的耦合协调关系,为促进灾害干扰地区的生态恢复和植被−土壤系统的协调发展提供参考依据。  方法  以干旱河谷气候区、亚热带季风性气候区的受损治理区和未受损区(AT和AU、ST和SU)为研究对象,测定植被和土壤的21个指标,采用主成分分析法得出两个气候区4种生态系统的主要影响因子和21个指标的权重,并构建对应的植被−土壤耦合协调度(D)模型。  结果  SU的植被、土壤综合指数和D均显著高于其他3种植被−土壤系统。AT和ST均为初级协调发展类土壤滞后发展型,AU和SU分别为初级和中级协调发展类植被土壤同步发展型。干旱河谷气候区的影响因子较为单一,AT的主要影响因子为土壤有机碳、全氮、速效氮和速效磷,AU为植物碳、氮、钾和镁。亚热带季风性气候区的影响因子表现为植被−土壤影响因子共存,ST的主要影响因子为物种丰富度、生物量、土壤全氮和速效氮,SU为植被覆盖度、植物磷、土壤速效钾和细菌。  结论  气候和生态恢复类型对植被−土壤耦合状况具有一定的影响。SU的植被−土壤耦合状况显著优于其他3种生态系统。AT和ST的土壤环境均较差,经7年治理尚未恢复到震前水平。

     

  • 表  3  植被土壤耦合协调评价层次结构及指标权重

    Table  3.   Level structural and weights of indexes in coupling coordinative evaluation of vegetation and soil

    项目 Item第1层 Level one第2层 Level two综合权重 Comprehensive weight
    指标 Index权重 Weight指标 Index权重 Weight
    植被 Vegetation 植物多样性 Plant diversity 0.164 VC 0.360 0.059
    SR 0.323 0.053
    Bio 0.317 0.052
    植物元素 Plant element 0.192 PC 0.127 0.025
    PN 0.130 0.025
    PP 0.161 0.031
    PK 0.147 0.028
    PCa 0.132 0.025
    PMg 0.147 0.028
    PNa 0.157 0.030
    土壤 Soil 土壤养分 Soil nutrient 0.396 SOC 0.151 0.060
    TN 0.151 0.060
    TP 0.144 0.057
    AN 0.166 0.066
    AP 0.164 0.065
    AK 0.223 0.088
    微生物性状 Microbial trait 0.248 MBC 0.181 0.045
    MBN 0.217 0.054
    BAC 0.267 0.066
    ACT 0.183 0.045
    FUN 0.152 0.038
    下载: 导出CSV

    表  1  两个气候区受损治理区与未受损区的植物及土壤指标

    Table  1.   Plant and soil indicators of destroyed treatment area and undestroyed area in the two climate regions

    指标
    Index
    干旱河谷气候区 Arid-valley climate region亚热带季风性气候区 Subtropical monsoon climate region
    受损治理区
    Destroyed treatment area
    未受损区
    Undestroyed area
    受损治理区
    Destroyed treatment area
    未受损区
    Undestroyed area
    植被指标
    Index of
    vegetation
    VC/% 41.00 ± 1.95b 80.88 ± 1.38a 52.22 ± 1.42b 79.44 ± 0.81a
    SR/(plant·m−2) 8.22 ± 0.22ab 10.44 ± 0.43ab 7.67 ± 0.32b 10.88 ± 0.31a
    Bio/(g·m−2) 211.02 ± 4.77b 267.24 ± 6.54a 194.00 ± 4.88b 241.11 ± 4.98a
    PC/(g·kg−1) 407.97 ± 7.72a 348.91 ± 1.48b 353.55 ± 1.94b 354.30 ± 2.18b
    PN/(g·kg−1) 13.07 ± 0.12b 13.60 ± 0.18b 15.16 ± 0.29ab 17.20 ± 0.39a
    PP/(g·kg−1) 0.55 ± 0.01c 0.98 ± 0.05b 1.20 ± 0.02ab 1.42 ± 0.04a
    PK/(g·kg−1) 8.46 ± 0.19b 9.21 ± 0.31b 15.65 ± 0.23a 14.51 ± 0.24a
    PCa/(g·kg−1) 10.77 ± 0.21b 13.83 ± 0.43ab 10.60 ± 0.37b 14.47 ± 0.47a
    PMg/(g·kg−1) 3.50 ± 0.04a 2.82 ± 0.04b 2.00 ± 0.04c 1.87 ± 0.03c
    PNa/ (g·kg−1) 0.29 ± 0.01b 0.45 ± 0.01a 0.23 ± 0.01b 0.32 ± 0.01b
    土壤指标
    Index of soil
    SOC/(g·kg−1) 11.28 ± 0.74b 31.05 ± 1.29a 10.14 ± 0.43b 27.14 ± 0.56a
    TN/(g·kg−1) 0.84 ± 0.05b 2.81 ± 0.13a 1.19 ± 0.05b 2.32 ± 0.08a
    TP/(g·kg−1) 0.43 ± 0.02b 1.08 ± 0.06a 0.54 ± 0.02b 1.09 ± 0.04a
    AN/(g·kg−1) 53.17 ± 1.98c 145.17 ± 11.06b 70.73 ± 4.74bc 222.38 ± 8.44a
    AP/(mg·kg−1) 2.25 ± 0.04b 7.00 ± 0.40a 1.93 ± 0.06b 3.83 ± 0.36b
    AK/(mg·kg−1) 26.52 ± 1.68c 44.30 ± 2.55c 150.20 ± 10.25b 221.96 ± 9.19a
    MBC/(mg·kg−1) 355.35 ± 13.31c 639.59 ± 8.98b 462.00 ± 10.20b 804.49 ± 10.01a
    MBN/(mg·kg−1) 40.30 ± 2.61b 125.47 ± 3.51a 51.13 ± 1.61b 103.05 ± 2.27a
    BAC/(105cfu·g−1) 48.51 ± 1.28a 57.29 ± 1.30a 46.63 ± 1.28a 54.77 ± 2.28a
    ACT/(105cfu·g−1) 3.61 ± 0.19a 3.91 ± 0.05a 1.64 ± 0.10b 3.69 ± 0.13a
    FUN/(105cfu·g−1) 0.57 ± 0.06a 0.51 ± 0.04ab 0.17 ± 0.01c 0.24 ± 0.01bc
    注:同行不同小写字母表示同一气候区不同样地之间差异显著(P < 0.05)。VC为植被覆盖度;SR为物种丰富度;Bio为生物量;PC为植物碳;PN为植物氮;PP为植物磷;PK为植物钾;PCa为植物钙;PMg为植物镁;PNa为植物钠;SOC为土壤有机碳;TN为土壤全氮含量;TP为土壤全磷含量;AN为速效氮;AP为有效磷;AK为速效钾;MBC为微生物碳;MBN为微生物氮;BAC为细菌;ACT为放线菌;FUN为真菌。下同。Notes: different lowercase letters in the same row indicate significant differences between varied sample plots of the same climate regions (P < 0.05). VC represents vegetation coverage; SR represents species richness; Bio represents biomass; PC represents plant carbon; PN represents plant nitrogen; PP represents plant phosphorus; PK represents plant potassium; PCa represents plant calcium; PMg represents plant magnesium; PNa represents plant sodium; SOC represents soil organic carbon; TN represents soil total nitrogen; TP represents soil total phosphorus; AN represents available nitrogen; AP represents available phosphorus; AK represents available potassium; MBC represents microbial carbon; MBN represents microbial nitrogen; BAC represents bacteria; ACT represents actinomycetes; FUN represents fungus. The same below.
    下载: 导出CSV

    表  2  两个气候区受损治理区与未受损区的主要影响因子分析

    Table  2.   Analysis of the main influencing factors of destroyed treatment area and undestroyed area in the two climate regions

    主成分
    Principal component
    生态系统
    Ecosystem
    主成分因子
    Principal component factor
    累积解释变量
    Cumulative explanatory variable/%
    第1主成分 First principal component AT SOC、TNANAP 37.91
    AU PCPNPKPMg 31.65
    ST SR、Bio、TNAN 31.99
    SU VC、PPAK、BAC 38.08
    第2主成分 Second principal component AT PMgTPAK、BAC 54.57
    AU VC、Bio 53.89
    ST PPPKAK 54.00
    SU PNa、SOC 58.18
    第3主成分 Third principal component AT SR、PP 69.12
    AU SOC、TN 70.14
    ST PCPNa 69.00
    SU TP、MBN 70.75
    第4主成分 Fourth principal component AT PN 81.13
    AU SR、PP 81.68
    ST PCaPMg 82.42
    SU Bio、MBC 80.23
    第5主成分 Fifth principal component AT VC 89.86
    AU AN、MBC 89.46
    ST ACT、FUN 90.76
    SU AN 88.06
    注:AT为干旱河谷气候区受损治理区;AU为干旱河谷气候区未受损区;ST为亚热带季风性气候区受损治理区;SU为亚热带季风性气候区未受损区。下同。Notes: AT represents destroyed treatment area of arid-valley climate region; AU represents undestroyed area of arid-valley climate region; ST represents destroyed treatment area of subtropical monsoon climate region; SU represents undestroyed area of subtropical monsoon climate region. The same below.
    下载: 导出CSV

    表  4  植被−土壤耦合协调类型划分

    Table  4.   Classification of coupling coordination type of vegetation and soil

    D类型 TypeR耦合协调类型 Coupling coordination type
    0.8 < D ≤ 1.0 优质协调发展类
    Type of high-quality coordinated development
    R > 1.2 优质协调发展类土壤滞后发展型
    Soil lagging development type of high-quality coordinated development
    0.8 < R ≤ 1.2 优质协调发展类植被土壤同步发展型
    Synchronous development type of vegetation and soil of high-quality coordinated development
    0 < R ≤ 0.8 优质协调发展类植被滞后发展型
    Vegetation lagging development type of high-quality coordinated development
    0.6 < D ≤ 0.8 良好协调发展类
    Type of good coordinated development
    R > 1.2 良好协调发展类土壤滞后发展型
    Soil lagging development type of good coordinated development
    0.8 < R ≤ 1.2 良好协调发展类植被土壤同步发展型
    Synchronous development type of vegetation and soil of good coordinated development
    0 < R ≤ 0.8 良好协调发展类植被滞后发展型
    Vegetation lagging development type of good coordinated development
    0.4 < D ≤ 0.6 中级协调发展类
    Type of intermediate-level coordinated development
    R > 1.2 中级协调发展类土壤滞后发展型
    Soil lagging development type of intermediate-level coordinated development
    0.8 < R ≤ 1.2 中级协调发展类植被土壤同步发展型
    Synchronous development type of vegetation and soil of intermediate-level coordinated development
    0 < R ≤ 0.8 中级协调发展类植被滞后发展型
    Vegetation lagging development type of intermediate-level coordinated development
    0.2 < D ≤ 0.4 初级协调发展类
    Type of primary coordinated development
    R > 1.2 初级协调发展类土壤滞后发展型
    Soil lagging development type of primary coordinated development
    0.8 < R ≤ 1.2 初级协调发展类植被土壤同步发展型
    Synchronous development type of vegetation and soil of primary coordinated development
    0 < R ≤ 0.8 初级协调发展类植被滞后发展型
    Vegetation lagging development type of primary coordinated development
    0 < D ≤ 0.2 低级协调发展类
    Type of low-level coordinated development
    R > 1.2 低级协调发展类土壤滞后发展型
    Soil lagging development type of low-level coordinated development
    0.8 < R ≤ 1.2 低级协调发展类植被土壤同步发展型
    Synchronous development type of vegetation and soil of low-level coordinated development
    0 < R ≤ 0.8 低级协调发展类植被滞后发展型
    Vegetation lagging development type of low-level coordinated development
    注:D为植被−土壤耦合协调度;R为植被综合评价函数/土壤综合评价函数。下同。Notes: D represents coupling coordinative degree; R represents ratio of comprehensive evaluation function of vegetation to comprehensive evaluation function of soil. The same below.
    下载: 导出CSV

    表  5  两个气候区受损治理区和未受损区植被土壤耦合协调状况综合评价

    Table  5.   Comprehensive evaluation of coupling and coordination status of vegetation and soil system of destroyed treatment area and undestroyed area in the two climate regions

    样地
    Sample plot
    植被综合评价函数
    Comprehensive evaluation function of vegetation
    土壤综合评价函数
    Comprehensive evaluation
    function of soil
    CDR耦合协调模型
    Coupled coordination model
    AT 0.15 ± 0.05b 0.11 ± 0.06b 0.90 ± 0.06a 0.35 ± 0.016b 1.35 ± 0.05a 初级协调发展类土壤滞后发展型
    Soil lagging development type of primary coordinated development
    AU 0.13 ± 0.07b 0.15 ± 0.04b 0.98 ± 0.05a 0.37 ± 0.01b 0.88 ± 0.04b 初级协调发展类植被土壤同步发展型
    Synchronous development type of vegetation and soil of primary coordinated development
    ST 0.15 ± 0.08b 0.10 ± 0.03b 0.84 ± 0.02a 0.32 ± 0.01b 1.45 ± 0.17a 初级协调发展类土壤滞后发展型
    Soil lagging development type of primary coordinated development
    SU 0.33 ± 0.12a 0.35 ± 0.17a 0.99 ± 0.78a 0.58 ± 0.02a 0.96 ± 0.04b 中级协调发展类植被土壤同步发展型
    Synchronous development type of vegetation and soil of intermediate-level coordinated development
    注:小写字母表示不同样地之间差异显著(P < 0.05)。C为植被−土壤耦合度。Notes: different lowercase letters indicate significant differences between varied sample plots (P < 0.05). C represents vegetation and soil coupling degree.
    下载: 导出CSV
  • [1] Zhang J D, Hull V, Xu W, et al. Impact of the 2008 Wenchuan earthquake on biodiversity and giant panda habitat in Wolong Nature Reserve, China[J]. Ecological Research, 2011, 26(3): 523−531. doi: 10.1007/s11284-011-0809-4
    [2] 杨昌旭, 李勇, 杨志刚, 等. 汶川地震灾区不同植被恢复模式评价与筛选[J]. 四川林业科技, 2017, 38(3):11−21.

    Yang C X, Li Y, Yang Z G, et al. Evaluation and selection of different vegetation restoration models in Wenchuan earthquake areas[J]. Sichuan Forestry Science and Technology, 2017, 38(3): 11−21.
    [3] 余杭, 罗清虎, 李松阳, 等. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性[J]. 山地学报, 2020, 38(4):532−541.

    Yu H, Luo Q H, Li S Y, et al. Initial recovery characteristics and variability of soil carbon, nitrogen, and phosphorus in the damaged forests under disaster disturbance[J]. Mountain Research, 2020, 38(4): 532−541.
    [4] 赵丽丽, 钟哲科, 史作民. 汶川地震对岷江柏林土壤微生物群落及养分的影响[J]. 土壤通报, 2016, 47(1):98−104.

    Zhao L L, Zhong Z K, Shi Z M. Effects of Wenchuan earthquake on soil microbial communities and nutrients in 5 Cupressus chenginana forest[J]. Chinese Journal of Soil Science, 2016, 47(1): 98−104.
    [5] Wang S J, Liu Q M, Zhang D F. Karst rocky desertification in southwestern China: geomorphology, land use, impact and rehabilitation[J]. Land Degradation & Development, 2004, 15(2): 115−121.
    [6] Yang N, Zou D S, Yang M Y, et al. Relationships between vegetation characteristics and soil properties at different restoration stages on slope land with purple soils in Hengyang of Hunan Province, south-central China[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 90−96.
    [7] 许志琴, 吴忠良, 李海兵, 等. 世界上最快回应大地震的汶川地震断裂带科学钻探[J]. 地球物理学报, 2018, 61(5):1666−1679.

    Xu Z Q, Wu Z L, Li H B, et al. The most rapid respond to a large earthquake: the Wenchuan earthquake Fault Scientific Drilling Project[J]. Chinese Journal of Geophysics, 2018, 61(5): 1666−1679.
    [8] Sattler T, Borcard D, Arlettaz R, et al. Spider, bee, and bird communities in cities are shaped by environmental control and high stochasticity[J]. Ecology, 2010, 91(11): 3343−3353. doi: 10.1890/09-1810.1
    [9] Stefanowicz A M, Kapusta P, Szarek-Łukaszewska G, et al. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils[J]. Science of the Total Environment, 2012, 439(15): 211−219.
    [10] 杨宁, 邹冬生, 杨满元, 等. 衡阳紫色土丘陵坡地植被恢复阶段土壤特性的演变[J]. 生态学报, 2014, 34(10):2693−2701.

    Yang N, Zou D S, Yang M Y, et al. Changes of soil properties in re-vegetation stages on sloping-land with purple soils in Hengyang of Hunan Province, south-central China[J]. Acta Ecologica Sinica, 2014, 34(10): 2693−2701.
    [11] 牛丽君, 梁宇, 王绍先, 等. 长白山自然保护区风灾区植被恢复评价[J]. 生态学杂志, 2013, 32(9):2375−2381.

    Niu L J, Liang Y, Wang S X, et al. Evaluation of vegetation restoration in wind disaster area in Changbai Mountains Nature Reverse, Northeast China[J]. Chinese Journal of Ecology, 2013, 32(9): 2375−2381.
    [12] 李静鹏, 徐明锋, 苏志尧, 等. 不同植被恢复类型的土壤肥力质量评价[J]. 生态学报, 2014, 34(9):2297−2307.

    Li J P, Xu M F, Su Z Y, et al. Soil fertility quality assessment under different vegetation restoration patterns[J]. Acta Ecologica Sinica, 2014, 34(9): 2297−2307.
    [13] 彭晚霞, 宋同清, 曾馥平, 等. 喀斯特峰丛洼地退耕还林还草工程的植被土壤耦合协调度模型[J]. 农业工程学报, 2011, 27(9):305−310. doi: 10.3969/j.issn.1002-6819.2011.09.053

    Peng W X, Song T Q, Zeng F P, et al. Models of vegetation and soil coupling coordinative degree in grain for green project in depressions between karst hills[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 305−310. doi: 10.3969/j.issn.1002-6819.2011.09.053
    [14] 徐明, 张健, 刘国彬, 等. 不同植被恢复模式沟谷地植被−土壤系统耦合关系评价[J]. 自然资源学报, 2016, 31(12):2137−2146. doi: 10.11849/zrzyxb.20150736

    Xu M, Zhang J, Liu G B, et al. Analysis on vegetation-soil coupling relationship in gullies with different vegetation restoration patterns[J]. Journal of Natural Resources, 2016, 31(12): 2137−2146. doi: 10.11849/zrzyxb.20150736
    [15] 罗青红, 宁虎森, 陈启民. 人工梭梭林(Haloxylon ammodendron)固沙过程中植被与土壤耦合关系[J]. 中国沙漠, 2018, 38(4):780−790.

    Luo Q H, Ning H S, Chen Q M. Relation between vegetation and soil of Haloxylon ammodendron plantation in the process of sand-fixation[J]. Journal of Desert Research, 2018, 38(4): 780−790.
    [16] 李甜甜. 汶川地震极重灾区景观生态恢复影响因子分析[J]. 大众科技, 2012, 14(6):112−115.

    Li T T. The impact factors of landscape ecological restoration research of the severest disaster area of Wenchuan earthquake[J]. Popular Science & Technology, 2012, 14(6): 112−115.
    [17] 李福根, 辛晓洲, 李小军. 地震灾区植被净初级生产力恢复效应评价[J]. 水土保持研究, 2017, 24(6):139−146.

    Li F G, Xin X Z, Li X J. Assessment of restoration of vegetation net primary productivity in earthquake disaster area[J]. Research of Soil and Water Conservation, 2017, 24(6): 139−146.
    [18] 俞伟. 汶川地震灾区不同气候受损治理区土壤养分演变特征与肥力质量评价[D]. 福州: 福建农林大学, 2014.

    Yu W. The evolutionary characteristics of the soil nutrients and fertility quality evaluation in Wenchuan earthquake areas of different climate zones[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.
    [19] 陈爱民, 严思维, 林勇明, 等. 地震灾区生态治理初期土壤抗蚀性特征: 以汶川地震典型区为例[J]. 山地学报, 2018, 36(1):74−82.

    Chen A M, Yan S W, Lin Y M, et al. Characteristics of soil anti-erodibility at the initial stage of ecological restoration in the earthquake affected regions: a case study in Wenchuan, China[J]. Mountain Research, 2018, 36(1): 74−82.
    [20] 国家林业局. 森林木本植物功能性状测定方法: 中华人民共和国林业行业标准: LY/T2812—2017[S]. 北京: 中国标准出版社, 2017.

    The State Forestry Bureau. Methodology for functional traits measurement of woody plants in forests: the forestry industry standard of the People’s Republic of China: LY/T2812−2017[S]. Beijing: China Standard Press, 2017.
    [21] 贺静雯, 刘颖, 吴建召, 等. 震区生态恢复初期土壤养分含量与微生物生物量特征的关系[J]. 应用与环境生物学报, 2019, 25(5):1044−1052.

    He J W, Liu Y, Wu J Z, et al. Relationship between soil nutrient content and microbial biomass characteristics during an early ecological restoration stage in an earth quake affected area[J]. Chinese Journal of Applied & Environmental Biology, 2019, 25(5): 1044−1052.
    [22] 赵丽, 朱永明, 付梅臣, 等. 主成分分析法和熵值法在农村居民点集约利用评价中的比较[J]. 农业工程学报, 2012, 28(7):235−242.

    Zhao L, Zhu Y M, Fu M C, et al. Comparative study on intensive use of rural residential land based on principal component analysis and entropy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7): 235−242.
    [23] 颜惠琴, 牛万红, 韩惠丽. 基于主成分分析构建指标权重的客观赋权法[J]. 济南大学学报(自然科学版), 2017, 31(6):519−523.

    Yan H Q, Niu W H, Han H L. Objective weight method based on principal component analysis to establish index weight[J]. Journal of University of Jinan (Science and Technology), 2017, 31(6): 519−523.
    [24] 杜虎, 彭晚霞, 宋同清, 等. 桂北喀斯特峰丛洼地植物群落特征及其与土壤的耦合关系[J]. 植物生态学报, 2013, 37(3):197−208. doi: 10.3724/SP.J.1258.2013.00020

    Du H, Peng W X, Song T Q, et al. Plant community characteristics and its coupling relationships with soil in depressions between karst hills, North Guangxi, China[J]. Chinese Journal of Plant Ecology, 2013, 37(3): 197−208. doi: 10.3724/SP.J.1258.2013.00020
    [25] Lin W T, Chou W C, Lin Y C. Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan[J]. Forest Ecology and Management, 2005, 210(1): 55−66.
    [26] 孟莹莹, 周莉, 周旺明, 等. 长白山风倒区植被恢复26年后物种多样性变化特征[J]. 生态学报, 2015, 35(1):142−149.

    Meng Y Y, Zhou L, Zhou W M, et al. Characteristics of plant species diversity in a windthrow area on Changbai Mountain after 26 years of natural recovery[J]. Acta Ecologica Sinica, 2015, 35(1): 142−149.
    [27] 简尊吉, 马凡强, 郭泉水, 等. 三峡水库峡谷地貌区消落带优势植物种群生态位[J]. 生态学杂志, 2017, 36(2):328−334.

    Jian Z J, Ma F Q, Guo Q S, et al. Niche of dominant plant populations in the water level fluctuation zone of canyon landform area of the Three Gorges Reservoir[J]. Chinese Journal of Ecology, 2017, 36(2): 328−334.
    [28] 董丽娜, 罗文林, 韩凤鹏, 等. 植被恢复过程中土壤养分的变化[J]. 安徽农业科学, 2008, 36(15):6407−6409. doi: 10.3969/j.issn.0517-6611.2008.15.112

    Dong L N, Luo W L, Han F P, et al. Influence of the vegetation restoration process on nutrient in Zhifanggou Watershed[J]. Journal of Anhui Agricultural Sciences, 2008, 36(15): 6407−6409. doi: 10.3969/j.issn.0517-6611.2008.15.112
    [29] 袁仁茂, 张秉良, 徐锡伟, 等. 汶川地震北川−映秀断裂北段断层泥显微构造和黏土矿物特征及其意义[J]. 地震地质, 2013, 35(4):685−700.

    Yuan R M, Zhang B L, Xu X W, et al. Microstructural features and mineralogy of clay-rich fault gouge at the northern segment of the Yingxiu-Beichuan fault, China[J]. Seismology and Geology, 2013, 35(4): 685−700.
    [30] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8):979−988.

    Jiang J, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979−988.
    [31] 温仲明, 焦峰, 赫晓慧, 等. 黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响[J]. 草业学报, 2007, 16(1):16−23.

    Wen Z M, Jiao F, He X H, et al. Spontaneous succession and its impact on soil nutrient on abandoned farmland in the northern edge of the forest zone on the Loess Plateau[J]. Acta Prataculturae Sinica, 2007, 16(1): 16−23.
    [32] Sul W J, Asuming-Brempong S, Wang Q, et al. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon[J]. Soil Biology and Biochemistry, 2013, 65(10): 33−38.
    [33] Grigulis K, Lavorel S, Krainer U, et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services[J]. Journal of Ecology, 2013, 101(1): 47−57. doi: 10.1111/1365-2745.12014
    [34] Bending G D, Turner M K, Jones J E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities[J]. Soil Biology and Biochemistry, 2002, 34(8): 1073−1082. doi: 10.1016/S0038-0717(02)00040-8
    [35] 李君剑, 刘峰, 周小梅. 矿区植被恢复方式对土壤微生物和酶活性的影响[J]. 环境科学, 2015, 36(5):1836−1841.

    Li J J, Liu F, Zhou X M. Effects of different reclaimed scenarios on soil microbe and enzyme activities in mining areas[J]. Environmental Science, 2015, 36(5): 1836−1841.
    [36] 张希彪, 上官周平. 黄土丘陵区主要林分生物量及营养元素生物循环特征[J]. 生态学报, 2005, 25(3):527−537. doi: 10.3321/j.issn:1000-0933.2005.03.021

    Zhang X B, Shangguan Z P. The bio-cycle patterns of nutrient elements and stand biomass in forest communities in hilly loess regions[J]. Acta Ecologica Sinica, 2005, 25(3): 527−537. doi: 10.3321/j.issn:1000-0933.2005.03.021
    [37] Tate K R. The biological transformation of P in soil[J]. Plant and Soil, 1984, 76(1−3): 245−256. doi: 10.1007/BF02205584
    [38] 曾歆花, 张万军, 宋以刚, 等. 河北太行山低山丘陵区植被恢复过程中物种多样性与土壤养分变化[J]. 生态学杂志, 2013, 32(4):852−858.

    Zeng X H, Zhang W J, Song Y G, et al. Species diversity and soil nutrient dynamics along a chrono sequence of vegetation restoration in Taihang Mountains hilly region, Hebei Province of North China[J]. Chinese Journal of Ecology, 2013, 32(4): 852−858.
    [39] Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biological Reviews, 1992, 67(3): 321−358. doi: 10.1111/j.1469-185X.1992.tb00728.x
    [40] Devi N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, Northeast India[J]. Applied Soil Ecology, 2006, 31(3): 220−227. doi: 10.1016/j.apsoil.2005.05.005
    [41] Bowden R D, Nadelhoffer K J, Boone R D, et al. Contributions of aboveground litter, below ground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest[J]. Canadian Journal of Forest Research, 2011, 23(7): 1402−1407.
  • 加载中
表(5)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  115
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-26
  • 修回日期:  2020-12-23
  • 网络出版日期:  2021-05-20
  • 刊出日期:  2021-05-27

目录

    /

    返回文章
    返回