高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于X-ray CT的载荷作用下木材内部形变研究

李万兆 章正 彭俊懿 王新洲 石江涛 梅长彤

李万兆, 章正, 彭俊懿, 王新洲, 石江涛, 梅长彤. 基于X-ray CT的载荷作用下木材内部形变研究[J]. 北京林业大学学报, 2021, 43(2): 160-164. doi: 10.12171/j.1000-1522.20200290
引用本文: 李万兆, 章正, 彭俊懿, 王新洲, 石江涛, 梅长彤. 基于X-ray CT的载荷作用下木材内部形变研究[J]. 北京林业大学学报, 2021, 43(2): 160-164. doi: 10.12171/j.1000-1522.20200290
Li Wanzhao, Zhang Zheng, Peng Junyi, Wang Xinzhou, Shi Jiangtao, Mei Changtong. Exploring the internal deformation of wood under loading based on X-ray CT[J]. Journal of Beijing Forestry University, 2021, 43(2): 160-164. doi: 10.12171/j.1000-1522.20200290
Citation: Li Wanzhao, Zhang Zheng, Peng Junyi, Wang Xinzhou, Shi Jiangtao, Mei Changtong. Exploring the internal deformation of wood under loading based on X-ray CT[J]. Journal of Beijing Forestry University, 2021, 43(2): 160-164. doi: 10.12171/j.1000-1522.20200290

基于X-ray CT的载荷作用下木材内部形变研究

doi: 10.12171/j.1000-1522.20200290
基金项目: 国家自然科学基金面上项目(31971585)
详细信息
    作者简介:

    李万兆,博士,副教授。主要研究方向:木质复合材料。Email:liwanzhao1103@126.com 地址:210037江苏省南京市龙蟠路159号南京林业大学

    责任作者:

    梅长彤,博士,教授。主要研究方向:木质复合材料。Email:mei@njfu.edu.cn 地址:同上

Exploring the internal deformation of wood under loading based on X-ray CT

  • 摘要:   目的  木材是重要的室内装饰和建筑用工程材料,具有易加工,强重比高等优点。作为生物质多孔材料,载荷作用下木材内部结构易发生变化,进而对其力学性能产生重要影响。研究载荷作用下木材内部结构变形可为理解其力学行为提供基础理论支撑。  方法  为探索压缩载荷作用下木材内部空间结构的演变规律,使用微型加载设备对实体木材(花旗松)和胶合材(杨木)试件进行横纹压缩,实时记录加压头位移和加载压力,加载过程中使用X射线断层扫描仪周期性扫描试件,对扫描结构进行三维重建,实现试件内部空间结构可视化,结合力学性能和内部空间结构演变解析实体木材和胶合材力学失效机制。  结果  实体木材在受载时,早材部分密度快速增加,载荷达到25.26 MPa时,晚材部分密度开始增加。早材管胞压溃是木材内部结构变化的主要原因,压溃路径与生长轮平行;晚材结构改变主要体现为树脂道压缩变形和木射线压裂。胶合材在受载时,局部形变集中是杨木内部结构变形的主要原因,尤其是大孔径导管极易压溃;另外,胶黏剂能够明显增加胶层区域杨木刚度,提高导管结构的稳定性。  结论  本研究解析了横纹载荷作用下实体木材和胶合材内部空间结构的演变规律,为优化木材加工工艺和指导木材的科学利用提供了理论基础。新型三维动态检测技术为解析木材力学行为的发生机制提供了新的思路。

     

  • 图  1  加载条件下X射线断层扫描仪扫描试件示意图

    Figure  1.  Schematic overview for X-ray computed tomographyscanning a sample under loading force

    图  2  载荷作用下花旗松木和杨木胶合材试件沿厚度方向的平均灰度值变化

    Figure  2.  Grey scale value changes of Douglas fir wood and poplar plywood along thickness direction under loading force

    图  3  不同载荷下花旗松木试件内部空间结构变化示意图

    Figure  3.  Internal structure changes of Douglas fir wood samples under different loading forces

    图  4  不同载荷下花旗松木试件生长轮附近区域内部结构变化示意图

    Figure  4.  Internal structure changes in regions adjacent to growth ring of Douglas fir wood samples under different loading forces

    图  5  不同载荷下花旗松木试件晚材区域内部结构变化示意图

    Figure  5.  Internal structure changes in latewood regions of Douglas fir wood samples under different loading forces

    图  6  不同载荷下杨木胶合材试件内生长轮附近结构变化示意图

    Figure  6.  Internal structure changes in regions adjacent to growth ring of poplar plywood samples under different loading forces

    图  7  不同载荷下杨木胶合材试件导管压溃过程示意图

    Figure  7.  Internal structure changes of vessels in poplar plywood samples under different loading forces

    表  1  4个位移条件下试件承受的载荷

    Table  1.   Loading force of the samples under 4 different displacement conditions MPa

    试件类型 Sample type位移 Displacement/mm
    00.51.02.0
    杨木胶合材 Poplar plywood0.013.324.28 7.88
    花旗松木 Douglas fir wood0.015.305.6225.26
    下载: 导出CSV
  • [1] Satoshi F, Keita O, Masaki N, et al. Shear properties of metal-free wooden load-bearing walls using plywood jointed with a combination of adhesive tape and wood dowels[J]. European Journal of Wood and Wood Products, 2016, 75(3): 1−9.
    [2] Dukarska D, Czarnecki R, Dziurka D, et al. Construction particleboards made from rapeseed straw glued with hybrid pMDI/PF resin[J]. European Journal of Wood and Wood Products, 2017, 75(2): 175−184.
    [3] 吕超, 詹天翼, 王旋, 等. 木材内部水分扩散特性研究现状及发展趋势[J]. 世界林业研究, 2019, 32(6):43−48.

    Lü C, Zhan T Y, Wang X, et al. A review and development of water diffusion characteristics in wood[J]. World Forestry Research, 2019, 32(6): 43−48.
    [4] 詹天翼, 蒯炳斌, 吕超, 等. 杨木和杉木横纹抗拉强度的含水率依存性[J]. 林业工程学报, 2019, 4(5):34−39.

    Zhan T Y, Kuai B B, Lü C, et al. Moisture dependence of the tensile strength perpendicular to grain of poplar and Chinese fir[J]. Journal of Forestry and Engineering, 2019, 4(5): 34−39.
    [5] Ong H R, Khan M R, Prasad D M, et al. Palm kernel meal as a melamine urea formaldehyde adhesive filler for plywood applications[J]. International Journal of Adhesion and Adhesives, 2018, 85(10): 8−14.
    [6] Najafi S K, Sharifnia H, Najafabadi M A, et al. Acoustic emission characterization of failure mechanisms in oriented strand board using wavelet-based and unsupervised clustering methods[J]. Wood Science and Technology, 2017, 51(6): 1433−1446.
    [7] Li W Z, van den Bulcke J, Mannes D, et al. Impact of internal structure on water-resistance of plywood studied using neutron radiography and X-ray tomography[J]. Construction and Building Materials, 2014, 73(24): 171−179.
    [8] Baekyong C, Khoirul H S, Tsuyoshi Y. Quantitative observation of the foraging tunnels in Sitka spruce and Japanese cypress caused by the drywood termite Incisitermes minor (Hagen) by 2D and 3D X-ray computer tomography (CT)[J]. Holzforschung, 2017, 33(6): 211−220.
    [9] 李万兆, 陈玉瑜, 梅长彤. 胶合板层间水分迁移规律的研究[J]. 林业工程学报, 2019, 4(5):29−33.

    Li W Z, Chen Y Y, Mei C T. Exploration of water transport behavior among layers in plywood[J]. Journal of Forestry Engineering, 2019, 4(5): 29−33.
    [10] Li W Z, van den Bulcke J, Dhaene J, et al. Investigating the interaction between internal structural changes and water sorption of MDF and OSB using X-ray computed tomography[J]. Wood Science and Technology, 2018, 52(3): 701−716.
    [11] 李万兆, 詹先旭, 杨勇, 等. 木质人造板吸水过程中内部单元体尺寸及相对位置的变化[J]. 林业工程学报, 2018, 3(3):24−28.

    Li W Z, Zhan X X, Yang Y, et al. Changes of size and relative position of the internal unit during water uptake of wood-based panels[J]. Journal of Forestry Engineering, 2018, 3(3): 24−28.
    [12] Deklerck V, de Mil T, Kondjo P, et al. Sleeping beauties in materials science: unlocking the value of xylarium specimens in the search for timbers of the future[J]. Holzforschung, 2019, 73(10): 889−897.
    [13] Li W Z, van den Bulcke J, de Schryver T, et al. Investigating water transport in MDF and OSB using a gantry-based X-ray CT scanning system[J]. Wood Science and Technology, 2016, 50(6): 1197−1211.
    [14] Wang X Z, Zhao L G, Deng Y H, et al. Effect of the penetration of isocyanates (pMDI) on the nanomechanics of wood cell wall evaluated by AFM-IR and nanoindentation (NI)[J]. Holzforschung, 2018, 72(4): 301−309.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  126
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 修回日期:  2020-10-29
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回