• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

北京地区典型绿化树种水分利用效率及其影响因素

赵娜, 李少宁, 徐晓天, 王伟娜, 鲁绍伟

赵娜, 李少宁, 徐晓天, 王伟娜, 鲁绍伟. 北京地区典型绿化树种水分利用效率及其影响因素[J]. 北京林业大学学报, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293
引用本文: 赵娜, 李少宁, 徐晓天, 王伟娜, 鲁绍伟. 北京地区典型绿化树种水分利用效率及其影响因素[J]. 北京林业大学学报, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293
Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293
Citation: Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293

北京地区典型绿化树种水分利用效率及其影响因素

基金项目: 国家自然科学基金项目(31800363),北京市农林科学院科技创新能力建设专项(KJCX20190403、KJCX20200207、KJCX20200801、KJCX20190301)
详细信息
    作者简介:

    赵娜,博士,助理研究员。主要研究方向:森林生态系统结构与功能。Email:zhaona1019@126.com 地址:100093北京市海淀区香山瑞王坟甲12号

    责任作者:

    鲁绍伟,博士,研究员。主要研究方向:森林水文与水土保持。Email:hblsw8@163.com 地址:同上

  • 中图分类号: S725.1;Q945.78

Water use efficiency and its influencing factors of typical greening tree species in Beijing region

  • 摘要:
      目的  在北京地区绿化率需求提升和水资源短缺背景下,城市绿化与城市生产、生活用水矛盾日益尖锐。因此,探寻城市绿化树种对干旱生境的响应机制,筛选低耗水、高水分利用的园林绿化树种,成为北京高质量城市森林景观建设的重要需求。
      方法  该研究以北京地区落叶树种银杏、栾树、国槐和常绿树种侧柏、油松和白皮松盆栽幼树为研究对象,基于碳稳定同位素技术与树种生理参数观测分析3种干旱胁迫处理下(50% ~ 70%土壤田间持水量(FC)(轻度干旱SLD);30% ~ 50% FC(中度干旱MD);低于30% FC(重度干旱ED))树种瞬时水分利用效率(WUEi)和平均水分利用效率(WUEL)差异。
      结果  (1) 与对照处理(90% ~ 100% FC,CK)相比,银杏、栾树、国槐和侧柏的光合能力、WUEi在土壤体积含水量(SWC)小于70%条件下显著减小(P < 0.05),而油松、白皮松WUEi在水分胁迫作用下无显著变化。(2) MD与ED下,常绿树种WUEL均显著高于落叶树种(P < 0.05)。在ED处理下3种落叶树种间WUEL存在显著差异,排序为国槐 > 栾树 > 银杏(P < 0.05)。银杏、栾树在SLD、侧柏、油松在MD时分别达到各自WUEL峰值后下降;而在土壤逐渐干旱处理下,国槐、白皮松WUEL逐渐增大,且在ED处理下分别比CK增加了44.19%和30.35%(P < 0.05)。(3) 比较不同树种光合荧光参数分别与WUEi、WUEL之间的相关关系发现,落叶树种银杏、栾树和国槐的气孔导度(gs)影响其光合、蒸腾过程(P < 0.01),对WUEi影响较大;而常绿树种侧柏、油松和白皮松gs对土壤水分变异不敏感(P > 0.05),对WUEi影响较小。在MD和ED水分胁迫条件下常绿树种WUEL均高于落叶树种。
      结论  北京典型常绿树种比落叶树种更能优化光合性能,提高自身水分利用效率以适应干旱生境。
    Abstract:
      Objective  Due to the water scarcity and the improvement in urban greening, the tension has grown from the struggles for water between industries, urban life, and urban afforestation in Beijing. Thus, it is the top priority to explore the response mechanism of urban greening tree species to arid habitats and to screen the low-water consumption and high-water utilization landscaping tree species for high-quality urban forest landscape.
      Method  Typical greening tree species including Ginkgo biloba, Koelreuteria paniculata, Sophora japonica, Platycladus orientalis, Pinus tabuliformis, and Pinus bungeana in Beijing were selected and subjected to three groups of soil water stresses such as slight drought (SLD, 50%−70% field capacity (FC)), moderate drought (MD, 30%−50% FC) and extreme drought (ED, lower than 30% FC). The interspecific differences in the instantaneous water use efficiency (WUEi) and mean water use efficiency (WUEL) of these tree species under water stresses and their relationship to eco-physiological factors were investigated based on the stable isotope technology and the observations on tree physiological traits.
      Result  The photosynthetic capacities and WUEi in G. biloba, K. paniculata, S. japonica and P. orientalis decreased significantly compared with control (CK, 90%−100% FC) when potted soil volumetric water content (SWC) was less than 70% (P < 0.05), whereas there was no significant difference in WUEi of P. tabuliformis and P. bungeana subjected to continuous drought (P > 0.05). The WUELs of evergreen tree species were significantly higher than those of deciduous tree species under MD and ED (P < 0.05). The WUELs of three deciduous tree species differed in response to extreme drought (P < 0.05), and the sequence of WUELs in three deciduous tree species was S. japonica > K. paniculata > G. biloba. The WUELs of G. biloba and K. paniculata in SLD, and P. orientalis and P. tabuliformis in MD reached their respective peaks and then decreased along with the increases in soil water stress; while those of S. japonica and P. bungeana increased with potted soil drying, and were 44.19% and 30.35% higher than control, respectively at severe drought condition (P < 0.05). Comparing the correlations between photosynthetic parameters, WUEi and WUEL of different tree species, it was found that the stomatal conductance (gs) of G. biloba, K. paniculata and S. japonica significantly affected its photosynthesis and transpiration processes (P < 0.01) and hence exerted a strong influence on WUEi, while those in evergreen tree species such as P. orientalis, P. tabuliformis, and P. bungeana were insensitive to the variation in soil moisture and had little impact on WUEi (P > 0.05). The WUEL of evergreen tree species was higher than that of deciduous ones under moderate and extreme water stress.
      Conclusion  Therefore, considering the limited water resources of Beijing, evergreen tree species have stronger abilities to conserve water content and optimize photosynthetic performance to improve their water use efficiency, to adapt to arid habitats than those of deciduous trees in Beijing.
  • 软木(又称栓皮),是一种天然的细胞材料,常指由栓皮槠(Quercus suber,又称欧洲栓皮栎)和栓皮栎(Q. variabilis)等树种的木栓形成层发育而形成的木栓薄壁组织。该组织具有独特的理化特性,如低密度、低渗透性、化学和生物惰性以及优良的机械弹性和绝缘性能,使其在软木塞、软木饰品、绝缘材料等方面具有广泛用途[1-2]。大量研究表明:软木的主要化学成分为软木脂、木质素、多糖、抽提物和灰分等[3-5];其中软木脂是一种脂肪酸和酚酸组成的聚酯,并附有部分蜡质成分,使得软木细胞稳定[6];而木质素反映了软木细胞的刚性,细胞壁中木质素含量越高,细胞刚性越大;反之则韧性增加,细胞虽被挤压而不会破裂[7]。木质素和软木脂含量对软木的硬度和压缩回弹具有显著的影响,是软木性能差异的主要因素[8]。可见,软木化学成分含量在表征软木质量方面具有重要价值。

    软木化学成分含量受种源、来源(如初生与次生)等诸多因素影响。在国外,针对栓皮槠的相关研究甚多。Conde等 [9]研究了西班牙栓皮槠7个种源的次生软木成分,虽然发现了种源间差异,但不足以通过化学成分来区分种源。Bento等[10]则发现:相较于次生软木,初生软木的软木脂含量在个体与种源间差异较大。Pereira [11]对葡萄牙6个软木产地共29个种源的软木化学成分进行了比较分析,发现产地间的软木化学组分差异较小而种源间差异较大。Dehane等 [12]则发现阿尔及利亚6个栓皮槠种源的软木化学组分差异较小。针对东亚广泛分布的栓皮栎,目前其软木化学组分的研究仅局限在单种源[5, 13-15]、某一种源不同生长类型[7, 16-17]或小区域不同种源之间的差异[8],而较大地理范围的软木化学成分含量的比较研究尚未见报道。

    栓皮栎是我国分布最广的树种之一,在我国分布可北至辽宁,南达广西、台湾等地,是我国暖温带、亚热带落叶阔叶林和常绿阔叶林中具有代表性的树种之一,在生长、防御、遗传多样性等方面存在着丰富的种内变异[18-20]。栓皮栎林在固碳释氧、涵养水源、保持水土、维持生物多样性等方面具有重要的生态功能;同时,栓皮栎的木材、树皮、果实和叶等均有重要的经济价值,栓皮栎软木更是我国软木资源的主要来源,而对栓皮栎软木质量的研究是挖掘和利用我国软木资源的重要前提。本研究通过对我国12个地区的栓皮栎软木主要化学成分的取样分析,比较不同栓皮栎地理种源软木化学成分含量的差异及其与环境因子之间的关系,并按化学成分对不同地区的软木进行初步的软木品质划分,以期为栓皮栎软木良种选育以及栓皮栎软木的加工利用奠定基础。

    根据栓皮栎在我国的分布情况,并结合前期踏查结果,于2016年7—9月在其分布范围内选取12个以栓皮栎为优势树种的天然次生林作为取样点(表1)。取样点经纬度范围24°22′48″ ~ 40°16′48″N、105°50′24″ ~ 119°12′19″E,海拔范围175 ~ 1 350 m。在每个样点选择3个林相整齐、个体间年龄差异较小(一般不超过一个龄级)的中龄林为对象林分,且各林分之间距离不小于500 m。在每个林分设置一个20 m × 20 m的样地,进行每木检尺,根据胸径与树高确定标准木,利用生长锥(ϕ5.15 mm)对标准木进行树芯取样以确定树龄,并在胸高位置(1.3 m)剥取15 cm × 15 cm大小的树皮带回(均为初生软木)。同时记录样地经纬度、海拔和主要伴生植物;并在样地内随机取3个土壤样品(0 ~ 20 cm)用于土壤养分的确定。软木样品带回实验室后,压平且自然干燥半年以上待用。

    表  1  取样点地理位置与环境信息
    Table  1.  Location and environmental information of the sampling sites
    样点
    Sample site
    纬度
    Latitude
    经度
    Longitude
    海拔
    Altitude/m
    年均温
    Mean annual temperature/℃
    年均降水量
    Mean annual precipitation/mm
    土壤磷含量
    Soil phosphorus content/
    (g∙kg−1)
    土壤氮含量
    Soil nitrogen content/
    (g∙kg−1)
    土壤酸碱度
    Soil pH
    径向生长速率/
    (mm·a−1)
    Radial growth rate/(mm·year−1)
    DBH/cm树龄/a
    Tree age/year
    郁闭度
    Canopy density
    北京平谷
    Pinggu, Beijing (BJ)
    40°16′48″N117°08′24″E372.7 ± 152.09.52575.720.50 ± 0.013.0 ± 1.15.28 ± 0.982.65 ± 1.5118.50 ± 3.0931.3 ± 8.20.73 ± 0.03
    河北临城
    Lincheng, Hebei (LC)
    37°28′47″N114°06′18″E707.7 ± 59.811.95617.410.50 ± 0.001.2 ± 0.16.59 ± 0.422.29 ± 0.3820.16 ± 2.7634.0 ± 1.00.82 ± 0.03
    河南济源
    Jiyuan, Henan (JY)
    35°06′36″N112°21′35″E465.7 ± 14.013.49570.380.20 ± 0.010.9 ± 0.74.97 ± 0.492.24 ± 0.6619.96 ± 3.4633.3 ± 6.90.67 ± 0.03
    河南内乡
    Neixiang, Henan (NX)
    33°30′36″N111°54′36″E981.3 ± 264.312.88918.540.40 ± 0.011.9 ± 0.24.62 ± 0.042.79 ± 0.8419.16 ± 8.7541.7 ± 5.80.81 ± 0.02
    江西永修
    Yongxiu, Jiangxi (YX)
    29°04′48″N115°36′36″E415.7 ± 37.216.181707.230.50 ± 0.012.8 ± 0.54.05 ± 0.251.76 ± 0.2119.59 ± 3.1150.0 ± 0.00.74 ± 0.01
    湖南城步
    Chengbu, Hunan (CB)
    26°17′24″N110°07′48″E1348.3 ± 18.712.171763.380.30 ± 0.003.1 ± 0.14.09 ± 0.162.04 ± 0.4021.29 ± 4.9739.0 ± 2.50.72 ± 0.02
    广西田林
    Tianlin, Guangxi (TL)
    24°22′48″N105°50′24″E539.0 ± 63.221.13863.200.30 ± 0.021.0 ± 0.34.77 ± 0.381.56 ± 0.0615.50 ± 2.3830.0 ± 3.10.83 ± 0.02
    甘肃天水
    Tianshui, Gansu (TS)
    34°11′24″N106°19′12″E1264.3 ± 10.710.21519.551.20 ± 0.101.6 ± 1.36.16 ± 1.671.93 ± 0.1918.61 ± 2.2232.7 ± 4.20.82 ± 0.03
    陕西眉县
    Meixian, Shaanxi (MX)
    34°05′23″N107°41′24″E1138.0 ± 182.812.33656.570.40 ± 0.021.4 ± 0.76.47 ± 2.092.49 ± 1.8826.37 ± 1.7239.7 ± 7.40.85 ± 0.00
    陕西商洛
    Shangluo, Shaanxi (SL)
    33°49′11″N109°57′35″E911.0 ± 54.512.87600.130.50 ± 0.021.1 ± 0.14.10 ± 0.211.84 ± 0.3120.91 ± 2.3148.3 ± 2.30.80 ± 0.03
    安徽金寨
    Jinzhai, Anhui (JZ)
    31°18′36″N115°43′11″E1179.7 ± 0.610.141765.701.00 ± 0.023.2 ± 0.84.36 ± 0.161.28 ± 0.2419.73 ± 1.6852.7 ± 2.60.76 ± 0.03
    江苏南京
    Nanjing, Jiangsu (NJ)
    32°07′48″N119°12′19″E175.7 ± 23.115.301158.850.30 ± 0.012.1 ± 0.94.12 ± 0.081.51 ± 0.2123.25 ± 0.9561.7 ± 1.70.84 ± 0.03
    下载: 导出CSV 
    | 显示表格

    化学成分含量(本文中的化学成分含量指的是质量分数)的测定参考刘艳贞[7]的方法。取干燥软木样品,粉碎过60目筛待用。软木中可提取成分按极性分为酚类、小分子萜类等极性物质,以及小分子糖分、蛋白质、蜡质等非极性物质。依次按照极性递增的次序萃取,分别选用二氯甲烷、乙醇和水3种试剂。取3 g样品,置入索氏提取器的滤纸筒内,依次分别用150 mL二氯甲烷、乙醇和水按溶剂极性递增的顺序进行提取。将提取液用旋转蒸发仪蒸干溶剂来确定可萃取物含量。通过对萃取后的残渣进行甲醇解聚来确定软木脂的含量[7],方法如下:取1.5 g样品用250 mL甲醇钠甲醇溶液回流3 h,过滤残渣,再用100 mL甲醇回流15 min。过滤后,合并过滤液,用硫酸将其酸化到pH值为6,在旋转蒸发仪中蒸干。残渣用100 mL水悬浮,然后用200 mL氯仿分3次萃取。萃取物用硫酸钠干燥、过滤、蒸干,确定软木脂含量。用前面除去软木脂的材料,即软木脂甲醇解聚后的固体残渣,按照GB/T 2677.8—94《造纸原料酸不溶木素含量的测定》,酸解后确定木质素含量。

    本研究所需要的气象数据,如年均温和年降雨量,采用离样点最近的气象站观测数据(1986—2015年)(中国气象数据共享网,http://www.cma.cn/site/index.html)。土壤样品在实验室风干后,测算包括土壤氮含量、土壤磷含量、土壤酸碱度(pH)等指标;其中土壤氮含量采用全自动凯氏定氮仪(UK152 Distillation & Titration Unit)的凯氏定氮法测定(LY/T 1228—1999《森林土壤全氮的测定》),土壤磷含量和土壤酸碱度分别采用碱熔法(LY/T 1232—2015《森林土壤磷的测定》)和酸度计(HANNA PH211)测定。样木年龄按树木年轮学方法[20],以胸径除以树龄来确定径向生长速率;软木厚度利用数字平板扫描仪(分辨率1 200 dpi,中晶i800plus)扫描,再用ImageJ图像分析软件(v1.53)分析获得。

    本研究采用Rsudio软件(V1.3.1093)对所有数据进行统计分析与制图。不同样点软木化学成分的比较采用LSD多重比较和主成分分析,并利用Cluster包进行聚类分析,软木化学成分与环境因子的关系采用Spearman相关性分析(psych包)。

    除水萃取物和软木脂外,软木主要化学成分含量在不同样点存在一定差别(表2)。二氯甲烷萃取物方面,河南内乡最高(6.48 ± 0.28)%,显著高于甘肃天水、陕西眉县、陕西商洛和河南济源,其中河南济源最低,为(5.16 ± 0.17)%(p < 0.05),全国平均值为(5.84 ± 0.38)%。乙醇萃取物同样以河南内乡最高,显著高于甘肃天水(p < 0.05),其他样点间无显著差异,全国平均值为(3.24 ± 0.29)%。总萃取物同样以河南内乡最高,而以甘肃天水和陕西商洛最低,全国平均值为(13.94 ± 0.54)%。木质素含量方面,甘肃天水和陕西眉县显著高于河北临城和江西永修(p < 0.05),全国平均值为(23.03 ± 2.26)%。尽管软木脂含量在各样点差异不显著,但仍以河北临城最高,为(43.37 ± 2.63)%;而以河南济源最低,仅(39.62 ± 2.16)%,全国平均值为(41.63 ± 1.44)%。

    表  2  各地栓皮栎软木主要化学成分比较
    Table  2.  Comparison of main chemical components in the cork of Quercus variabilis from various sites
    样点
    Sample site
    主要化学成分含量(质量分数) Content (mass fraction) of main chemical components/%软木厚度
    Cork thickness /cm
    二氯甲烷萃取物
    Dichloromethane
    extract
    乙醇萃取物
    Ethanolic
    extract
    水萃取物
    Water extract
    可萃取物总量
    Total extractable
    matter
    软木脂 Suberin木质素 Lignin
    BJ5.86 ± 0.57abcd3.25 ± 0.54ab4.63 ± 0.61a13.74 ± 0.54ab41.56 ± 4.46a23.02 ± 5.04ab0.853 ± 0.255abcd
    LC5.89 ± 0.46abcd3.57 ± 0.60ab4.57 ± 0.32a14.03 ± 0.68ab43.37 ± 2.63a19.36 ± 1.75b0.990 ± 0.107abc
    JY5.16 ± 0.17d3.38 ± 0.48ab5.13 ± 0.45a13.67 ± 0.62ab39.62 ± 2.16a24.55 ± 2.86ab0.685 ± 0.055bcd
    NX6.48 ± 0.28a3.76 ± 0.67a4.93 ± 0.96a15.17 ± 1.41a42.80 ± 4.19a22.42 ± 2.94ab1.000 ± 0.404ab
    YX5.98 ± 0.84abc3.15 ± 0.46ab5.09 ± 0.75a14.22 ± 1.52ab42.93 ± 4.01a19.78 ± 1.77b0.353 ± 0.050d
    CB6.17 ± 0.71ab3.20 ± 0.74ab4.73 ± 1.00a14.10 ± 1.43ab41.58 ± 0.68a24.57 ± 3.13ab0.678 ± 0.207bcd
    TL6.10 ± 0.34ab3.24 ± 0.57ab5.10 ± 0.22a14.45 ± 0.18ab41.15 ± 4.48a21.50 ± 5.27ab0.434 ± 0.153d
    TS5.56 ± 0.44bcd2.67 ± 0.22b4.86 ± 0.60a13.10 ± 0.73b40.17 ± 0.55a26.37 ± 1.96a0.916 ± 0.327abc
    MX5.25 ± 0.14cd3.32 ± 0.89ab5.12 ± 0.66a13.69 ± 0.24ab39.89 ± 1.80a26.34 ± 1.78a1.025 ± 0.269ab
    SL5.66 ± 0.09bcd2.99 ± 0.52ab4.64 ± 0.67a13.28 ± 1.27b40.05 ± 3.93a24.16 ± 4.94ab1.169 ± 0.324a
    JZ6.03 ± 0.10ab2.93 ± 0.37ab5.05 ± 0.73a14.00 ± 0.74ab43.34 ± 2.93a22.03 ± 1.21ab0.900 ± 0.211abc
    NJ5.91 ± 0.40abcd3.39 ± 0.59ab4.55 ± 0.21a13.85 ± 0.94ab43.03 ± 3.64a22.31 ± 5.28ab0.532 ± 0.177cd
    平均 Mean5.84 ± 0.383.24 ± 0.294.87 ± 0.2313.94 ± 0.5441.63 ± 1.4423.03 ± 2.260.818 ± 0.320
    注:同一列不同字母表示经LSD法检测在0.05水平上差异显著。Note: different letters in the same column indicate significant differences at the level of 0.05 detected by LSD.
    下载: 导出CSV 
    | 显示表格

    图1显示:第一主成分和第二主成分分别解释了软木6个化学成分总变异的55.4%和20.3%。软木脂和木质素含量表现为权衡关系,且软木脂与二氯甲烷提取物含量的正相关程度最高。进一步利用软木脂和木质素含量对12个地理种源进行聚类分析(图2)发现:12个地理种源可分为3个类群,其中河北临城、江西永修、安徽金寨、江苏南京和河南内乡属于软木脂含量相对较高的类群;河南济源、陕西眉县和甘肃天水属于木质素含量较高的类群;剩余种源,陕西商洛、湖南城步、北京平谷和广西田林属于中间类群。

    图  1  软木化学成分的主成分分析
    Figure  1.  Principal component analysis of chemical constituents of cork
    图  2  各样点软木脂和木质素的聚类分析
    椭圆为95%置信区间。Ellipses denote a 95% confidence interval.
    Figure  2.  Cluster analysis on the content of suberin and lignin across sites

    在软木主要化学成分与环境因子相关关系分析中(图3),二氯甲烷萃取物和总萃取物含量与纬度呈显著负相关关系(二氯甲烷萃取物:r = −0.71, p < 0.05;总萃取物 :r = −0.59,p < 0.05);软木脂含量和木质素含量分别随着经度和海拔的增加呈现增加的趋势(经度:r = 0.61,p < 0.05;海拔:r = 0.49,p > 0.05)。年均温对化学成分含量的影响较小,但年均降水量与软木脂、二氯甲烷萃取物和总萃取物含量均呈现显著正相关关系(软木脂:r = 0.62,p < 0.05;二氯甲烷萃取物:r = 0.76,p < 0.01;总萃取物:r = 0.68,p < 0.05)。软木脂含量与土壤氮表现出显著的正相关关系(r = 0.57,p < 0.05),二氯甲烷萃取物和总萃取物含量与软木厚度呈显著负相关关系(二氯甲烷萃取物:r = −0.62,p < 0.05;总萃取物:r = −0.73,p < 0.01),而土壤磷含量、土壤酸碱度、径向生长速率、胸径和树龄对软木化学成分含量均无显著影响(p > 0.05)。

    图  3  软木化学成分含量与主要环境因子的相关系数
    * p < 0.05为显著性相关;** p < 0.01为极显著性相关。* p < 0.05 means significant correlation; ** p < 0.01 means extremely significant correlation.
    Figure  3.  Correlation coefficients between the chemical components of cork and environmental factors

    栓皮栎是我国重要的生态树种,且具有很强的综合利用价值,尤其作为我国软木原料生产的主要树种,研究其软木性能是定向选育的重要基础。目前,国内对栓皮栎软木化学性质的研究大部分局限在小尺度范围,对于我国软木资源质量现状缺乏深入研究。本研究从较大地理尺度范围上,对栓皮栎软木主要化学成分含量的地理差异进行了初步的探索。结果表明我国栓皮栎软木化学组分中可萃取物总含量平均为13.94%,低于赵泾峰等[17]对陕西商洛的分析结果,而与刘艳贞[7]对陕西宁陕样品的分析结果接近,但高于其他学者对栓皮栎软木的分析结果而低于葡萄牙栓皮槠(表3)。造成上述差异的原因可能是取样范围大小或分析流程差异所致。同时,各个样点的可萃取物总量也存在一定差异,如河南内乡显著高于甘肃天水和陕西商洛。在所用萃取溶剂中,二氯甲烷是非极性溶剂,其萃取物主要包含某些非极性物质(如萜类化合物)和蜡质。软木中的蜡质可以防止水分进入细胞,使软木具有一定的防水性,而萜类物质在木材的防御系统中具有很大的作用,可以减少潜在入侵者[15]。因此二氯甲烷提取物可表征软木的防水防腐性能。乙醇和水的萃取物主要是某些极性物质,如多酚类和酚类等物质。这类物质使软木具有一定抵抗病虫害和预防细菌侵害的能力。软木中萃取物含量相对较高,因此软木比一般的木材和树皮具有更好的防水性和防虫性[16]。同时,萃取物对软木的胶合性能和加工性能也有影响[2]。萃取物可使材料表面的极性和自由能降低,在胶合界面处形成障碍而阻碍材面润湿,使胶合状况恶化,影响胶黏剂的固化或导致胶合强度降低,是阻碍软木颗粒胶合的最主要因素之一。萃取物中的多酚类物质在软木加工过程中易使切削刀具磨损而影响软木加工性能[21]。萃取物中由于色素物质的存在,也可能对软木的染色与漂白产生影响[17]。河南内乡样品的非极性和极性萃取物含量均达到最高,而非极性和极性萃取物含量最低的分别为河南济源和甘肃天水样品,表明河南内乡软木的防水抗虫性能最佳但胶合性能和加工性能最差,河南济源和甘肃天水的软木则胶合性能和加工性能相对较优。

    表  3  栓皮栎软木主要化学成分含量(质量分数)比较
    Table  3.  Comparison in the content (mass fraction) of main chemical components of virgin cork in Quercus variabilis
    树种
    Tree species
    文献来源
    Literature sourc
    取样点
    Sampling site
    水萃取物
    Water extract/%
    二氯甲烷萃取物
    Dichloromethane extract/%
    乙醇萃取物
    Ethanolic extract/%
    可萃取物总量
    Total extractable
    matter/%
    软木脂
    Suberin/%
    木质素
    Lignin/%
    栓皮栎
    Quercus variabilis
    刘艳贞[7] Liu Y Z[7] 陕西宁陕
    Ningshan, Shaanxi
    7.0 4.0 2.3 13.3 34.0 28.0
    张丽丛等[16]
    Zhang L C et al.[16]
    陕西宁陕
    Ningshan, Shaanxi
    5.1 4.2 5.2 14.5 33.9 28.0
    赵泾峰等[17]
    Zhao J F et al.[17]
    陕西商洛
    Shangluo, Shaanxi
    7.88 ± 0.60 4.47 ± 0.75 4.51 ± 0.91 17.10 ± 0.15 41.18 ± 1.81 20.37 ± 0.98
    姚慧军等[15]
    Yao H J et al.[15]
    陕西秦岭
    Qinling, Shaanxi
    5.15 2.35 3.65 11.15 37.95 23.15
    陈慧等[8]
    Chen H et al.[8]
    陕西太白
    Taibai, Shaanxi
    8.77 1.40 2.16 12.33 38.47 22.72
    陈慧等[8]
    Chen H et al.[8]
    陕西略阳
    Lueyang, Shaanxi
    6.99 1.29 2.31 10.59 39.91 23.36
    陈慧等[8]
    Chen H et al.[8]
    陕西洋县
    Yangxian, Shaanxi
    8.10 1.67 2.49 12.27 38.27 24.09
    Miranda等[5]
    Miranda et al.[5]
    中国,具体不详
    Details not available, China
    4.9 2.7 2.0 9.6 39.2 22.2
    Ferreira等[13]
    Ferreira et al.[13]
    中国,具体不详
    Details not available, China
    5.3 2.8 1.1 9.2 37.4 27.6
    本研究 This study 表1 See Tab.1 5.84 ± 0.38 3.24 ± 0.29 4.87 ± 0.23 13.94 ± 0.54 41.63 ± 1.44 23.03 ± 2.26
    栓皮槠
    Q. suber
    Pereira[11] 葡萄牙 Portugal 5.8 ± 0.8 5.9 ± 0.9 4.5 ± 1.6 16.2 ± 3.9 42.8 ± 6.2 22.0 ± 3.3
    下载: 导出CSV 
    | 显示表格

    软木脂是软木细胞壁的主要组成成分,主要由多羟基的脂肪酸构成。软木脂与蜡质交织组成细胞壁中最厚的次生壁,增强了软木细胞壁的防水性能;而木质素是软木细胞壁中的第二大化学成分,为软木细胞提供机械支撑并赋予细胞壁刚性,其含量增多会使软木弹性模量和硬度增大,同时也会导致软木韧性和压缩回弹性能降低[8]。本研究中软木脂的全国平均含量与赵泾峰等[17]对栓皮栎、Pereira[11]对栓皮槠的研究结果接近(表3)。本研究发现软木脂含量在各样点之间并无显著差异,这与Pereira[11]对27个葡萄牙栓皮槠种源的研究结果类似,即软木脂含量变异主要存在于个体之间而种源间差异较小。相对而言,从软木脂对软木性能的影响来看,河北临城和安徽金寨略优于其他样点。本研究中木质素的全国平均含量与陈慧等[8]对陕西3地取样测试分析结果相当,但略高于葡萄牙栓皮槠[11]表3);且各样点木质素含量存在一定差异,从木质素对软木性能的影响来看,河北临城和江西永修优于其他样点,并显著优于甘肃天水和陕西眉县。此外,软木成分中还含有多糖(主要是纤维素和半纤维素)等物质,尽管含量较低,但也会对软木性能产生影响,通常多糖含量越高,软木弹性越差,且越容易受到虫蛀[16, 22];由于受样品量限制,本研究并未开展相关测定,因此在后期类似研究需要关注。

    栓皮栎软木化学成分含量与环境因子的相关分析结果显示,二氯甲烷萃取物和总萃取物含量随着样点纬度的增加而降低,可能的原因是二氯甲烷萃取物的主要成分酚类和多酚类是防御虫食的主要化学物质,符合我国栓皮栎的虫食压力和防御物质从南到北逐渐降低的趋势[18, 23]。经度与软木脂含量表现为显著的正相关关系,而经度主要带来降水的变化,这与本研究中年均降水量与软木脂含量的正相关关系相吻合,说明软木脂含量随着年均降水量的增加呈现增加趋势。如前所述,软木脂增加了细胞的防水性能,这可能是栓皮栎软木所形成一种适应机制,即增加软木脂含量以减少高湿环境对皮层组织的侵蚀。类似地,二氯甲烷萃取物含量与年均降水量的正相关关系亦可从这个角度得到部分解释,且尹艺凝等[24]也发现栓皮栎树皮中的多酚物质(单宁)与年均降水量呈正相关关系。氮是树木生长发育的基本营养元素,有研究表明氮的添加能够显著增加软木脂的含量[25-26],这与本研究中软木脂含量与土壤氮含量的正相关关系相吻合。软木厚度与总萃取物表现为负相关关系,可能是由于软木厚度增加带来的稀释效应。此外,有研究表明受碳分配的影响不同季节软木化学成分会表现出差异[27],但本研究样本采集时间集中生长季中后期,后期还需对软木成分的季节动态给予更多关注。

    本研究率先在较大地理尺度上对我国主要软木原料树种栓皮栎软木的化学成分含量的地理差异及其与环境因子关系间的关系进行了探讨。结果发现,我国栓皮栎软木主要化学物质的平均含量为可萃取物(13.94 ± 0.54)%,软木脂(41.63 ± 1.44)%和木质素(23.03 ± 2.26)%。通过以软木脂与木质素含量进行聚类分析可将12个地理种源划分为3个主要类群。栓皮栎软木化学成分含量表现出一定的地理差异,但主要受纬度、年均降水量和土壤氮含量的影响。下一步研究将在扩大样本尺度并结合化学成分季节动态加以分析,为进一步挖掘、利用以及定向培育我国软木资源奠定科学基础。

  • 图  1   6种绿化树种盆栽不同干旱胁迫下土壤体积含水量

    CK、SLD、MD、ED分别为对照处理组(90% ~ 100% FC)、轻度干旱(50% ~ 70% FC)、中度干旱(30% ~ 50% FC)和重度干旱(低于30% FC)处理。FC为盆栽土壤田间持水量。小写字母表示不同水分胁迫处理间差异显著(P < 0.05)。下同。CK, SLD, MD, ED are the control group (90%−100% FC) and three groups of soil water stresses as slight drought (50%−70% FC), moderate drought (30%−50% FC) and extreme drought (lower than 30% FC). FC is potted soil field capacity. Different small letters mean significant differences at P < 0.05 level among the treatments of soil water stresses. The same as below.

    Figure  1.   Variations in soil volumetric water content of potting soil of six tree species

    图  2   土壤水分胁迫对北京地区绿化树种叶水势的影响

    Figure  2.   Effects of water deficits on leaf potential in typical greening tree species of Beijing

    图  3   土壤水分胁迫对北京地区绿化树种光合能力的影响

    Pn. 净光合速率。下同。Pn, net photosynthetic rate. The same below.

    Figure  3.   Effects of water deficits on photosynthetic capacities in typical greening tree species of Beijing

    图  4   土壤水分胁迫对北京市绿化树种气孔导度的影响

    gs. 气孔导度。下同。gs, stomatal conductance. The same below.

    Figure  4.   Effects of water deficits on stomatal conductance in typical greening tree species of Beijing

    图  5   土壤水分胁迫对北京市绿化树木PSⅡ原初光能转换效率(Fv/Fm)和PSⅡ潜在活性(Fv/Fo)的影响

    Fv/Fm. PSⅡ原初光能转换效率;Fv/Fo. PSⅡ潜在活性。下同。Fv/Fm, primary light energy conversion of PSⅡ; Fv/F0, potential activity of PSⅡ. The same below.

    Figure  5.   Effects of water deficits on Fv/Fm and Fv/Fo in typical greening tree species in Beijing

    图  6   不同土壤水分胁迫下北京地区绿化树木瞬时水分利用效率

    Figure  6.   Instantaneous water use efficiencies in typical greening tree species of Beijing under different soil water stresses

    图  7   不同土壤水分胁迫下北京地区绿化树木平均水分利用效率

    不同大写字母表示物种间差异显著(P < 0.05)。Different capital letters mean significant difference at P < 0.05 level among tree species.

    Figure  7.   Mean water use efficiencies in typical greening tree species of Beijing under different soil water stresses

    表  1   不同土壤水分胁迫下北京地区绿化树木叶片δ13Cleaf比较

    Table  1   Comparison in leaf δ13Cleaf in greening tree species of Beijing under varied soil water stresses

    物种 SpeciesCKSDSLDSDMDSDEDSD
    银杏
    G. biloba
    −29.352bB 0.217 −27.787aC 0.109 −27.930bB 0.138 −29.584cD 0.253
    栾树
    K. paniculata
    −28.828cB 0.570 −27.412aBC 0.464 −27.757abB 0.251 −28.572bcC 0.507
    国槐
    S. japonica
    −29.784bB 0.444 −28.940bE 0.187 −27.817aB 0.209 −27.894abB 0.486
    侧柏
    P. orientalis
    −26.887abA 0.101 −26.496aA 0.248 −26.462aA 0.049 −27.290bAB 0.121
    油松
    P. tabuliformis
    −27.503aA 0.454 −27.994bD 0.368 −26.438aA 0.739 −27.352aAB 0.183
    白皮松
    P. bungeana
    −28.353bB 0.746 −27.083aB 0.440 −26.664aAB 0.090 −26.640aA 0.204
    注:δ13Cleaf为植物叶片碳-13丰度值;同行不同小写字母表示不同水分胁迫处理间差异显著(P < 0.05);同列不同大写字母表示物种间差异显著(P < 0.05)。Notes: δ13Cleaf is Cabon-13 isotope abundance in plant leaf. Different lowercase letters in the same row mean significant differences at P < 0.05 level among the treatments of soil water stresses. Different capital letters in the same column mean significant differences at P < 0.05 level among tree species.
    下载: 导出CSV

    表  2   落叶幼树生理生态指标与水分利用效率相关分析

    Table  2   Pearson correlations between eco-physiological parameters and WUEs in different deciduous tree species

    项目 ItemLWPPngsFv/FmFv/Foδ13CleafWUEiWUEL
    LWP 1
    Pn 0.239*
    gs 0.166 0.538**
    Fv/Fm 0.172 −0.006 −0.006
    Fv/Fo 0.210* 0.024 −0.063 0.913**
    δ13Cleaf −0.098 0.135 0.383** −0.117 −0.192
    WUEi 0.072 0.153 −0.365** 0.250* 0.393* −0.335**
    WUEL −0.21 −0.009 −0.06 −0.226 −0.176 0.821** 0.205 1
    注:LWP. 09:00—11:00叶水势;Pn. 净光合速率;gs. 气孔导度;Fv/Fm. PSⅡ原初光能转换效率;Fv/Fo. PSⅡ潜在活性;δ13Cleaf. 植物叶片碳-13丰度值;WUEi. 瞬时水分利用效率;WUEL. 平均水分利用效率. “*”、“**”分别表示相关性显著(P < 0.05)和极显著(P < 0.01)。下同。
    Notes: LWP, leaf potential at 09:00−11:00; Pn, net photosynthetic rate; gs, stomatal conductance; Fv/Fm, primary light energy conversion of PSII; Fv/Fo, potential activity of PSII; δ13Cleaf, Cabon-13 isotope abundance in plant leaf;;WUEi, instantaneous water use efficiency;WUEL, mean water use efficiency. Significant correlations at P <0.05 level marked with an asterisk and those at P <0.01 level marked with two asterisks. The same below.
    下载: 导出CSV

    表  3   常绿幼树生理生态指标与水分利用效率相关分析

    Table  3   Pearson correlations between eco-physiological parameters and WUEs in different evergreen tree species

    项目 ItemLWPPngsFv/FmFv/Foδ13CleafWUEiWUEL
    LWP 1
    Pn −0.79
    gs 0.062 0.155
    Fv/Fm −0.067 −0.009 0.062
    Fv/Fo −0.58 0.012 0.098 0.951**
    δ13Cleaf 0.185 0.256 0.162 −0.025 0.023
    WUEi −0.116 0.425** −0.007 −0.165 −0.174 0.164
    WUEL 0.121 0.321* 0.192 −0.089 −0.008 0.528** 0.203 1
    下载: 导出CSV
  • [1]

    Gillner S, Vogt J, Tharang A, et al. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites[J]. Landscape and Urban Planning, 2015, 143: 33−42. doi: 10.1016/j.landurbplan.2015.06.005

    [2]

    Nowak D J, Greenfield E J, Hoehn R E, et al. Carbon storage and sequestration by trees in urban and community areas of the United States[J]. Environmental Pollution, 2013, 178: 229−236. doi: 10.1016/j.envpol.2013.03.019

    [3]

    Baldocchi D A. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop (II): CO2 exchange and water use efficiency[J]. Agricultural and Forest Meteorology, 1994, 67: 291−321. doi: 10.1016/0168-1923(94)90008-6

    [4] 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013: 141−147.

    Lin G H. Stable isotope ecology[M]. Beijing: Higher Education Press, 2013: 141−147.

    [5]

    Cao X, Jia J B, Li H, et al. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species[J]. Plant Biology, 2012, 14: 612−620. doi: 10.1111/j.1438-8677.2011.00531.x

    [6]

    Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Australian Journal of Plant Physiology, 1984, 11(6): 539−552.

    [7] 张永娥, 余新晓, 陈丽华, 等. 北京西山侧柏林冠层不同高度处叶片水分利用效率[J]. 应用生态学报, 2017, 28(7):2143−2148.

    Zhang Y E, Yu X X, Chen L H, et al. Foliar water use efficiency of Platycladus orientalis of different canopy heights in Beijing western mountains area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2143−2148.

    [8]

    Kozlowski T T, Pallardy S G. Acclimation and adaptive responses of woody plants to environmental stresses[J]. Botanical Review, 2002, 68(2): 270−334. doi: 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2

    [9]

    Picotte J, Rosenthal D, Rhode J, et al. Plastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance[J]. Oecologia, 2007, 153(4): 821−832. doi: 10.1007/s00442-007-0794-z

    [10]

    Xu X, Yang F, Xiao X W, et al. Sex-specific responses of Populus cathayana to drought and elevated temperatures[J]. Plant Cell and Environment, 2008, 31(6): 850−860. doi: 10.1111/j.1365-3040.2008.01799.x

    [11] 马 飞, 姬明飞, 陈立同, 等. 油松幼苗对干旱胁迫的生理生态响应[J]. 西北植物学报, 2009, 29(3):548−554.

    Ma F, Ji M F, Chen L T, et al. Responses of Pinus tabulae formis seedlings to different soil water moistures in ecophysiological characteristics[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 548−554.

    [12]

    Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2): 121−137. doi: 10.1071/PP9820121

    [13]

    Li J Y, Blake T J. Effect of repeated cycles of dehydration-rehydration on gas exchange and water use efficiency in jack pine and black spruce[J]. Journal of Beijing Forestry University (English Edition), 1996, 5(2): 78−87.

    [14]

    Yu S W. Plant physiology and molecular biology[M]. Beijing: Science Press, 1992.

    [15]

    Lang Y, Wang M, Zhang G C, et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi: 10.1007/s11099-013-0036-z

    [16]

    Suresh K, Nagamani C, Ramachandrudu K, et al. Gas-exchange characteristics, leaf water potential and chlorophyll a fluorescence in oil palm (Elaeis guineensis Jacq.) seedlings under water stress and recovery[J]. Photosynthetica, 2010, 48(3): 430−436. doi: 10.1007/s11099-010-0056-x

    [17]

    Razavi F, Pollet B, Steppe K, et al. Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry[J]. Photosynthetica, 2008, 46(4): 631−633. doi: 10.1007/s11099-008-0108-7

    [18] 段娜, 贾玉奎, 郝玉光, 等. 干旱胁迫对欧李叶绿素荧光特性的影响[J]. 西北林学院学报, 2018, 33(6):10−14. doi: 10.3969/j.issn.1001-7461.2018.06.02

    Duan N, Jia Y K, Hao Y G, et al. Effects of drought stress on chlorophyll fluorescence characteristics of Cerasus humilis[J]. Journal of Northwest Forestry University, 2018, 33(6): 10−14. doi: 10.3969/j.issn.1001-7461.2018.06.02

    [19]

    Klein T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours[J]. Functional Ecology, 2014, 28(6): 1313−1320. doi: 10.1111/1365-2435.12289

    [20] 范嘉智, 王丹, 胡亚林, 等. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6):631−642. doi: 10.17521/cjpe.2015.0480

    Fan J Z, Wang D, Hu Y L, et al. Optimal stomatal behavior theory for simulating stomatal conductance[J]. Chinese Journal of Plant Ecology, 2016, 40(6): 631−642. doi: 10.17521/cjpe.2015.0480

    [21] 张彦群, 王传宽. 北方和温带森林生态系统的蒸腾耗水[J]. 应用与环境生物学报, 2008, 14(6):838−845.

    Zhang Y Q, Wang C K. Transpiration of boreal and temperate forests[J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(6): 838−845.

    [22] 郑淑霞, 上官周平. 8 种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J]. 生态学报, 2006, 26(4):1080−1087. doi: 10.3321/j.issn:1000-0933.2006.04.014

    Zheng S X, Shangguan Z P. Comparison of leaf gas exchange and chlorophyll fluorescence parameters in eight broad-leaved tree species[J]. Acta Ecologica Sinica, 2006, 26(4): 1080−1087. doi: 10.3321/j.issn:1000-0933.2006.04.014

    [23]

    Damesin C, Rambal S, Toffre R. Between-tree variations in leaf delta C-13 of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability[J]. Oecologia, 1997, 111: 26−35. doi: 10.1007/s004420050204

    [24] 贾剑波. 北京山区典型森林生态系统水分运动过程与机制研究[D]. 北京: 北京林业大学, 2016.

    Jia J B. Water movement process and mechanism analysis on forest ecosystems in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2016.

    [25] 李瀚之, 余新晓, 贾国栋, 等. 北京山区侧柏人工林内CO2浓度及其δ13C值变化特征和影响因子[J]. 应用生态学报, 2017, 28(7):2164−2170.

    Li H Z, Yu X X, Jia G D, et al. Variations and determinants of CO2 concentration and δ13C in Platycladus orientalis plantation in Beijing mountainous area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2164−2170.

    [26]

    Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. Plant Physiology, 1983, 72(2): 297−302. doi: 10.1104/pp.72.2.297

    [27]

    Perez-Martin A, Michelazzo C, Torres-Ruiz J M, et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins[J]. Journal of Experimental Botany, 2014, 65(2): 3143−3156.

    [28]

    Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden[J]. Agricultural and Forest Meteorology, 2002, 112(2): 67−85. doi: 10.1016/S0168-1923(02)00060-6

    [29] 杨建伟, 赵丹, 孙桂芳, 等. 干旱胁迫对小紫珠光合生理的影响[J]. 西北植物学报, 2018, 38(4):733−740.

    Yang J W, Zhao D, Sun G F, et al. Photosynthetic characteristics of Callicarpa dichotoma under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(4): 733−740.

    [30] 王孟本, 李洪建. 黄土高原人工林水分生态研究[M]. 北京: 中国林业出版社, 2001.

    Wang M B, Li H J. Study on water ecology of plantations in the Loess Plateau[M]. Beijing: China Forestry Publishing House, 2001.

    [31]

    Somerville C, Youngs H, Taylor C, et al. Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329: 790−792. doi: 10.1126/science.1189268

    [32]

    Saibo N J M, Lourenço T, Oliveira M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Annals of Botany, 2009, 103(4): 609−623. doi: 10.1093/aob/mcn227

    [33]

    Ögren E, Öquist G. Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves[J]. Planta, 1985, 166(3): 380−388. doi: 10.1007/BF00401176

    [34]

    Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview[J]. Photosynthetica, 2013, 51(2): 163−190. doi: 10.1007/s11099-013-0021-6

    [35] 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9):1020−1032. doi: 10.17521/cjpe.2016.0366

    Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: isohydric versus anisohydric behavior[J]. Chinese Journal of Plant Ecology, 2017, 41(9): 1020−1032. doi: 10.17521/cjpe.2016.0366

    [36]

    Hou J, D’Andrea W J, Macdonald D, et al. Evidence for water use efficiency as an important factor in determining the δD values of tree leaf waxes[J]. Organic Geochemistry, 2007, 38(8): 1251−1255. doi: 10.1016/j.orggeochem.2007.03.011

    [37] 赵凤君, 沈应柏, 高荣孚, 等. 叶片δ13C与长期水分利用效率的关系[J]. 北京林业大学学报, 2006, 28(6):40−45. doi: 10.3321/j.issn:1000-1522.2006.06.007

    Zhao F J, Shen Y B, Gao R F, et al. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL)[J]. Journal of Beijing Forestry University, 2006, 28(6): 40−45. doi: 10.3321/j.issn:1000-1522.2006.06.007

    [38]

    Franks P J, Doheny-Adams T W, Britton-Harper Z J, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density[J]. New Phytologist, 2015, 207(1): 188−195. doi: 10.1111/nph.13347

    [39]

    Fitter A H. Functioning of vesicular-arbuscular mycorrhizas under field condition[J]. New Phytologist, 1985, 99(2): 257−265. doi: 10.1111/j.1469-8137.1985.tb03654.x

    [40]

    Huang Y, Shuman B, Wang Y, et al. Climatic and environmental controls on the variation of C3 and C4 plant abundances in central Florida for the past 62, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaecology, 2006, 237(2−4): 428−435. doi: 10.1016/j.palaeo.2005.12.014

    [41]

    Waghorn M J, Whitehead D, Watt M S, et al. Growth, biomass, leaf area and water-use efficiency of juvenile Pinus radiata in response to water deficits[J]. New Zealand Journal of Forestry Science, 2015, 45(1): 1−11. doi: 10.1186/s40490-015-0034-y

    [42]

    Paul J K, John S B. Water relations of plants and soils[M]. San Diego: Academy Press, 1995.

    [43] 金华, 玉米提·哈力克, 阿丽亚·拜都热拉, 等. 阿克苏8种常见树种水分利用效率特征[J]. 西北林学院学报, 2015, 30(2):44−50. doi: 10.3969/j.issn.1001-7461.2015.02.08

    Jin H, Umut H, Aliya B, et al. Characteristics of leaf water use efficiency of eight common tree species in Aksu[J]. Journal of Northwest Forestry University, 2015, 30(2): 44−50. doi: 10.3969/j.issn.1001-7461.2015.02.08

    [44] 牛素贞, 宋勤飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017, 37(21):7333−7341.

    Niu S Z, Song Q F, Fan W G, et al. Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants[J]. Acta Ecologica Sinica, 2017, 37(21): 7333−7341.

    [45] 牛晓丽, 胡田田, 刘亭亭, 等. 适度局部水分胁迫提高玉米根系吸水能力[J]. 农业工程学报, 2014, 30(22):80−86. doi: 10.3969/j.issn.1002-6819.2014.22.010

    Niu X L, Hu T T, Liu T T, et al. Appropriate partial water stress improving maize root absorbing capacity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 80−86. doi: 10.3969/j.issn.1002-6819.2014.22.010

  • 期刊类型引用(6)

    1. 莫崇杏,董明亮,李荣生,余纽,郑显澄,杨锦昌. 米老排杂交子代苗期生长性状遗传变异及选择. 森林与环境学报. 2023(05): 555-560 . 百度学术
    2. Shuchun Li,Jiaqi Li,Yanyan Pan,Xiange Hu,Xuesong Nan,Dan Liu,Yue Li. Variation analyses of controlled pollinated families and parental combining ability of Pinus koraiensis. Journal of Forestry Research. 2021(03): 1005-1011 . 必应学术
    3. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 . 百度学术
    4. 秦光华,宋玉民,乔玉玲,于振旭,彭琳. 旱柳苗高年生长与气象因子的灰色关联度. 东北林业大学学报. 2019(05): 42-45+51 . 百度学术
    5. 李峰卿,陈焕伟,周志春,楚秀丽,徐肇友,肖纪军. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选. 植物资源与环境学报. 2018(02): 57-65 . 百度学术
    6. 张素芳,张磊,赵佳丽,张莉,张含国. 长白落叶松小RNA测序和其靶基因预测. 北京林业大学学报. 2016(12): 64-72 . 本站查看

    其他类型引用(6)

图(7)  /  表(3)
计量
  • 文章访问数:  1372
  • HTML全文浏览量:  928
  • PDF下载量:  120
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-09-24
  • 修回日期:  2020-12-03
  • 网络出版日期:  2021-03-02
  • 发布日期:  2021-04-15

目录

/

返回文章
返回