高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京地区典型绿化树种水分利用效率及其影响因素

赵娜 李少宁 徐晓天 王伟娜 鲁绍伟

赵娜, 李少宁, 徐晓天, 王伟娜, 鲁绍伟. 北京地区典型绿化树种水分利用效率及其影响因素[J]. 北京林业大学学报, 2021, 43(3): 44-54. doi: 10.12171/j.1000-1522.20200293
引用本文: 赵娜, 李少宁, 徐晓天, 王伟娜, 鲁绍伟. 北京地区典型绿化树种水分利用效率及其影响因素[J]. 北京林业大学学报, 2021, 43(3): 44-54. doi: 10.12171/j.1000-1522.20200293
Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. doi: 10.12171/j.1000-1522.20200293
Citation: Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. doi: 10.12171/j.1000-1522.20200293

北京地区典型绿化树种水分利用效率及其影响因素

doi: 10.12171/j.1000-1522.20200293
基金项目: 国家自然科学基金项目(31800363),北京市农林科学院科技创新能力建设专项(KJCX20190403、KJCX20200207、KJCX20200801、KJCX20190301)
详细信息
    作者简介:

    赵娜,博士,助理研究员。主要研究方向:森林生态系统结构与功能。Email:zhaona1019@126.com 地址:100093北京市海淀区香山瑞王坟甲12号

    责任作者:

    鲁绍伟,博士,研究员。主要研究方向:森林水文与水土保持。Email:hblsw8@163.com 地址:同上

  • 中图分类号: S725.1;Q945.78

Water use efficiency and its influencing factors of typical greening tree species in Beijing region

  • 摘要:   目的  在北京地区绿化率需求提升和水资源短缺背景下,城市绿化与城市生产、生活用水矛盾日益尖锐。因此,探寻城市绿化树种对干旱生境的响应机制,筛选低耗水、高水分利用的园林绿化树种,成为北京高质量城市森林景观建设的重要需求。  方法  该研究以北京地区落叶树种银杏、栾树、国槐和常绿树种侧柏、油松和白皮松盆栽幼树为研究对象,基于碳稳定同位素技术与树种生理参数观测分析3种干旱胁迫处理下(50% ~ 70%土壤田间持水量(FC)(轻度干旱SLD);30% ~ 50% FC(中度干旱MD);低于30% FC(重度干旱ED))树种瞬时水分利用效率(WUEi)和平均水分利用效率(WUEL)差异。  结果  (1) 与对照处理(90% ~ 100% FC,CK)相比,银杏、栾树、国槐和侧柏的光合能力、WUEi在土壤体积含水量(SWC)小于70%条件下显著减小(P < 0.05),而油松、白皮松WUEi在水分胁迫作用下无显著变化。(2) MD与ED下,常绿树种WUEL均显著高于落叶树种(P < 0.05)。在ED处理下3种落叶树种间WUEL存在显著差异,排序为国槐 > 栾树 > 银杏(P < 0.05)。银杏、栾树在SLD、侧柏、油松在MD时分别达到各自WUEL峰值后下降;而在土壤逐渐干旱处理下,国槐、白皮松WUEL逐渐增大,且在ED处理下分别比CK增加了44.19%和30.35%(P < 0.05)。(3) 比较不同树种光合荧光参数分别与WUEi、WUEL之间的相关关系发现,落叶树种银杏、栾树和国槐的气孔导度(gs)影响其光合、蒸腾过程(P < 0.01),对WUEi影响较大;而常绿树种侧柏、油松和白皮松gs对土壤水分变异不敏感(P > 0.05),对WUEi影响较小。在MD和ED水分胁迫条件下常绿树种WUEL均高于落叶树种。  结论  北京典型常绿树种比落叶树种更能优化光合性能,提高自身水分利用效率以适应干旱生境。

     

  • 图  1  6种绿化树种盆栽不同干旱胁迫下土壤体积含水量

    CK、SLD、MD、ED分别为对照处理组(90% ~ 100% FC)、轻度干旱(50% ~ 70% FC)、中度干旱(30% ~ 50% FC)和重度干旱(低于30% FC)处理。FC为盆栽土壤田间持水量。小写字母表示不同水分胁迫处理间差异显著(P < 0.05)。下同。CK, SLD, MD, ED are the control group (90%−100% FC) and three groups of soil water stresses as slight drought (50%−70% FC), moderate drought (30%−50% FC) and extreme drought (lower than 30% FC). FC is potted soil field capacity. Different small letters mean significant differences at P < 0.05 level among the treatments of soil water stresses. The same as below.

    Figure  1.  Variations in soil volumetric water content of potting soil of six tree species

    图  2  土壤水分胁迫对北京地区绿化树种叶水势的影响

    Figure  2.  Effects of water deficits on leaf potential in typical greening tree species of Beijing

    图  3  土壤水分胁迫对北京地区绿化树种光合能力的影响

    Pn. 净光合速率。下同。Pn, net photosynthetic rate. The same below.

    Figure  3.  Effects of water deficits on photosynthetic capacities in typical greening tree species of Beijing

    图  4  土壤水分胁迫对北京市绿化树种气孔导度的影响

    gs. 气孔导度。下同。gs, stomatal conductance. The same below.

    Figure  4.  Effects of water deficits on stomatal conductance in typical greening tree species of Beijing

    图  5  土壤水分胁迫对北京市绿化树木PSⅡ原初光能转换效率(Fv/Fm)和PSⅡ潜在活性(Fv/Fo)的影响

    Fv/Fm. PSⅡ原初光能转换效率;Fv/Fo. PSⅡ潜在活性。下同。Fv/Fm, primary light energy conversion of PSⅡ; Fv/F0, potential activity of PSⅡ. The same below.

    Figure  5.  Effects of water deficits on Fv/Fm and Fv/Fo in typical greening tree species in Beijing

    图  6  不同土壤水分胁迫下北京地区绿化树木瞬时水分利用效率

    Figure  6.  Instantaneous water use efficiencies in typical greening tree species of Beijing under different soil water stresses

    图  7  不同土壤水分胁迫下北京地区绿化树木平均水分利用效率

    不同大写字母表示物种间差异显著(P < 0.05)。Different capital letters mean significant difference at P < 0.05 level among tree species.

    Figure  7.  Mean water use efficiencies in typical greening tree species of Beijing under different soil water stresses

    表  1  不同土壤水分胁迫下北京地区绿化树木叶片δ13Cleaf比较

    Table  1.   Comparison in leaf δ13Cleaf in greening tree species of Beijing under varied soil water stresses

    物种 SpeciesCKSDSLDSDMDSDEDSD
    银杏
    G. biloba
    −29.352bB 0.217 −27.787aC 0.109 −27.930bB 0.138 −29.584cD 0.253
    栾树
    K. paniculata
    −28.828cB 0.570 −27.412aBC 0.464 −27.757abB 0.251 −28.572bcC 0.507
    国槐
    S. japonica
    −29.784bB 0.444 −28.940bE 0.187 −27.817aB 0.209 −27.894abB 0.486
    侧柏
    P. orientalis
    −26.887abA 0.101 −26.496aA 0.248 −26.462aA 0.049 −27.290bAB 0.121
    油松
    P. tabuliformis
    −27.503aA 0.454 −27.994bD 0.368 −26.438aA 0.739 −27.352aAB 0.183
    白皮松
    P. bungeana
    −28.353bB 0.746 −27.083aB 0.440 −26.664aAB 0.090 −26.640aA 0.204
    注:δ13Cleaf为植物叶片碳-13丰度值;同行不同小写字母表示不同水分胁迫处理间差异显著(P < 0.05);同列不同大写字母表示物种间差异显著(P < 0.05)。Notes: δ13Cleaf is Cabon-13 isotope abundance in plant leaf. Different lowercase letters in the same row mean significant differences at P < 0.05 level among the treatments of soil water stresses. Different capital letters in the same column mean significant differences at P < 0.05 level among tree species.
    下载: 导出CSV

    表  2  落叶幼树生理生态指标与水分利用效率相关分析

    Table  2.   Pearson correlations between eco-physiological parameters and WUEs in different deciduous tree species

    项目 ItemLWPPngsFv/FmFv/Foδ13CleafWUEiWUEL
    LWP 1
    Pn 0.239*
    gs 0.166 0.538**
    Fv/Fm 0.172 −0.006 −0.006
    Fv/Fo 0.210* 0.024 −0.063 0.913**
    δ13Cleaf −0.098 0.135 0.383** −0.117 −0.192
    WUEi 0.072 0.153 −0.365** 0.250* 0.393* −0.335**
    WUEL −0.21 −0.009 −0.06 −0.226 −0.176 0.821** 0.205 1
    注:LWP. 09:00—11:00叶水势;Pn. 净光合速率;gs. 气孔导度;Fv/Fm. PSⅡ原初光能转换效率;Fv/Fo. PSⅡ潜在活性;δ13Cleaf. 植物叶片碳-13丰度值;WUEi. 瞬时水分利用效率;WUEL. 平均水分利用效率. “*”、“**”分别表示相关性显著(P < 0.05)和极显著(P < 0.01)。下同。
    Notes: LWP, leaf potential at 09:00−11:00; Pn, net photosynthetic rate; gs, stomatal conductance; Fv/Fm, primary light energy conversion of PSII; Fv/Fo, potential activity of PSII; δ13Cleaf, Cabon-13 isotope abundance in plant leaf;;WUEi, instantaneous water use efficiency;WUEL, mean water use efficiency. Significant correlations at P <0.05 level marked with an asterisk and those at P <0.01 level marked with two asterisks. The same below.
    下载: 导出CSV

    表  3  常绿幼树生理生态指标与水分利用效率相关分析

    Table  3.   Pearson correlations between eco-physiological parameters and WUEs in different evergreen tree species

    项目 ItemLWPPngsFv/FmFv/Foδ13CleafWUEiWUEL
    LWP 1
    Pn −0.79
    gs 0.062 0.155
    Fv/Fm −0.067 −0.009 0.062
    Fv/Fo −0.58 0.012 0.098 0.951**
    δ13Cleaf 0.185 0.256 0.162 −0.025 0.023
    WUEi −0.116 0.425** −0.007 −0.165 −0.174 0.164
    WUEL 0.121 0.321* 0.192 −0.089 −0.008 0.528** 0.203 1
    下载: 导出CSV
  • [1] Gillner S, Vogt J, Tharang A, et al. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites[J]. Landscape and Urban Planning, 2015, 143: 33−42. doi: 10.1016/j.landurbplan.2015.06.005
    [2] Nowak D J, Greenfield E J, Hoehn R E, et al. Carbon storage and sequestration by trees in urban and community areas of the United States[J]. Environmental Pollution, 2013, 178: 229−236. doi: 10.1016/j.envpol.2013.03.019
    [3] Baldocchi D A. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop (II): CO2 exchange and water use efficiency[J]. Agricultural and Forest Meteorology, 1994, 67: 291−321. doi: 10.1016/0168-1923(94)90008-6
    [4] 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013: 141−147.

    Lin G H. Stable isotope ecology[M]. Beijing: Higher Education Press, 2013: 141−147.
    [5] Cao X, Jia J B, Li H, et al. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species[J]. Plant Biology, 2012, 14: 612−620. doi: 10.1111/j.1438-8677.2011.00531.x
    [6] Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Australian Journal of Plant Physiology, 1984, 11(6): 539−552.
    [7] 张永娥, 余新晓, 陈丽华, 等. 北京西山侧柏林冠层不同高度处叶片水分利用效率[J]. 应用生态学报, 2017, 28(7):2143−2148.

    Zhang Y E, Yu X X, Chen L H, et al. Foliar water use efficiency of Platycladus orientalis of different canopy heights in Beijing western mountains area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2143−2148.
    [8] Kozlowski T T, Pallardy S G. Acclimation and adaptive responses of woody plants to environmental stresses[J]. Botanical Review, 2002, 68(2): 270−334. doi: 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
    [9] Picotte J, Rosenthal D, Rhode J, et al. Plastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance[J]. Oecologia, 2007, 153(4): 821−832. doi: 10.1007/s00442-007-0794-z
    [10] Xu X, Yang F, Xiao X W, et al. Sex-specific responses of Populus cathayana to drought and elevated temperatures[J]. Plant Cell and Environment, 2008, 31(6): 850−860. doi: 10.1111/j.1365-3040.2008.01799.x
    [11] 马 飞, 姬明飞, 陈立同, 等. 油松幼苗对干旱胁迫的生理生态响应[J]. 西北植物学报, 2009, 29(3):548−554.

    Ma F, Ji M F, Chen L T, et al. Responses of Pinus tabulae formis seedlings to different soil water moistures in ecophysiological characteristics[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 548−554.
    [12] Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2): 121−137. doi: 10.1071/PP9820121
    [13] Li J Y, Blake T J. Effect of repeated cycles of dehydration-rehydration on gas exchange and water use efficiency in jack pine and black spruce[J]. Journal of Beijing Forestry University (English Edition), 1996, 5(2): 78−87.
    [14] Yu S W. Plant physiology and molecular biology[M]. Beijing: Science Press, 1992.
    [15] Lang Y, Wang M, Zhang G C, et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi: 10.1007/s11099-013-0036-z
    [16] Suresh K, Nagamani C, Ramachandrudu K, et al. Gas-exchange characteristics, leaf water potential and chlorophyll a fluorescence in oil palm (Elaeis guineensis Jacq.) seedlings under water stress and recovery[J]. Photosynthetica, 2010, 48(3): 430−436. doi: 10.1007/s11099-010-0056-x
    [17] Razavi F, Pollet B, Steppe K, et al. Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry[J]. Photosynthetica, 2008, 46(4): 631−633. doi: 10.1007/s11099-008-0108-7
    [18] 段娜, 贾玉奎, 郝玉光, 等. 干旱胁迫对欧李叶绿素荧光特性的影响[J]. 西北林学院学报, 2018, 33(6):10−14. doi: 10.3969/j.issn.1001-7461.2018.06.02

    Duan N, Jia Y K, Hao Y G, et al. Effects of drought stress on chlorophyll fluorescence characteristics of Cerasus humilis[J]. Journal of Northwest Forestry University, 2018, 33(6): 10−14. doi: 10.3969/j.issn.1001-7461.2018.06.02
    [19] Klein T. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours[J]. Functional Ecology, 2014, 28(6): 1313−1320. doi: 10.1111/1365-2435.12289
    [20] 范嘉智, 王丹, 胡亚林, 等. 最优气孔行为理论和气孔导度模拟[J]. 植物生态学报, 2016, 40(6):631−642. doi: 10.17521/cjpe.2015.0480

    Fan J Z, Wang D, Hu Y L, et al. Optimal stomatal behavior theory for simulating stomatal conductance[J]. Chinese Journal of Plant Ecology, 2016, 40(6): 631−642. doi: 10.17521/cjpe.2015.0480
    [21] 张彦群, 王传宽. 北方和温带森林生态系统的蒸腾耗水[J]. 应用与环境生物学报, 2008, 14(6):838−845.

    Zhang Y Q, Wang C K. Transpiration of boreal and temperate forests[J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(6): 838−845.
    [22] 郑淑霞, 上官周平. 8 种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J]. 生态学报, 2006, 26(4):1080−1087. doi: 10.3321/j.issn:1000-0933.2006.04.014

    Zheng S X, Shangguan Z P. Comparison of leaf gas exchange and chlorophyll fluorescence parameters in eight broad-leaved tree species[J]. Acta Ecologica Sinica, 2006, 26(4): 1080−1087. doi: 10.3321/j.issn:1000-0933.2006.04.014
    [23] Damesin C, Rambal S, Toffre R. Between-tree variations in leaf delta C-13 of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability[J]. Oecologia, 1997, 111: 26−35. doi: 10.1007/s004420050204
    [24] 贾剑波. 北京山区典型森林生态系统水分运动过程与机制研究[D]. 北京: 北京林业大学, 2016.

    Jia J B. Water movement process and mechanism analysis on forest ecosystems in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2016.
    [25] 李瀚之, 余新晓, 贾国栋, 等. 北京山区侧柏人工林内CO2浓度及其δ13C值变化特征和影响因子[J]. 应用生态学报, 2017, 28(7):2164−2170.

    Li H Z, Yu X X, Jia G D, et al. Variations and determinants of CO2 concentration and δ13C in Platycladus orientalis plantation in Beijing mountainous area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2164−2170.
    [26] Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. Plant Physiology, 1983, 72(2): 297−302. doi: 10.1104/pp.72.2.297
    [27] Perez-Martin A, Michelazzo C, Torres-Ruiz J M, et al. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins[J]. Journal of Experimental Botany, 2014, 65(2): 3143−3156.
    [28] Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden[J]. Agricultural and Forest Meteorology, 2002, 112(2): 67−85. doi: 10.1016/S0168-1923(02)00060-6
    [29] 杨建伟, 赵丹, 孙桂芳, 等. 干旱胁迫对小紫珠光合生理的影响[J]. 西北植物学报, 2018, 38(4):733−740.

    Yang J W, Zhao D, Sun G F, et al. Photosynthetic characteristics of Callicarpa dichotoma under drought stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(4): 733−740.
    [30] 王孟本, 李洪建. 黄土高原人工林水分生态研究[M]. 北京: 中国林业出版社, 2001.

    Wang M B, Li H J. Study on water ecology of plantations in the Loess Plateau[M]. Beijing: China Forestry Publishing House, 2001.
    [31] Somerville C, Youngs H, Taylor C, et al. Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329: 790−792. doi: 10.1126/science.1189268
    [32] Saibo N J M, Lourenço T, Oliveira M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Annals of Botany, 2009, 103(4): 609−623. doi: 10.1093/aob/mcn227
    [33] Ögren E, Öquist G. Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves[J]. Planta, 1985, 166(3): 380−388. doi: 10.1007/BF00401176
    [34] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview[J]. Photosynthetica, 2013, 51(2): 163−190. doi: 10.1007/s11099-013-0021-6
    [35] 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9):1020−1032. doi: 10.17521/cjpe.2016.0366

    Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: isohydric versus anisohydric behavior[J]. Chinese Journal of Plant Ecology, 2017, 41(9): 1020−1032. doi: 10.17521/cjpe.2016.0366
    [36] Hou J, D’Andrea W J, Macdonald D, et al. Evidence for water use efficiency as an important factor in determining the δD values of tree leaf waxes[J]. Organic Geochemistry, 2007, 38(8): 1251−1255. doi: 10.1016/j.orggeochem.2007.03.011
    [37] 赵凤君, 沈应柏, 高荣孚, 等. 叶片δ13C与长期水分利用效率的关系[J]. 北京林业大学学报, 2006, 28(6):40−45. doi: 10.3321/j.issn:1000-1522.2006.06.007

    Zhao F J, Shen Y B, Gao R F, et al. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL)[J]. Journal of Beijing Forestry University, 2006, 28(6): 40−45. doi: 10.3321/j.issn:1000-1522.2006.06.007
    [38] Franks P J, Doheny-Adams T W, Britton-Harper Z J, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density[J]. New Phytologist, 2015, 207(1): 188−195. doi: 10.1111/nph.13347
    [39] Fitter A H. Functioning of vesicular-arbuscular mycorrhizas under field condition[J]. New Phytologist, 1985, 99(2): 257−265. doi: 10.1111/j.1469-8137.1985.tb03654.x
    [40] Huang Y, Shuman B, Wang Y, et al. Climatic and environmental controls on the variation of C3 and C4 plant abundances in central Florida for the past 62, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaecology, 2006, 237(2−4): 428−435. doi: 10.1016/j.palaeo.2005.12.014
    [41] Waghorn M J, Whitehead D, Watt M S, et al. Growth, biomass, leaf area and water-use efficiency of juvenile Pinus radiata in response to water deficits[J]. New Zealand Journal of Forestry Science, 2015, 45(1): 1−11. doi: 10.1186/s40490-015-0034-y
    [42] Paul J K, John S B. Water relations of plants and soils[M]. San Diego: Academy Press, 1995.
    [43] 金华, 玉米提·哈力克, 阿丽亚·拜都热拉, 等. 阿克苏8种常见树种水分利用效率特征[J]. 西北林学院学报, 2015, 30(2):44−50. doi: 10.3969/j.issn.1001-7461.2015.02.08

    Jin H, Umut H, Aliya B, et al. Characteristics of leaf water use efficiency of eight common tree species in Aksu[J]. Journal of Northwest Forestry University, 2015, 30(2): 44−50. doi: 10.3969/j.issn.1001-7461.2015.02.08
    [44] 牛素贞, 宋勤飞, 樊卫国, 等. 干旱胁迫对喀斯特地区野生茶树幼苗生理特性及根系生长的影响[J]. 生态学报, 2017, 37(21):7333−7341.

    Niu S Z, Song Q F, Fan W G, et al. Effects of drought stress on leaf physiological characteristics and root growth of the clone seedlings of wild tea plants[J]. Acta Ecologica Sinica, 2017, 37(21): 7333−7341.
    [45] 牛晓丽, 胡田田, 刘亭亭, 等. 适度局部水分胁迫提高玉米根系吸水能力[J]. 农业工程学报, 2014, 30(22):80−86. doi: 10.3969/j.issn.1002-6819.2014.22.010

    Niu X L, Hu T T, Liu T T, et al. Appropriate partial water stress improving maize root absorbing capacity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 80−86. doi: 10.3969/j.issn.1002-6819.2014.22.010
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  127
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 修回日期:  2020-12-04
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回