Observation of predation behavior and evaluation on predation capacity of Arma chinensis against Hyphantria cunea
-
摘要:目的 为明确蠋蝽对美国白蛾捕食的行为学特点,评价其捕食能力。方法 本试验利用室内观察法结合HollingⅡ型圆盘方程拟合方法,研究了蠋蝽成虫和若虫对美国白蛾幼虫的捕食行为特点和捕食能力。结果 蠋蝽取食美国白蛾幼虫表现为搜寻、刺探、等待和取食4种行为。不同虫龄组合在搜寻时长(P = 0.005)和取食时长(P = 0.002)上差异极显著。在蠋蝽虫龄一定的情况下,搜寻时长会随着美国白蛾幼虫虫龄的增加而减少,取食时长会随着美国白蛾幼虫虫龄的增加而增加。蠋蝽的口针从幼虫头部刺入的比率显著高于胸部和腹部(P = 0.001),推测有利于蠋蝽迅速控制和杀死幼虫。蠋蝽4、5龄若虫和成虫对美国白蛾3、4、5龄幼虫的捕食功能反应均符合HollingⅡ模型(0.011 4 ~ 0.198 1 < χ20.05 = 9.49),蠋蝽的捕食量会随着美国白蛾幼虫密度的增加而增加,搜寻效应会随着美国白蛾幼虫密度的升高而降低。蠋蝽成虫和5龄若虫对美国白蛾3龄幼虫的理论日最大捕食量均超过8头,蠋蝽对美国白蛾3龄幼虫的瞬间攻击率均高于4龄和5龄幼虫。蠋蝽林间套袋防治美国白蛾3龄幼虫试验结果显示:蠋蝽成虫捕食量(6.60 ± 0.40)头 > 蠋蝽5龄若虫捕食量(4.20 ± 0.58)头 > 蠋蝽4龄若虫捕食量(2.40 ± 0.25)头。结论 本研究表明蠋蝽成虫与蠋蝽5龄若虫对美国白蛾幼虫具有较好的捕食能力,可作为一种生物防治手段适用于美国白蛾的防治。
-
关键词:
- 蠋蝽 /
- 美国白蛾 /
- 捕食行为 /
- HollingⅡ型圆盘方程 /
- 捕食功能反应
Abstract:Objective This paper aims to clarify the characteristics of predation behavior of Arma chinensis on Hyphantria cunea and evaluate the predation capacity of A. chinensis.Method The predation behavior and predation capacity of adult and nymph of A. chinensis to the larvae of H. cunea were studied by means of indoor observation combined with the method of HollingⅡ disc equation fitting.Result The process of predating could be divided into 4 kinds of behaviours: searching, piercing-sucking, waiting and feeding. The differences were extremely significant in searching time (P = 0.005) and piercing-sucking time (P = 0.002) among different groups. The searching time decreased with the increase of instar, and the feeding time increased with the increase of instar when the instar of A. chinensis was same. The ratio of A. chinensis piercing the stylet into the head of H. cunea larvae was significantly higher than thorax and abdomen (P = 0.001). We speculated that piercing into the head will be beneficial to controlling and killing larvae rapidly. The predatory functional response of 4th, 5th instar nymph and adult of A. chinensis to 3rd, 4th and 5th instar larvae of H. cunea was all agreed with the HollingⅡ disc equation (0.011 4−0.198 1 < χ20.05 = 9.49). The predation increased with the increase of prey density, and the searching effect decreased with the increase of prey density. The theoretical maximum daily predation of adult and 5th instar nymph of A. chinensis to 3rd instar larvae of H. cunea was all above 8 and the instantaneous attack rates of A. chinensis to 3rd instar larvae of H. cunea were all higher than 4th and 5th instar larvae. The predation of A. chinensis preying on 3rd larvae of H. cunea under bagging condition in forest after 7 days showed that: adult (6.60 ± 0.40) > 5th instar nymph (4.20 ± 0.58) > 4th instar nymph (2.40 ± 0.25).Conclusion The adult and 5th instar nymph of A. chinensis have better predation capacity on the larvae of H. cunea, which could be used as a means of biocontrol against H. cunea. -
美国白蛾(Hyphantria cunea)属于鳞翅目(Lepidortera)目夜蛾科(Erebidae),又名秋幕毛虫,原产于北美,是我国重大外来林业有害生物[1-2]。自1979年从朝鲜的新义州传入我国丹东,现已蔓延到我国13个省级、598个县级行政区[3-5]。美国白蛾幼虫危害树种多,取食量巨大,传播范围广,适应性和繁殖力极强,根据现有资料记载,其幼虫可取食49科108属的300余种植物[5-6]。给农林业造成了巨大损失,对我国的生态安全造成严重威胁[4]。
美国白蛾无论在原产地北美大陆,还是在新传入地区的天敌种类都很丰富,包括寄生性昆虫、鸟类、蜘蛛和多种捕食性昆虫等[7-9]。近年来,对寄生性天敌白蛾周氏啮小蜂 (Chouioia cunea)的研究和利用已经取得显著的成效,但关于美国白蛾其他天敌的基础研究相对较少,尤其是捕食性天敌的研究和利用[10-11]。蠋蝽(Arma chiensis)属半翅目(Hemiptera)蝽科(Pentatomidae),在我国分布广泛。其若虫和成虫均能捕食鳞翅目、鞘翅目、双翅目等多种害虫,特别对鳞翅目害虫有较强的捕食能力,是一种可以通过人工繁育加以利用的优良捕食性天敌[12-13]。王文亮等曾报道蠋蝽对美国白蛾具有较强的控制能力,是自然界中影响美国白蛾种群密度的重要因子[14]。根据现有研究,蠋蝽对小菜蛾(Plutella xylostella)、棉铃虫(Helicoverpa armigera)、二化螟(Chilo suppressalis)、甜菜夜蛾(Spodoptera exigua)、斜纹夜蛾(S. litura)、美国白蛾(Hyphantria cunea)、米蛾(Corcyra cephalonica)、马铃薯甲虫(Leptinotarsa decemlineata)、松毛虫(Dendrolimus spp.)、榆紫叶甲(Ambrostoma quadriim pressum)、双斑长跗萤叶甲(Monolepta hieroglyphica)等均可捕食[15-23]。目前蠋蝽对美国白蛾捕食能力的详细研究却鲜有报道。因此,本文开展了蠋蝽对美国白蛾的捕食行为特点、捕食功能反应以及林间套袋防治试验,阐明了蠋蝽对美国白蛾的捕食能力,为美国白蛾的生物防治提供新途径和新方法。
1. 材料与方法
1.1 试验材料
小型无线摄像机(型号:KL-MN02)、养虫盒(16 cm × 11 cm × 5.5 cm)、培养皿(90 cm × 1.5 cm)和尼龙套袋(70 cm × 50 cm)。
1.2 供试虫源及饲养条件和方法
蠋蝽由吉林省林业科学研究院继代培养提供,美国白蛾种群采自辽宁省沈阳市苏家屯区。蠋蝽用黄粉虫蛹饲喂,每天向养虫盒内的棉球滴少量水以保持湿度,并清理蠋蝽的代谢物;美国白蛾用新鲜桑叶饲喂,每天更换1次。饲养条件:温度(24 ± 1)℃,相对湿度75% ± 5%。
1.3 试验方法
1.3.1 蠋蝽对美国白蛾幼虫的捕食行为观察
分别选取室内饲养的蠋蝽成虫以及5龄若虫各9头,试验前将其置于养虫盒内饥饿,24 h后将1头蠋蝽成虫或5龄若虫分别与美国白蛾3、4、5龄幼虫放置于培养皿内,同时在培养皿中放入少量桑叶,避免美国白蛾幼虫因饥饿等其他原因死亡。虫口密度均为5头/皿,每头蠋蝽捕食的全过程使用小型无线摄像机记录观察,每组处理3个重复。
1.3.2 蠋蝽对美国白蛾幼虫的捕食功能反应
分别选取蠋蝽成虫和4、5龄若虫各80头,试验前将其置于养虫盒内饥饿,24 h后将1头蠋蝽成虫或4、5龄若虫分别与美国白蛾3、4、5龄幼虫放置于培养皿内,美国白蛾3龄、4龄幼虫的密度梯度设为2、4、6、8、10头/皿;5龄幼虫密度梯度为1、2、3、4、5头/皿,每组处理5个重复。观察蠋蝽成虫和若虫对美国白蛾不同虫龄幼虫的捕食行为,24 h后检查不同虫龄幼虫存活数量。
1.3.3 蠋蝽林间套袋防治试验
分别选取室内饲养的蠋蝽成虫以及4、5龄若虫各5头,试验前将其置于养虫盒内饥饿,24 h后将1头蠋蝽成虫、4、5龄若虫分别接入装有白蛾3龄幼虫的尼龙套袋中,寄主为桑树,白蛾幼虫的虫口密度为30头/套袋,并用绳子扎紧袋口,防止蠋蝽或白蛾幼虫逃逸(如图1)。分别于试验第3天、第5天、第7天检查套袋中的美国白蛾幼虫活虫数量,每组处理5个重复。
1.4 分析方法
利用Excel 2017和SPSS 17.0软件对所有试验数据进行相关统计分析,差异显著性采用单因素方差分析法,多重比较采用Duncan’s新复极差法。根据HollingⅡ模型建立每组合的捕食功能反应模型,拟合HollingⅡ圆盘方程:
Na=aNT/(1+aThN) (1) 式中:Na为被捕食的猎物数量;a为瞬间攻击率;N为猎物密度;T为试验持续时间,在本试验中T = 24 h;Th为处置1头猎物时间[24-26]。
最后利用拟合HollingⅡ型功能反应模型所得参数,求得每组的搜寻效应:
S=a/(1+aThN) (2) 式中:S为搜寻效应;a、Th和N同HollingⅡ型功能反应模型方程[25,27]。
2. 结果与分析
2.1 蠋蝽的捕食行为观察
蠋蝽取食美国白蛾幼虫表现为搜寻、刺探、等待和取食4种行为。搜寻:蠋蝽寻找美国白蛾幼虫位置和判断动向的过程,该过程中蠋蝽有将口针从腹面伸出的趋势,同时触角会进行摆动;刺探:蠋蝽尝试接触虫体并将口针中的毒液注入到美国白蛾幼虫体内,但幼虫在该过程中一般会扭动体躯挣脱口针;等待:蠋蝽在美国白蛾幼虫附近徘徊,在毒液发挥麻痹作用的同时也做好随时发起下一次攻击的准备;取食:当美国白蛾幼虫抵抗力减弱或丧失时,蠋蝽开始长时间刺吸的过程。以蠋蝽5龄若虫捕食美国白蛾3龄幼虫试验为例:将蠋蝽5龄若虫放入培养皿后,首先会在叶片上停留片刻,有些蠋蝽还会刺吸叶片汁液,伺机搜寻美国白蛾幼虫,持续时长为65 ~ 95 min;当蠋蝽与美国白蛾幼虫接触时,蠋蝽会用其触角进行触碰,并将其口针从腹面伸出,对幼虫进行4 ~ 6次刺探,刺探过程中美国白蛾幼虫可能会挣脱蠋蝽的刺吸,前几次为短时间连续刺探,刺探时间为5 ~ 15 s。蠋蝽的口针从美国白蛾幼虫的头部刺入的频率显著高于胸部和腹部(P = 0.001)(图2、3);随后蠋蝽5龄若虫会在其旁等待,口针呈完全水平伸出或保持与腹面成一定角度的状态,等到美国白蛾幼虫抵抗能力减弱或丧失时再开始长时间刺吸取食,该时间持续约4 ~ 8 min。在取食期间,蠋蝽的口针会多次从美国白蛾幼虫体内抽出再刺入,一旦受到其他美国白蛾幼虫触碰干扰,蠋蝽5龄若虫会保持口针刺入美国白蛾幼虫体内的状态,拖拽这条幼虫至无干扰处继续进行取食。蠋蝽5龄若虫完全取食(猎物彻底被吸干)1头3龄幼虫需要65 ~ 125 min,美国白蛾幼虫的虫龄越大,蠋蝽完全取食所需的时间就越长,取食后会剩下变黑、干瘪的幼虫虫体(图4)。
不同捕食组合在搜寻时长(P = 0.005)和取食时长(P = 0.002)上差异极显著,蠋蝽5龄若虫对美国白蛾3、4、5龄幼虫的搜寻时长分别为(67.33 ± 15.34) min、(44.33 ± 5.36) min、(37.67 ± 1.45) min,蠋蝽5龄若虫对美国白蛾3、4、5龄幼虫的取食时长分别为(80.00 ± 17.56) min、(122.33 ± 8.45) min、(180.00 ± 17.32) min;蠋蝽成虫对美国白蛾3、4、5龄幼虫的搜寻时长分别为(64.00 ± 18.52) min、(30.00 ± 5.77) min、(24.40 ± 3.86) min;蠋蝽成虫对美国白蛾3、4、5龄幼虫的取食时长分别为(61.33 ± 3.48) min、(86.66 ± 14.53) min、(140.40 ± 18.62) min(图5)。综上,在蠋蝽虫龄一定的情况下,搜寻时长会随着美国白蛾幼虫虫龄的增加而减少;取食时长会随着美国白蛾幼虫虫龄的增加而增加。
2.2 蠋蝽的捕食功能反应
根据拟合出的捕食功能反应方程,求出不同组合以及不同密度梯度下的理论捕食量,对理论值与实际值进行卡方(χ2)适合性检验,得出在相应自由度下χ2值为0.011 4 ~ 0.198 1,均小于χ20.05 = 9.49,说明理论值与实测值差异不显著,符合HollingⅡ模型,能够很好地反映天敌蠋蝽随美国白蛾密度变化而影响捕食量的情况。
在蠋蝽虫龄一定时,瞬时攻击率与日最大捕食量随着美国白蛾幼虫虫龄的增加而降低,处理时间随着美国白蛾幼虫虫龄的增加而增加(如表1)。其中,蠋蝽成虫对美国白蛾3龄幼虫的瞬时攻击率最高(1.193),处理时间最短(0.119 d);当N→∞时,蠋蝽对美国白蛾3、4龄幼虫的理论日最大捕食量分别为8.406头和7.225头,对美国白蛾5龄幼虫的日最大捕食量为2.189头。蠋蝽5龄若虫对美国白蛾3龄幼虫的瞬时攻击率最高(1.017),处理时间最短(0.125 d);当N→∞时,蠋蝽对美国白蛾3龄幼虫的日最大捕食量最大(8.002头),5龄若虫与成虫的捕食量差距不大。蠋蝽4龄若虫对美国白蛾3龄幼虫的瞬时攻击率最高为1.099略高于蠋蝽5龄若虫对美国白蛾3龄幼虫的瞬间攻击率,表明4龄若虫相比于5龄若虫对于24 h的饥饿处理反应更明显,更急于捕食。蠋蝽4龄若虫对美国白蛾3龄幼虫的处理时间最短为0.159 d;当N→∞时,蠋蝽对美国白蛾3龄幼虫的日最大捕食量最大(6.279头),低于蠋蝽成虫与5龄若虫。综上,不同捕食组合的捕食量均随着培养皿内美国白蛾幼虫密度的增加呈上升趋势(图6~8),搜寻效应均随着培养皿内美国白蛾幼虫密度的增加呈下降趋势(图9~11)。
蠋蝽虫龄
Instar of
A. chinensis美国白蛾虫龄
Instar of
H. cunea捕食功能反应方程
Predation function response
equation瞬时攻击率
Instantaneous
attack rate (a)处理时间
Processing
time (Th)/d日最大捕食量
Max. daily
predator capacity相关系数
Correlation
coefficientχ2 成虫
Adult3龄 3rd instar Na = 1.193N/(1 + 0.142N) 1.193 0.119 8.406 0.957 0.149 5 4龄 4th instar Na = 0.903N/(1 + 0.125N) 0.903 0.138 7.225 0.949 0.123 7 5龄 5th instar Na = 0.824N/(1 + 0.377N) 0.824 0.457 2.189 0.902 0.132 3 5龄若虫
5th instar nymph3龄 3rd instar Na = 1.017N/(1 + 0.127N) 1.017 0.125 8.002 0.942 0.198 1 4龄 4th instar Na = 0.650N/(1 + 0.127N) 0.650 0.195 5.139 0.900 0.147 8 5龄 5th instar Na = 0.553N/(1 + 0.391N) 0.553 0.707 1.414 0.981 0.011 4 4龄若虫
4th instar nymph3龄 3rd instar Na = 1.099N/(1 + 0.175N) 1.099 0.159 6.279 0.982 0.029 0 4龄 4th instar Na = 0.841N/(1 + 0.211N) 0.841 0.250 4.001 0.962 0.058 7 5龄 5th instar Na = 0.241N/(1 + 0.187N) 0.241 0.774 1.292 0.952 0.020 6 组别
Group3 d捕食量
Predation
capacity after
3 days5 d捕食量
Predation
capacity after
5 days7 d捕食量
Predation
capacity after
7 days蠋蝽成虫
Adult of
A. chinensis1.40 ± 0.51aA 3.40 ± 0.40aA 6.60 ± 0.40aA 蠋蝽5龄若虫
5th instar nymph
of A. chinensis1.40 ± 0.60aA 2.60 ± 0.50abAB 4.20 ± 0.58bA 蠋蝽4龄若虫
4th instar nymph
of A. chinensis0.20 ± 0.20aA 1.40 ± 0.25bB 2.40 ± 0.25cB 注:不同小写字母表示差异显著水平(P < 0.05),不同大写字母表示差异极显著水平(P < 0.01)。Notes: different lowercase letters indicate significant level of difference (P < 0.05), different uppercase letters indicate extremely significant level of difference (P < 0.01). 2.3 蠋蝽林间套袋防治试验
林间套袋试验结果显示(如表2),蠋蝽成虫以及若虫均可以在野外条件下捕食美国白蛾3龄幼虫,但捕食能力有差异;随着试验时间的增加,捕食量差异越大。3天蠋蝽成虫与5龄若虫对美国白蛾3龄幼虫的捕食量差异不显著,但均高于4龄若虫。蠋蝽林间套袋试验7天对美国白蛾3龄幼虫的捕食量:蠋蝽成虫 > 蠋蝽5龄若虫 > 蠋蝽4龄若虫。
3. 结论与讨论
蠋蝽捕食美国白蛾幼虫主要分为搜寻、刺探、等待和取食4种行为,与唐艺婷等在蠋蝽对草地贪夜蛾捕食行为观察试验结果相似[28],与其他具有刺吸式口器的捕食性蝽相比捕食行为也类似,例如斑腹刺益蝽和黑刺益蝽[29-32]。蠋蝽成虫与若虫在捕食过程中,刺探次数显著不同。成虫刺探次数少,单次持续时间较长;若虫则刺探次数多,单次持续时间较短,可能与蠋蝽每次刺吸注射到白蛾幼虫体内的毒液含量以及浓度有关,具体机制有待进一步明确。此外蠋蝽的口针可以从美国白蛾幼虫体躯的多个位置刺入,不是仅选择猎物躯体上较为柔软的部位取食,反而从美国白蛾幼虫坚硬头壳部位刺入的次数明显高于胸部和腹部,推测是为了有利于迅速杀死幼虫,同时避免美国白蛾幼虫转头攻击,野外调查的过程中也多次发现该现象,具体原因需要深入地研究。
蠋蝽成虫以及若虫捕食美国白蛾不同虫龄幼虫的功能反应均符合HollingⅡ模型,与其他捕食蝽对猎物的捕食功能反应模型一致[19-20,33-34]。蠋蝽的捕食作用会受到美国白蛾幼虫密度的影响,其捕食量随着美国白蛾密度的增加而增加,搜寻效应随着美国白蛾密度的增加而降低。根据已有报道,蠋蝽成虫或高龄若虫捕食效果较好,例如:对马尾松毛虫、云南松毛虫、小菜蛾和双斑长跗萤叶甲等[19,21,23]。本研究蠋蝽成虫以及不同虫龄若虫对美国白蛾幼虫最大日捕食量顺序均为3龄幼虫 > 4龄幼虫 > 5龄幼虫,且蠋蝽成虫对美国白蛾3龄幼虫的日最大捕食量最大(8.406头),瞬间攻击率最高(1.193),5龄若虫的相关指标与成虫接近,结合林间防治试验的捕食效果蠋蝽成虫和5龄若虫可优先考虑应用于美国白蛾的防治。
蠋蝽的捕食功能反应存在一定的复杂性,如本试验中捕食效果最好的是蠋蝽成虫,而在益蝽的研究中5龄若虫捕食效果好于成虫[35]。本研究蠋蝽4龄若虫对美国白蛾3、4龄幼虫的瞬间攻击率均高于5龄蠋蝽若虫,表明蠋蝽4龄若虫比5龄若虫更急于捕食,这与唐艺婷等在蠋蝽对小菜蛾的捕食作用中所得结论基本一致[19]。
蠋蝽在林间套袋试验条件下的捕食量低于室内试验的捕食量,可能是由于林间防治试验受到光照、温度、降水等诸多因素的影响。另外,美国白蛾幼虫的网幕也会加大蠋蝽捕食的难度,试验过程中观察到蠋蝽的口针可以穿过网幕捕食美国白蛾幼虫,但网幕对蠋蝽捕食量影响的程度仍需要进一步研究。本文只进行了蠋蝽对美国白蛾室内、外强迫性捕食试验,仍有许多问题需要深入研究。
-
图 3 蠋蝽捕食美国白蛾
A.蠋蝽成虫刺吸美国白蛾4龄幼虫头部;B.蠋蝽5龄若虫刺吸美国白蛾4龄幼虫头部;C.蠋蝽4龄若虫刺吸美国白蛾4龄幼虫头部;D.蠋蝽3龄若虫刺吸美国白蛾4龄幼虫头部 A, adult of A. chinensis attacking the head of 4th instar larvae of H. cunea; B, 5th instar nymph of A. chinensis attacking the head of 4th instar larvae of H. cunea; C, 4th instar nymph of A. chinensis attacking the head of 4th instar larvae of H. cunea; D, 3rd instar nymph of A. chinensis attacking the head of 4th instar larvae of H. cunea
Figure 3. A. chinensis prey on H. cunea larvae
图 5 蠋蝽捕食白蛾幼虫的搜寻时长以及取食时长
5N. 5龄若虫;3L、4L、5L分别为3龄、4龄和5龄幼虫;AD. 成虫。不同小写字母表示差异显著水平(P < 0.05),不同大写字母表示差异极显著水平(P < 0.01)。5N, 5th instar nymph; 3L, 4L and 5L mean 3rd instar, 4th instar and 5th instar larvae, respectively; AD, adult. Different lowercase letters indicate significant level of difference (P < 0.05), different uppercase letters indicate extremely significant level of difference (P < 0.01).
Figure 5. Searching and feeding time of A. chinensis predating the larvae of H. cunea
表 1 蠋蝽对美国白蛾捕食功能反应模型拟合结果
Table 1 Fitting results of the functional response models of H. cunea by A. chinensis
蠋蝽虫龄
Instar of
A. chinensis美国白蛾虫龄
Instar of
H. cunea捕食功能反应方程
Predation function response
equation瞬时攻击率
Instantaneous
attack rate (a)处理时间
Processing
time (Th)/d日最大捕食量
Max. daily
predator capacity相关系数
Correlation
coefficientχ2 成虫
Adult3龄 3rd instar Na = 1.193N/(1 + 0.142N) 1.193 0.119 8.406 0.957 0.149 5 4龄 4th instar Na = 0.903N/(1 + 0.125N) 0.903 0.138 7.225 0.949 0.123 7 5龄 5th instar Na = 0.824N/(1 + 0.377N) 0.824 0.457 2.189 0.902 0.132 3 5龄若虫
5th instar nymph3龄 3rd instar Na = 1.017N/(1 + 0.127N) 1.017 0.125 8.002 0.942 0.198 1 4龄 4th instar Na = 0.650N/(1 + 0.127N) 0.650 0.195 5.139 0.900 0.147 8 5龄 5th instar Na = 0.553N/(1 + 0.391N) 0.553 0.707 1.414 0.981 0.011 4 4龄若虫
4th instar nymph3龄 3rd instar Na = 1.099N/(1 + 0.175N) 1.099 0.159 6.279 0.982 0.029 0 4龄 4th instar Na = 0.841N/(1 + 0.211N) 0.841 0.250 4.001 0.962 0.058 7 5龄 5th instar Na = 0.241N/(1 + 0.187N) 0.241 0.774 1.292 0.952 0.020 6 表 2 蠋蝽成虫以及若虫对美国白蛾3龄幼虫不同时期的捕食量
Table 2 Predation capacity of adult and nymph of A. chinensis against 3rd instar larvae of H. cunea in different periods
组别
Group3 d捕食量
Predation
capacity after
3 days5 d捕食量
Predation
capacity after
5 days7 d捕食量
Predation
capacity after
7 days蠋蝽成虫
Adult of
A. chinensis1.40 ± 0.51aA 3.40 ± 0.40aA 6.60 ± 0.40aA 蠋蝽5龄若虫
5th instar nymph
of A. chinensis1.40 ± 0.60aA 2.60 ± 0.50abAB 4.20 ± 0.58bA 蠋蝽4龄若虫
4th instar nymph
of A. chinensis0.20 ± 0.20aA 1.40 ± 0.25bB 2.40 ± 0.25cB 注:不同小写字母表示差异显著水平(P < 0.05),不同大写字母表示差异极显著水平(P < 0.01)。Notes: different lowercase letters indicate significant level of difference (P < 0.05), different uppercase letters indicate extremely significant level of difference (P < 0.01). -
[1] 孙红, 周艳涛, 李晓冬, 等. 2020年全国主要林业有害生物发生情况及2021年发生趋势预测[J/OL]. 中国森林病虫: 1−5 [2021−03−12]. https://doi.org/10.19688/j.cnki.issn1671-0886.20210004. Sun H, Zhou Y T, Li X D, et al. Occurrence situation of major forestry pests in 2020 and occurrence tendency predication in 2021[J/OL]. Forest Pest and Disease: 1−5 [2021−03−12]. https://doi.org/10.19688/j.cnki.issn1671-0886.20210004.
[2] Bi Y G, Qin Q L, Wang Z G, et al. An auto-contamination trap-strips system for biological control of Hyphantria cunea (Lepidoptera: Noctuidae), an invasive pest in China[J]. International Journal of Pest Management, 2018, 64(3): 230−235. doi: 10.1080/09670874.2017.1384966
[3] 张龙娃, 康克, 刘玉军, 等. 美国白蛾高毒力球孢白僵菌菌株筛选[J]. 昆虫学报, 2016, 59(1):111−118. Zhang L W, Kang K, Liu Y J, et al. Evaluation of Beauveria bassiana isolates as potential agents for control of Hyphantria cunea (Lepidoptera: Arctiidae)[J]. Acta Entomologica Sinica, 2016, 59(1): 111−118.
[4] 张向欣, 王正军. 外来入侵种美国白蛾的研究进展[J]. 安徽农业科学, 2009, 37(1):215−219. doi: 10.3969/j.issn.0517-6611.2009.01.096 Zhang X X, Wang Z J. Resarch progress on the Hyphantria cunea (Drury) of alien invasive species[J]. Journal of Anhui Agricultural Sciences, 2009, 37(1): 215−219. doi: 10.3969/j.issn.0517-6611.2009.01.096
[5] 卢修亮, 韩凤英, 温玄烨, 等. 美国白蛾发生形势分析与对策建议[J]. 中国森林病虫, 2021, 40(1):44−48. Lu X L, Han F Y, Wen X Y, et al. Analysis and corresponding suggestions about the occurrence situation of Hyphantria cunea (Drury)[J]. Forest Pest and Disease, 2021, 40(1): 44−48.
[6] 杨忠岐. 利用天敌昆虫控制我国重大林木害虫研究进展[J]. 中国生物防治学报, 2004, 20(4):221−227. doi: 10.3321/j.issn:1005-9261.2004.04.001 Yang Z Q. Recent research progress on bio-control of the important forest pests with natural enemies in China[J]. Chinese Journal of Biological Control, 2004, 20(4): 221−227. doi: 10.3321/j.issn:1005-9261.2004.04.001
[7] 陈景芸, 蔡平, 詹国辉, 等. 美国白蛾发生规律与防治技术研究进展[J]. 江苏农业科学, 2012, 40(12):149−151. doi: 10.3969/j.issn.1002-1302.2012.12.056 Chen J Y, Cai P, Zhan G H, et al. Recent research advances in the occurrence rule and control techniques of Hyphantria cunea (Drury)[J]. Jiangsu Agricultural Sciences, 2012, 40(12): 149−151. doi: 10.3969/j.issn.1002-1302.2012.12.056
[8] 南俊科. 沈阳地区美国白蛾天敌复合体的研究[D]. 沈阳: 沈阳农业大学, 2019. Nan J K. Study on natural enemy complex of Hyphantria cunea (Drury) in Shenyang area[D]. Shenyang: Shenyang Agricultural University, 2019.
[9] 陈沉, 宋丽文, 左彤彤, 等. 沈阳地区美国白蛾的天敌复合体[J]. 中国生物防治报, 2020, 36(3):353−360. Chen C, Song L W, Zuo T T, et al. Natural enemy complex of Hyphantria cunea (Drury) in Shenyang area[J]. Chinese Journal of Biological Control, 2020, 36(3): 353−360.
[10] Li J L, Chen J Y, Cai P. Research progress of occurrence and comprehensive control of fall webworm [Hyphantria cunea (Drury)][J]. Plant Diseases and Pests, 2013, 4(4): 32−35.
[11] 罗立平, 王小艺, 杨忠岐, 等. 美国白蛾防控技术研究进展[J]. 环境昆虫学报, 2018, 40(4):721−735. Luo L P, Wang X Y, Yang Z Q, et al. Research progress in the management of fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae)[J]. Journal of Environmental Entomology, 2018, 40(4): 721−735.
[12] 廖平, 苗少明, 许若男, 等. 新型蠋蝽若虫液体人工饲料效果评价[J]. 中国生物防治学报, 2019, 35(1):9−14. Liao P, Miao S M, Xu R N, et al. Evaluation of a new liquid artificial diet of Arma chinensis fallou (Hemiptera: Pentatomidae)[J]. Chinese Journal of Biological Control, 2019, 35(1): 9−14.
[13] 李兴鹏, 宋丽文, 陈越渠, 等. 不同脂肪源人工饲料对蠋蝽生长发育及生殖力的影响[J]. 林业科学, 2018, 54(6):85−93. doi: 10.11707/j.1001-7488.20180610 Li X P, Song L W, Chen Y Q, et al. Influence of different fatty acids in artificial diets on growth, development and fecundity of Arma chinensis[J]. Scientia Silvae Sinicae, 2018, 54(6): 85−93. doi: 10.11707/j.1001-7488.20180610
[14] 王文亮, 刘芹, 闫家河, 等. 美国白蛾新天敌—蠋敌捕食能力的初步观察[J]. 山东林业科技, 2012, 42(1):11−14. doi: 10.3969/j.issn.1002-2724.2012.01.004 Wang W L, Liu Q, Yan J H, et al. Preliminary observation of preyed ability of Arma chinensis (Fallou), a new natural enemy of Hyphantria cunea (Drury)[J]. Journal of Shandong Forestry Science and Technology, 2012, 42(1): 11−14. doi: 10.3969/j.issn.1002-2724.2012.01.004
[15] 李娇娇, 张长华, 易忠经, 等. 三种猎物对蠋蝽生长发育和繁殖的影响[J]. 中国生物防治学报, 2016, 32(5):553−561. Li J J, Zhang C H, Yi Z J, et al. Effects of three prey species on development and fecundity of the predaceous stinkbug Arma chinensis (Hemiptera: Pentatomidae)[J]. Chinese Journal of Biological Control, 2016, 32(5): 553−561.
[16] 郭义. 取食体内不同甾醇水平的粘虫对蠋蝽营养代谢及生长发育的影响[D]. 北京: 中国农业科学院, 2017. Guo Y. Effect of feeding Mythimna separata with different sterol levels on nutrition metabolism and development of Arma chinensis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[17] Zou D Y, Coudron T A, Liu C X, et al. Nutrigenomics in Arma chinensis: transcriptome analysis of Arma chinensis fed on artificial diet and Chinese oak silk moth Antheraea pernyi pupae[J/OL]. PLoS One, 2017, 8(4): e60881 [2020−05−19]. https://doi.org/10.1371/journal.pone.0060881.
[18] 潘明真, 张海平, 张长华, 等. 饲养密度和性比对蠋蝽存活和繁殖生物学特性的影响[J]. 中国生物防治学报, 2018, 34(1):52−58. Pan M Z, Zhang H P, Zhang C H, et al. Effects of rearing density and sex ratio of adult Arma chinensis (Hemiptera: Pentatomidae) on their survival, fecundity and offspring’s suitability[J]. Chinese Journal of Biological Control, 2018, 34(1): 52−58.
[19] 唐艺婷, 郭义, 潘明真, 等. 蠋蝽对小菜蛾幼虫的捕食作用[J]. 植物保护, 2020, 46(4):155−160. Tang Y T, Guo Y, Pan M Z, et al. Predation of Plutella xylostel larvae by Arma chinensis[J]. Plant Protection, 2020, 46(4): 155−160.
[20] 唐艺婷, 王孟卿, 李玉艳, 等. 蠋蝽对斜纹夜蛾幼虫的捕食作用[J]. 中国烟草科学, 2020, 41(1):62−66. Tang Y T, Wang M Q, Li Y Y, et al. Predation of Arma chinensis on Spodoptera litura larvae[J]. Chinese Tobacco Science, 2020, 41(1): 62−66.
[21] 陈静, 张建萍, 张建华, 等. 蠋敌对双斑长跗萤叶甲成虫的捕食功能研究[J]. 环境昆虫学报, 2007, 29(4):149−154. doi: 10.3969/j.issn.1674-0858.2007.04.001 Chen J, Zhang J P, Zhang J H, et al. Study on functional response of Arma chinensis to the adults of Monolepta hieroglyphica[J]. Journal of Environmental Entomology, 2007, 29(4): 149−154. doi: 10.3969/j.issn.1674-0858.2007.04.001
[22] 张晓军, 张健, 孙守慧. 蠋蝽对榆紫叶甲的捕食作用[J]. 中国森林病虫, 2016, 35(1):13−15, 30. doi: 10.3969/j.issn.1671-0886.2016.01.004 Zhang X J, Zhang J, Sun S H. Predation of Arma chinensis on Ambrostoma quadriimopressum[J]. Forest Pest and Disease, 2016, 35(1): 13−15, 30. doi: 10.3969/j.issn.1671-0886.2016.01.004
[23] 熊跃芝, 李密, 伍绍龙, 等. 蠋蝽对3种主要松毛虫的捕食功能反应[J]. 湖南林业科技, 2020, 47(3):49−53. doi: 10.3969/j.issn.1003-5710.2020.03.008 Xiong Y Z, Li M, Wu S L, et al. Predation function responses of Arma chinensis to 3 Dendrolimus spp.[J]. Hunan Forestry Science and Technology, 2020, 47(3): 49−53. doi: 10.3969/j.issn.1003-5710.2020.03.008
[24] 徐汝梅. 昆虫种群生态学[M]. 北京: 北京师范大学出版社, 1987. Xu R M. Population ecology of insect[M]. Beijing: Beijing Normal University Press, 1987.
[25] 丁岩钦. 昆虫数学生态学[M]. 北京: 科学出版社, 1994. Ding Y Q. Mathematical ecology of insect[M]. Beijing: Science Press, 1994.
[26] 李鹤鹏. 中华草蛉三龄幼虫对大豆蚜的功能反应[J]. 黑龙江农业科学, 2014(2):59−61. doi: 10.3969/j.issn.1002-2767.2014.02.014 Li H P. Predation of 3-instar Chrysopa sinica tjeder larvae functional response on Aphis glycines[J]. Heilongjiang Agricultural Sciences, 2014(2): 59−61. doi: 10.3969/j.issn.1002-2767.2014.02.014
[27] 张安盛, 于毅, 李丽莉, 等. 东亚小花蝽成虫对西花蓟马若虫的捕食功能反应与搜寻效应[J]. 生态学杂志, 2007, 26(8):1233−1237. Zhang A S, Yu Y, Li L L, et al. Functional response and searching rate of Orius sauteri adults on Frankliniella occidentalis nymphs[J]. Chinese Journal of Ecology, 2007, 26(8): 1233−1237.
[28] 唐艺婷, 李玉艳, 刘晨曦, 等. 蠋蝽对草地贪夜蛾的捕食能力评价和捕食行为观察[J]. 植物保护, 2019, 45(4):65−68. Tang Y T, Li Y Y, Liu C X, et al. Predation and behavior of Arma chinensis to Spodoptera frugiperda[J]. Plant Protection, 2019, 45(4): 65−68.
[29] Shapiro J, Legaspi J C. Assessing biochemical fitness of predator Podisus maculiventris (Heteroptera: Pentatomidae) in relation to food quality: effects of five species of prey[J]. Annals of the Entomological Society of America, 2006, 99(2): 321−326. doi: 10.1603/0013-8746(2006)099[0321:ABFOPP]2.0.CO;2
[30] Zanuncio J C, Silvaca D, Lima E R, et al. Predation rate of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae with and without defense by Podisus nigrispinus (Heteroptera: Pentatomidae)[J]. Brazilian Archives of Biology and Technology, 2008, 51(1): 121−125. doi: 10.1590/S1516-89132008000100015
[31] Malaquias J B, Ramalho F S, Omoto C, et al. Imidacloprid affects the functional response of predator Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains of Spodoptera frugiperda (J. E. Smith) on Bt cotton[J]. Ecotoxicology, 2014, 23(2): 192−200. doi: 10.1007/s10646-013-1162-x
[32] Santos B D B, Ramalho F S, Malaquias J B, et al. How predation by Podisus nigrispinus is influenced by developmental stage and density of its prey Alabama argillacea[J]. Entomologia Experimentalis et Applicata, 2016, 158: 142−151. doi: 10.1111/eea.12396
[33] 邓海滨, 王珍, 陈永明, 等. 红彩真猎蝽对斜纹夜蛾和烟青虫的捕食功能反应[J]. 广东农业科学, 2012, 39(13):107−109. doi: 10.3969/j.issn.1004-874X.2012.13.036 Deng H B, Wang Z, Chen Y M, et al. Predation of Harpactor fuscipes on Helicoverpa assulta and Spodoptera litura[J]. Guangdong Agricultural Sciences, 2012, 39(13): 107−109. doi: 10.3969/j.issn.1004-874X.2012.13.036
[34] 陈然, 梁广文, 张拯研, 等. 叉角厉蝽对斜纹夜蛾的捕食功能反应[J]. 环境昆虫学报, 2015, 37(2):401−406. Chen R, Liang G W, Zhang Z Y, et al. The functional response of Cahtheconidea furcellata (Hemiptera: Asopinae) to Spodoptera litura (Lepidoptera: Noctuidae)[J]. Journal of Environmental Entomology, 2015, 37(2): 401−406.
[35] 唐艺婷, 郭义, 何国玮, 等. 不同龄期的益蝽对粘虫的捕食功能反应[J]. 中国生物防治学报, 2018, 34(6):825−830. Tang Y T, Guo Y, He G W, et al. Functional responses of Picromerus lewisi Scott (Hemiptera: Pentatomidae) attacking Mythimna separata (Walker) (Lepidoptera: Noctuidae)[J]. Chinese Journal of Biological Control, 2018, 34(6): 825−830.
-
期刊类型引用(5)
1. 王梦,姚飞,宁少华,梁洪柱,李颖超. 北京小西山昆虫资源多样性与保护分析. 安徽农业科学. 2024(05): 132-136+143 . 百度学术 2. 王胜男,张茂森,周磊,井晓宇,张洪志,李玉艳,吴惠惠,张礼生. 保幼激素环氧水解酶基因在蠋蝽滞育过程中的表达模式及其功能研究. 江苏农业科学. 2024(06): 43-51 . 百度学术 3. 甘杨子,符悦冠,韩冬银,王建赟,梁昌寿,孙然锋,李磊. 西沙大眼长蝽形态和生物学特性观察. 昆虫学报. 2024(05): 674-682 . 百度学术 4. 郭世保,陈俊华,张龙,李非凡,刘红敏,史洪中. 蠋蝽对灰茶尺蠖幼虫的捕食能力及种内干扰反应. 茶叶科学. 2024(04): 609-617 . 百度学术 5. 邹萍,曹亮明,孙守慧,杨忠岐,张彦龙,王小艺. 美国白蛾天敌昆虫应用研究进展. 中国生物防治学报. 2024(05): 1194-1206 . 百度学术 其他类型引用(9)