Phenotypic variation analysis on leaf traits and selection of optimal forage clones of Robinia pseudoacacia clones in Shandong Province of eastern China
-
摘要:目的 为系统了解山东大青山林场刺槐的无性系变异规律,并初步筛选饲用型刺槐优良无性系。方法 对332个刺槐无性系的13个叶表型性状进行多样性、隶属函数、相关性和聚类分析,并在聚类分析的基础上,针对不同性状进行各组间差异分析。结果 13个性状的总变异系数为14.883%,其中,4个复叶和9个小叶性状的变异系数分别为16.062%和14.360%。该刺槐资源的隶属函数值介于0.196 ~ 0.717之间,其中无性系SD328拥有最大值(0.717),其在复叶宽、小叶面积和小叶柄角3个性状上具有明显优势。表型和遗传相关性表明,小叶对数与小叶数量有最大的正相关性系数,小叶长/宽与小叶圆度的负相关性系数最大。主成分分析表明,4个主成分因子可以代表刺槐无性系86.447%的原始数据信息。当平方欧式距离为8时进行聚类分析,332份刺槐无性系被分为5类。结论 通过系统分析刺槐无性系种质的表型多样性,初步筛选出饲用性刺槐无性系72份,为山东大青山饲用刺槐的选育和种质保存等研究奠定基础。Abstract:Objective The objective of this experiment was to systematically understand the phenotypic variation rule of Robinia pseudoacacia clones in Feixian County State Owned Daqingshan Forest Farm of Shandong Province, eastern China and selection of optimal forage varieties.Method Diversity, subordinate function, correlation and cluster analysis were performed on 13 leaf phenotypic traits of 332 R. pseudoacacia clones, and on the basis of cluster analysis, the differences among groups were analyzed for different traits.Result The total coefficient of variation of the 13 traits was 14.883%, of which the coefficients of variation of the 4 compound leaves and 9 leaflets were 16.062% and 14.360%, respectively. The subordinate function value of this R. pseudoacacia was between 0.196 and 0.717, in which SD328 clone had the maximum value (0.717) and obvious advantages in the three characteristics of compound leaf width, leaflet area and petiole angle. The phenotype and genetic correlation showed that the leaflet pairs had the largest positive correlation coefficient with the leaflet numbers, and the leaflet length/width had the largest negative correlation coefficient with the leaflet circularity. Principal component analysis showed that the four principal component factors could represent 86.447% of the original data information of R. pseudoacacia clones. When the squared euclidean distance was 8, cluster analysis was performed, and 332 clones of R. pseudoacacia were divided into 5 categories.Conclusion The phenotypic diversity of the R. pseudoacacia germplasm resources was systematically analyzed, seventy-two accessions were selected based on the breeding of ornamental and forage tree species, in order to lay the foundation for the research of breeding and germplasm preservation of R. pseudoacacia.
-
-
表 1 刺槐无性系性状调查信息
Table 1 Investigation information of Robinia pseudoacacia clones
性状
Trait缩写
Abbreviation复叶长 Compound leaf length CLL 复叶宽 Compound leaf width CLW 复叶长/宽 Compound leaf length/width CLL/CLW 复叶柄长 Compound petiole length CPL 小叶长 Leaflet length LL 小叶宽 Leaflet width LW 小叶长/宽 Leaflet length/width LL/LW 小叶面积 Leaflet area LA 小叶周长 Leaflet perimeter LPM 小叶圆度 Leaflet circularity LC 小叶对数 Leaflet pairs LP 小叶数量 Leaflet number LN 小叶柄角 Petiole angle PA 表 2 332份刺槐无性系叶表型性状的平均值与变异系数差异
Table 2 Mean and variation coefficient difference of leaf phenotypic traits of 332 R. pseudoacacia clones
性状
Trait平均值
Mean标准差
SD最小值
Min. value最大值
Max. value极差
Range变异系数
Coefficient of
variation (CV)/%CLL/cm 28.071 4.323 15.600 49.775 34.175 15.399 CLW/cm 10.449 1.852 5.475 17.025 11.550 17.721 CLL/CLW 2.755 0.375 1.837 4.099 2.262 13.600 CPL/cm 3.537 0.620 2.100 8.250 6.150 17.526 LL/cm 7.058 1.112 3.948 10.308 6.360 15.757 LW/cm 2.956 0.470 1.725 5.178 3.453 15.889 LL/LW 2.409 0.274 1.642 3.307 1.665 11.376 LA/cm2 15.481 4.567 5.102 32.984 27.882 29.500 LPM/cm 15.416 2.355 8.835 23.418 14.583 15.274 LC/% 76.600 3.964 65.577 91.806 26.229 5.175 LP 8.555 1.113 5.250 13.000 7.750 13.012 LN 18.082 2.203 12.250 25.500 13.250 12.182 PA/(°) 74.314 8.228 49.750 112.300 62.550 11.072 平均值 Mean 20.437 2.420 13.776 30.535 16.758 14.883 表 3 32份刺槐无性系13个叶表型性状的隶属函数均值范围
Table 3 Mean range of subordinate function of 13 leaf phenotypic traits of 332 R. pseudoacacia clones
编号
No.隶属函数均值范围
Mean range of subordinate function种质数量
Germplasm number1 > 0.600 7 2 0.500 ~ 0.599 57 3 0.400 ~ 0.499 119 4 0.300 ~ 0.399 116 5 0.200 ~ 0.299 31 6 < 0.200 2 表 4 不同刺槐无性系群体内叶表型性状相关性
Table 4 Correlation of leaf phenotypic traits between populations of varied R. pseudoacacia clones
性状
TraitCLL CLW CLL/CLW CPL LL LW LL/LW LA LPM LC LP LN PA CLL CLW 0.700** CLL/CLW 0.261** −0.493** CPL 0.637** 0.448** 0.162** LL 0.703** 0.800** −0.201** 0.481** LW 0.580** 0.655** −0.169** 0.375** 0.713** LL/LW 0.188** 0.214** −0.046 0.162** 0.399** −0.349** LA 0.687** 0.789** −0.211** 0.449** 0.913** 0.926** 0.012 LPM 0.712** 0.813** −0.210** 0.475** 0.988** 0.797** 0.279** 0.958** LC −0.097 −0.104 0.005 −0.147** −0.288** 0.404** −0.911** 0.101 −0.151** LP 0.423** 0.174** 0.266** −0.049 0.110* 0.011 0.131* 0.068 0.111* −0.063 LN 0.422** 0.175** 0.264** −0.052 0.112* 0.013 0.129* 0.070* 0.112* −0.061 0.998** PA 0.246** 0.234** −0.036 0.260** 0.083 0.173** −0.114* 0.139* 0.101 0.120* 0.063 0.061 注:**表示在0.01 水平上极显著相关;*表示在0.05水平上显著相关。Notes: ** indicates highly significant correlation at 0.01 level; * indicates significant correlation at 0.05 level. 表 5 刺槐无性系群体叶表型性状的主成分分析
Table 5 Principal component analysis on leaf phenotypic traits in R. pseudoacacia clone population
性状
Trait主成分特征向量 Eigenvector of principal component PC1 PC2 PC3 PC4 CCL 0.838 0.263 0.255 0.273 CLW 0.888 −0.055 −0.108 −0.237 CLL/CLW −0.169 0.394 0.436 0.652 CPL 0.593 0.020 −0.080 0.651 LL 0.945 0.048 −0.233 −0.057 LW 0.803 −0.483 0.262 −0.050 LL/LW 0.216 0.697 −0.655 −0.003 LA 0.940 −0.252 0.033 −0.076 LPM 0.962 −0.047 −0.138 −0.074 LC −0.103 −0.680 0.680 −0.067 LP 0.224 0.692 0.607 −0.295 LN 0.225 0.691 0.607 −0.299 PA 0.228 −0.105 0.227 0.303 特征值 Eigenvalue 5.428 2.444 2.096 1.270 方差贡献率 Variance contribution rate/% 41.751 18.800 16.125 9.771 累计贡献率 Accumulative contribution rate/% 41.751 60.551 76.675 86.447 表 6 刺槐无性系叶表型性状差异性分析
Table 6 Difference analysis on leaf phenotypic traits of R. pseudoacia clones
性状
Trait类群
Group数量
Number均值
Mean性状
Trait类群
Group数量
Number均值
Mean性状
Trait类群
Group数量
Number均值
MeanCLL/cm Ⅰ 285 27.675±0.201b CLW/cm Ⅰ 285 10.272±0.087b CLL/CLW Ⅰ 285 2.762±0.019b Ⅱ 3 23.805±0.607a Ⅱ 3 10.778±0.411b Ⅱ 3 2.262±0.135a Ⅲ 32 32.906±0.603a Ⅲ 32 12.528±0.219c Ⅲ 32 2.684±0.061b Ⅳ 9 21.368±0.653c Ⅳ 9 7.701±0.290a Ⅳ 9 2.857±0.098b Ⅴ 3 38.514±3.683d Ⅴ 3 12.942±1.359c Ⅴ 3 3.049±0.198b CPL/cm Ⅰ 285 3.489±0.029ab LL/cm Ⅰ 285 6.973±0.057bc LW/cm Ⅰ 285 2.888±0.021b Ⅱ 3 3.194±0.411a Ⅱ 3 6.291±0.555ab Ⅱ 3 3.381±0.297c Ⅲ 32 4.020±0.110b Ⅲ 32 8.234±0.132d Ⅲ 32 3.629±0.061c Ⅳ 9 2.913±0.097a Ⅳ 9 5.653±0.212a Ⅳ 9 2.400±0.077a Ⅴ 3 5.170±0.338c Ⅴ 3 7.600±0.511cd Ⅴ 3 3.551±0.472c LL/LW Ⅰ 285 2.431±0.015b LA/cm2 Ⅰ 285 14.874±0.209b LPM/cm Ⅰ 285 15.187±0.118b Ⅱ 3 1.863±0.028a Ⅱ 3 16.509±2.492b Ⅱ 3 14.880±1.077b Ⅲ 32 2.292±0.042b Ⅲ 32 22.028±0.598b Ⅲ 32 18.245±0.268c Ⅳ 9 2.370±0.066b Ⅳ 9 9.649±0.584a Ⅳ 9 12.285±0.412a Ⅴ 3 2.197±0.218b Ⅴ 3 19.860±3.967b Ⅴ 3 16.848±1.265bc LC/% Ⅰ 285 76.278±0.210a LP Ⅰ 285 8.573±0.058 LN Ⅰ 285 18.121±0.114 Ⅱ 3 88.011±1.56b Ⅱ 3 7.889±0.455 Ⅱ 3 16.722±0.882 Ⅲ 32 78.727±0.695a Ⅲ 32 8.607±0.191 Ⅲ 32 18.169±0.373 Ⅳ 9 74.795±0.713a Ⅳ 9 7.908±0.386 Ⅳ 9 16.796±0.774 Ⅴ 3 78.442±2.673a Ⅴ 3 8.833±0.795 Ⅴ 3 18.667±1.590 PA/(°) Ⅰ 285 73.826±0.331b Ⅱ 3 67.074±1.488a Ⅲ 32 80.373±1.156c Ⅳ 9 62.026±1.300a 注:不同小写字母表示各同质组每个性状差异显著。Note: different lowercase letters indicate significantly different among varied traits in various homogeneous group. 表 7 刺槐无性系的饲用优良无性系选择
Table 7 Selection of optimal forage clones from R. pseudoacacia clones
性状
Trait332份无性系的均值
Mean value of
332 clones饲用优良无性系的均值
Mean value of optimal forage clonesCCL/cm 28.071±0.220 32.417±0.343 CLW/cm 10.449±0.091 11.937±0.167 CLL/CLW 2.755±0.018 2.790±0.042 CPL/cm 3.537±0.031 3.810±0.074 LL/cm 7.058±0.057 8.057±0.074 LW/cm 2.956±0.024 3.266±0.039 LL/LW 2.409±0.014 2.495±0.034 LA/cm2 15.481±0.231 19.346±0.323 LPM/cm 15.416±0.120 17.523±0.147 LC/% 76.600±0.208 76.023±0.476 LP 8.555±0.055 9.426±0.077 LN 18.082±0.108 19.816±0.151 PA/(°) 74.314±0.372 75.261±0.791 表 8 基于叶表型性状选择的刺槐饲用优良无性系名称
Table 8 Name of optimal forage clones of R. pseudoacacia selected based on leaf phenotypic traits
序号
No.种质名称
Germplasm name序号
No.种质名称
Germplasm name序号
No.种质名称
Germplasm name1 SD017 31 SD0170 61 SD0318 2 SD024 32 SD0174 62 SD0319 3 SD036 33 SD0176 63 SD0321 4 SD041 34 SD0178 64 SD0322 5 SD047 35 SD0180 65 SD0323 6 SD053 36 SD0183 66 SD0326 7 SD059 37 SD0188 67 SD0327 8 SD064 38 SD0195 68 SD0328 9 SD068 39 SD0196 69 SD0329 10 SD074 40 SD0208 70 SD0330 11 SD093 41 SD0214 71 SD0331 12 SD097 42 SD0217 72 SD0332 13 SD098 43 SD0244 14 SD0119 44 SD0245 15 SD0124 45 SD0249 16 SD0125 46 SD0251 17 SD0127 47 SD0265 18 SD0128 48 SD0267 19 SD0140 49 SD0269 20 SD0145 50 SD0271 21 SD0147 51 SD0273 22 SD0148 52 SD0284 23 SD0151 53 SD0285 24 SD0152 54 SD0287 25 SD0153 55 SD0293 26 SD0154 56 SD0296 27 SD0164 57 SD0302 28 SD0167 58 SD0306 29 SD0168 59 SD0308 30 SD0169 60 SD0314 -
[1] Huntley J C. Robinia pseudoacacia L. black locust[J]. Silvics of North America, 1990, 2: 755−761.
[2] Batzli J M, Graves W R, Berkum P V. Diversity among rhizobia effective with Robinia pseudoacacia L.[J]. Applied and Environmental Microbiology, 1992, 58(7): 2137−2143. doi: 10.1128/aem.58.7.2137-2143.1992
[3] Boring L R, Swank W T. The role of black locust (Robinia pseudoacacia) in forest succession[J]. The Journal of Ecology, 1984, 72: 749−766. doi: 10.2307/2259529
[4] 宋永芳. 刺槐资源的开发利用[J]. 林业科技开发, 2002, 16(5):11−13. doi: 10.3969/j.issn.1000-8101.2002.05.004 Song Y F. Exploitation and utilization on Robinia pseudoacacia resources[J]. China Forestry Science and Technology, 2002, 16(5): 11−13. doi: 10.3969/j.issn.1000-8101.2002.05.004
[5] Rédei K, Osvath-Bujtas Z, Veperdi I. Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review[J]. Acta Silvatica et Lignaria Hungarica, 2008, 4: 127−132.
[6] Kropf U, Korošec M, Bertoncelj J, et al. Determination of the geographical origin of Slovenian black locust, lime and chestnut honey[J]. Food Chemistry, 2010, 121: 839−846. doi: 10.1016/j.foodchem.2009.12.094
[7] Benesperi R, Giuliani C, Zanetti S, et al. Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion[J]. Biodiversity and Conservation, 2012, 21: 3555−3568. doi: 10.1007/s10531-012-0380-5
[8] Tian F, McLaughlin J L. Bioactive flavonoids from the black locust tree, Robinia pseudoacacia[J]. Pharmaceutical Biology, 2000, 38(3): 229−234.
[9] Qiu L, Zhang X, Cheng J, et al. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China[J]. Plant and Soil, 2010, 332(1−2): 207−217. doi: 10.1007/s11104-010-0286-5
[10] Zhang J G, Guan J H, Shi W Y, et al. Interannual variation in stand transpiration estimated by sap flow measurement in a semi-arid black locust plantation, Loess Plateau, China[J]. Ecohydrology, 2015, 8(1): 137−147. doi: 10.1002/eco.1495
[11] 张国君, 李云, 姜金仲, 等. 饲料性四倍体剌槐叶粉词用价值的比较研究[J]. 草业科学, 2007, 24(1):26−31. doi: 10.3969/j.issn.1001-0629.2007.01.006 Zhang G J, Li Y, Jiang J Z, et al. Nutrition of the powder of tetraploidy black locust for fodder leaves and evaluation of its feeding value[J]. Pratacultural Science, 2007, 24(1): 26−31. doi: 10.3969/j.issn.1001-0629.2007.01.006
[12] 荀守华, 乔玉玲, 张江涛, 等. 我国刺槐遗传育种现状及发展对策[J]. 山东林业科技, 2009, 180(1):92−96. doi: 10.3969/j.issn.1002-2724.2009.01.038 Xun S H, Qiao Y L, Zhang J T, et al. Research progress and development tactics on genetics breeding of Robinia pseudoacacia L. in China[J]. Journal of Shandong Forestry Science and Technology, 2009, 180(1): 92−96. doi: 10.3969/j.issn.1002-2724.2009.01.038
[13] 王梓贞. 刺槐青贮调制与加工技术研究[J]. 饲料与畜牧, 2019(8):56−58. Wang Z Z. Study on the modulation and processing technology of black locust silage[J]. Food and Husbandry, 2019(8): 56−58.
[14] 侯金波, 石冠旗, 杨柳君, 等. 槐叶营养成分研究[J]. 粮食科技与经济, 2019, 44(1):51−52. Hou J B, Shi G Q, Yang L J, et al. Study on the nutrient composition of Sophora japonica leaves[J]. Grain Science and Technology and Economy, 2019, 44(1): 51−52.
[15] 徐立人, 何可心, 刘宠, 等. 单叶刺槐半同胞子代叶片饲用特性研究[J]. 江苏农业科学, 2020, 48(15):217−221. Xu L R, He K X, Liu C, et al. Study on feeding characteristics of leaves of half sib progenies of Robinia pseudoacacia f. unifolia[J]. Jiangsu Agricultural Sciences, 2020, 48(15): 217−221.
[16] 岑秀玲, 王川, 李爱华. 宁夏银川地区饲用型四倍体刺槐主要饲用特性研究[J]. 农业科学研究, 2011, 32(2):1−4. doi: 10.3969/j.issn.1673-0747.2011.02.001 Cen X L, Wang C, Li A H. Research of main feed characteristics of tetraploidy black locust for feed in Yinchuan Region of Ningxia[J]. Journal of Agricultural Sciences, 2011, 32(2): 1−4. doi: 10.3969/j.issn.1673-0747.2011.02.001
[17] 张江涛. 河南省刺槐基因资源收集及评价利用研究[J]. 河南林业科技, 2008, 28(4):43−45. doi: 10.3969/j.issn.1003-2630.2008.04.018 Zhang J T. Study on gene resource collection, evaluation and utilization of Robinia pseudoacacia in Henan Province[J]. Journal of Henan Forestry Science and Technology, 2008, 28(4): 43−45. doi: 10.3969/j.issn.1003-2630.2008.04.018
[18] 荀守华, 乔玉玲, 毛秀红, 等. 刺槐属种质资源数据库研建[J]. 山东林业科技, 2014, 44(1):1−8. doi: 10.3969/j.issn.1002-2724.2014.01.001 Xun S H, Qiao Y L, Mao X H, et al. Development on database for species of locust genus (Robinia)[J]. Journal of Shandong Forestry Science and Technology, 2014, 44(1): 1−8. doi: 10.3969/j.issn.1002-2724.2014.01.001
[19] 毛秀红, 郑勇奇, 孙百友, 等. 基于SSR的刺槐无性系遗传多样性分析和指纹图谱构建[J]. 林业科学, 2017, 53(10):80−89. doi: 10.11707/j.1001-7488.20171009 Mao X H, Zheng Y Q, Sun B Y, et al. Genetic diversity and fingerprints of Robinia pseudoacacia clones based on SSR markers[J]. Scientia Silvae Sinicae, 2017, 53(10): 80−89. doi: 10.11707/j.1001-7488.20171009
[20] 郭琪, 李秀宇, 董黎, 等. 山西刺槐种质资源的叶片表型多样性分析[J]. 分子植物育种, 2019, 17(13):4479−4487. Guo Q, Li X Y, Dong L, et al. Analysis of leaf phenotype diversity of Robinia pseudoacia L. germplasm resources in Shanxi[J]. Molecular Plant Breeding, 2019, 17(13): 4479−4487.
[21] 吴欣明, 郭璞, 池惠武, 等. 国外紫花苜蓿种质资源表型性状与品质多样性分析[J]. 植物遗传资源学报, 2018, 19(1):103−111. Wu X M, Guo P, Chi H W, et al. Diversity analysis of phenotypic traits and quality characteristics of alfalfa (Medicago sativa) introducted from abroad germplasm resources[J]. Journal of Plant Genetic Resources, 2018, 19(1): 103−111.
[22] 鲁丹丹, 徐卫华, 孟庆新, 等. 单叶刺槐半同胞子代苗期性状变异分析[J]. 河北农业大学学报, 2018, 41(2):36−41,48. Lu D D, Xu W H, Meng Q X, et al. Analysis of seedling traits variation of half sib progenies of Robinia pseudoacacia f. unifolia[J]. Journal of Agricultural University of Hebei, 2018, 41(2): 36−41,48.
[23] 赵孟良, 王丽慧, 任延靖, 等. 257 份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5):712−724. doi: 10.3724/SP.J.1006.2020.94098 Zhao M L, Wang L H, Ren Y J, et al. Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions[J]. Acta Agronomica Sinica, 2020, 46(5): 712−724. doi: 10.3724/SP.J.1006.2020.94098
[24] 袁东升, 王晓敏, 赵宇飞, 等. 100份番茄种质资源表型性状的遗传多样性分析[J]. 西北农业学报, 2019, 28(4):594−601. doi: 10.7606/j.issn.1004-1389.2019.04.012 Yuan D S, Wang X M, Zhao Y F, et al. Genetic diversity analysis of 100 tomato germplasm resources based on phenotypic traits[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(4): 594−601. doi: 10.7606/j.issn.1004-1389.2019.04.012
[25] 王丽宏, 李会彬, 孙鑫博, 等. 狼尾草主要表型性状的主成分和聚类分析[J]. 河北农业大学学报, 2019, 42(2):91−94,109. Wang L H, Li H B, Sun X B, et al. Principal component and cluster analysis on the phenotypic traits of Pennisetum alopecuroides[J]. Journal of Agricultural University of Hebei, 2019, 42(2): 91−94,109.
[26] 胡安华, 窦万福, 祁静静, 等. 柚类种质资源表型多样性分析及综合评价[J]. 分子植物育种, 2020, 18(2):650−664. Hu A H, Dou W F, Qi J J, et al. Phenotypic diversity analysis and comprehensive evaluation of pomelo germplasms[J]. Molecular Plant Breeding, 2020, 18(2): 650−664.
[27] 李钰婷, 安美忱, 张兴雷, 等. 西瓜茎叶表型性状的多样性分析[J]. 山西农业科学, 2017, 45(7):1061−1065. doi: 10.3969/j.issn.1002-2481.2017.07.04 Li Y T, An M C, Zhang X L, et al. Analysis on the genetic diversity of stem and leaf phenotypic traits in watermelon germplasm resources[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(7): 1061−1065. doi: 10.3969/j.issn.1002-2481.2017.07.04
[28] 蔡羽, 杨平, 冯宗云. 大麦表型多样性分析及优异饲草种质资源筛选[J]. 植物遗传资源学报, 2019, 20(4):920−931. Cai Y, Yang P, Feng Z Y. Characterization of phenotypic variation in cultivated barley provided elite genetic germplasm with potential breeding for silage barley[J]. Journal of Plant Genetic Resources, 2019, 20(4): 920−931.
[29] 冯源恒, 李火根, 杨章旗, 等. 广西马尾松三个优良种源的遗传多样性及生长性状变异分析[J]. 南京林业大学学报(自然科学版), 2019, 43(6):67−72. Feng Y H, Li H G, Yang Z Q, et al. Analysis of genetic diversity and variation of growth traits of three superior provenances of Pinus massoniana (masson pine) in Guangxi[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(6): 67−72.
[30] 张国君. 饲料型刺槐优良无性系选育及其栽培利用研究[D]. 北京: 北京林业大学, 2010. Zhang G J. Selection of superior clones for fodder and cultivation and utilization in Robinia pseudoacacia[D]. Beijing: Beijing Forestry University, 2010.
[31] 付宝春, 薄伟. 玉簪抗旱性隶属函数及主成分分析[J]. 草地学报, 2014, 22(6):1324−1330. Fu B C, Bo W. Analyses of the subordinate function and the principal components of hosta drought resistance[J]. Acta Agrectir Sinica, 2014, 22(6): 1324−1330.
[32] 王莺, 王静, 姚玉璧, 等. 基于主成分分析的中国南方干旱脆弱性评价[J]. 生态环境学报, 2014, 23(12):1897−1904. doi: 10.3969/j.issn.1674-5906.2014.12.003 Wang Y, Wang J, Yao Y B, et al. Evaluation of drought vulnerability in southern China based on principal component analysis[J]. Ecology and Environment Sciences, 2014, 23(12): 1897−1904. doi: 10.3969/j.issn.1674-5906.2014.12.003
[33] 卫平洋, 裘实, 唐健, 等. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(4):571−585. doi: 10.3724/SP.J.1006.2020.92044 Wei P Y, Qiu S, Tang J, et al. Screening and characterization of high-quality and high-yield japonica rice va-rieties in Yanhuai region of Anhui Province[J]. Acta Agronomica Sinica, 2020, 46(4): 571−585. doi: 10.3724/SP.J.1006.2020.92044
[34] 徐秀琴, 杨敏生. 刺槐资源的利用现状[J]. 河北林业科技, 2006(增刊1):54−57. Xu X Q, Yang M S. The status of utilization of Robinia pseudoacacia resources[J]. The Journal of Hebei Forestry Science and Technology, 2006(Suppl.1): 54−57.
[35] 张国君, 张士权, 孙宇涵, 等. 刺槐优良无性系饲料特性区域化试验初报[J]. 北京林业大学学报, 2013, 35(5):8−14. Zhang G J, Zhang S Q, Sun Y H, et al. Regional trial of superior clones for fodder in Robinia pseudoacacia[J]. Journal of Beijing Forestry University, 2013, 35(5): 8−14.
-
期刊类型引用(11)
1. 赵熙来,周正,葛锐,罗伟豪,马旭彤,蒋慧,苏华维. 残次香梨与乳酸菌组合对四翅滨藜青贮的影响. 中国饲料. 2024(17): 155-161 . 百度学术
2. 张衡锋,杨绮,韦庆翠,张焕朝. 盐胁迫对10个品种紫薇的影响及其耐盐性综合评价. 东北林业大学学报. 2023(09): 34-40 . 百度学术
3. 李雨欣,罗秀丽,张婷婷,康宇乾,王鹏,江行玉,周扬. 盐胁迫下海马齿生理指标变化及相关基因表达分析. 农业生物技术学报. 2022(07): 1279-1289 . 百度学术
4. 刘鹤莹,张嫚,翟中葳,杨鹏,支苏丽,沈仕洲,张克强. 大薸对奶厅废水主要污染物的去除效果研究. 农业环境科学学报. 2022(11): 2525-2538 . 百度学术
5. 王涛,蒙仲举,张佳鹏,雷虹娟,张格. NaCl胁迫对紫穗槐幼苗生长及生理特性的影响. 西北林学院学报. 2021(01): 25-30 . 百度学术
6. 刘学良,姚俊修,刘翠兰,李善文,任飞,李庆华,吴海涛,翟红莲,吴德军,邢世岩,高红萍. 7个接骨木无性系苗木对盐胁迫的生理响应与评价. 中南林业科技大学学报. 2021(01): 37-44+79 . 百度学术
7. 鲁俊倩,武舒,钟姗辰,张伟溪,苏晓华,张冰玉. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析. 北京林业大学学报. 2021(02): 46-53 . 本站查看
8. 丁丁,王红宝,郑伶杰,左永梅,韩民利,吴新海,郭艳超. 不同品种茶菊对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报. 2021(03): 692-702 . 百度学术
9. 赵佳伟,李清亚,路斌,李艳,朱玉菲,栗浩,路丙社. 不同品种北美豆梨对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报. 2019(01): 23-31 . 百度学术
10. 邹晓君,列志旸,薛立. NaCl胁迫对4种园林植物养分含量和贮量的影响. 华南农业大学学报. 2018(06): 77-84 . 百度学术
11. 杨传宝,孙超,李善文,姚俊修,刘敬国,矫兴杰. 白杨派无性系苗期耐盐性综合评价及筛选. 北京林业大学学报. 2017(10): 24-32 . 本站查看
其他类型引用(5)