• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

板栗‘燕山早丰’与‘燕晶’正反交后代果实性状的遗传倾向研究

刘宁伟, 王璐, 张智勇, 张树航, 张卿, 王广鹏, 秦岭, 曹庆芹

刘宁伟, 王璐, 张智勇, 张树航, 张卿, 王广鹏, 秦岭, 曹庆芹. 板栗‘燕山早丰’与‘燕晶’正反交后代果实性状的遗传倾向研究[J]. 北京林业大学学报, 2021, 43(5): 75-85. DOI: 10.12171/j.1000-1522.20200312
引用本文: 刘宁伟, 王璐, 张智勇, 张树航, 张卿, 王广鹏, 秦岭, 曹庆芹. 板栗‘燕山早丰’与‘燕晶’正反交后代果实性状的遗传倾向研究[J]. 北京林业大学学报, 2021, 43(5): 75-85. DOI: 10.12171/j.1000-1522.20200312
Liu Ningwei, Wang Lu, Zhang Zhiyong, Zhang Shuhang, Zhang Qing, Wang Guangpeng, Qin Ling, Cao Qingqin. Analysis of inherited tendency of fruit characteristics in F1 group of reciprocal crossing between ‘Yanshanzaofeng’ and ‘Yanjing’ in Castanea mollissima[J]. Journal of Beijing Forestry University, 2021, 43(5): 75-85. DOI: 10.12171/j.1000-1522.20200312
Citation: Liu Ningwei, Wang Lu, Zhang Zhiyong, Zhang Shuhang, Zhang Qing, Wang Guangpeng, Qin Ling, Cao Qingqin. Analysis of inherited tendency of fruit characteristics in F1 group of reciprocal crossing between ‘Yanshanzaofeng’ and ‘Yanjing’ in Castanea mollissima[J]. Journal of Beijing Forestry University, 2021, 43(5): 75-85. DOI: 10.12171/j.1000-1522.20200312

板栗‘燕山早丰’与‘燕晶’正反交后代果实性状的遗传倾向研究

基金项目: 北京市科协“金桥工程种子资金”(C202042),河北省高水平人才团队建设专项(205A6801D)
详细信息
    作者简介:

    刘宁伟。主要研究方向:果树发育生物学。Email:603594532@qq.com 地址:102206北京市昌平区回龙观镇北农路7号北京农学院植物科学技术学院

    责任作者:

    张卿,博士,副教授。主要研究方向:板栗种质资源创新与利用。Email:zhangqing@bua.edu.cn  地址:同上

  • 中图分类号: S722.8

Analysis of inherited tendency of fruit characteristics in F1 group of reciprocal crossing between ‘Yanshanzaofeng’ and ‘Yanjing’ in Castanea mollissima

  • 摘要:
      目的  研究板栗杂交后代果实性状的遗传倾向和杂交后代的遗传差异,提高板栗良种繁育效率。
      方法  以‘燕山早丰’ × ‘燕晶’为亲本杂交产生259个F1个体为试验材料,对2016年和2017年板栗坚果性状、栗蓬性状、直链淀粉含量、支链淀粉含量、总淀粉含量和可溶性糖含量等13个性状进行测量,并进行遗传倾向研究。
      结果  坚果相关性状的研究表明:2016年和2017年的单粒质量、坚果厚、坚果高和坚果宽等性状呈正态分布趋势,且后代平均值均大于亲中值,说明存在加性效应。连续两年正反交后代单粒重性状变异系数在18.50% ~ 20.19%,后代广泛分离,具有较高的遗传多样性,有可能选育出单粒重较大的板栗品种。坚果宽、坚果厚和坚果高等性状变异系数均小于20%,遗传传递力在98.54% ~ 106.55%之间,说明坚果性状受环境影响较小。通过栗蓬相关性状的研究表明:连续两年正反交后代栗蓬总重性状平均值高于亲中值,正反交变异系数均大于20%,遗传传递力在112.00% ~ 117.44%之间,能够稳定遗传,受环境影响较小。连续两年正反交后代栗蓬宽性状的超高亲率分别达到37.50%和23.96%,遗传传递力分别为112.50%和113.93%。2016年刺束长短正反交后代和2017年正交后代平均值小于亲中值,遗传传递力为90.25%、90.83%和93.66%,2016年超低亲率分别为27.08%和18.90%,刺束长短性状趋于变短。通过果实品质相关的研究表明:连续两年正反交后代淀粉相关性状变异系数的范围为7.82% ~ 17.66%,支链淀粉含量的遗传传递力在101.11% ~ 108.22%之间,2016年正反交后代超高亲率分别为34.38%和30.09%,均高于2017年,趋于支链淀粉含量增多。相比于2017年,2016年正反交后代可溶性糖含量遗传传递力较低,分别为64.10%和59.94%,说明遗传不稳定,受环境影响大。
      结论  通过对坚果相关性状和果实品质性状遗传倾向和分离特点的研究得出,坚果相关的性状能够稳定遗传,果实品质性状遗传不稳定,受环境影响较大。该研究为今后板栗杂交育种后代的筛选和目标性状的预测提供了参考依据。
    Abstract:
      Objective  This paper aims to improve the breeding efficiency of chestnut varieties by studying the genetic tendency and genetic differences of chestnut hybrid offspring.
      Method  Using ‘Yanshanzaofeng’ and ‘Yanjing’ as the parental crosses, 259 F1 individuals were produced as test materials. 13 traits of chestnut were measured in 2016 and 2017, including nut-related traits, bur-related traits, amylose content, amylopectin content, total starch content, and soluble sugar content, and the genetic tendency research was conducted.
      Result  Research on nut-related traits showed that the traits such as single nut mass, nut thickness, nut height and nut width showed a normal distribution trend, and the average value of offsprings was greater than the mid-parent value, indicating an additive effect in 2016 and 2017. The coefficient of variation of the single-nut mass traits of the offsprings of reciprocal crosses for two consecutive years was 18.5%−20.19%. The offsprings were widely separated and had high genetic diversity. It is possible to breed chestnut varieties with larger single-nut mass. The coefficient of variation of nut width, thickness and height traits were all less than 20%, and genetic transmitting ability was between 98.54%−106.55%, indicating that nut traits were less affected by the environment. The research on the bur-related traits showed that the average value of the bur mass of the progeny of reciprocal crosses was higher than mid-parent value for two consecutive years, the coefficient of variation of the reciprocal crosses was greater than 20%, and the genetic transmitting ability was between 112.0%−117.44%. It can be inherited stably and was less affected by the environment. For two consecutive years, the ultra-high parent rate of the bur width in the offsprings of reciprocal crosses reached 37.50% and 23.96%, and the genetic transmitting ability was 112.50% and 113.93%, respectively. In 2016, the average value of the progeny and the orthogonal progeny in 2017 of the prickle length were less than mid-parent value, and the genetic transmitting ability was 90.25%, 90.83% and 93.66%. The ultra-low parent rate in 2016 was 27.08% and 18.9%, respectively. Prickle length tend to become shorter. Research on fruit quality-related traits showed that the range of the coefficient of variation of starch-related traits in the offsprings of reciprocal crosses for two consecutive years was 7.82%−17.66%, and the genetic transmitting ability of amylopectin content was between 101.11% and 108.22%. The ultra-high affinity rate of the offspring of reciprocal crosses in 2016 was higher than that in 2017, which were 34.38% and 30.09%, respectively, tending to increase the content of amylopectin. Compared with 2017, the genetic transmitting ability of soluble sugar content in the offspring of reciprocal crosses in 2016 was lower, being 64.1% and 59.94%, respectively, indicating genetic instability and greater environmental impact.
      Conclusion  Through the study of the genetic tendency and segregation characteristics of these traits, it is concluded that nut-related traits can be inherited stably, and fruit quality traits are genetically unstable and are greatly affected by the environment. This research provides reference for the screening of the offspring of chestnut cross breeding and the prediction of target traits in the future.
  • 图  1   ‘燕山早丰’ × ‘燕晶’(A ~ D)和‘燕晶’ × ‘燕山早丰’(E ~ H)杂交后代坚果性状分布

    Figure  1.   Frequency distribution of fruit traits in the hybrids of ‘Yanshanzaofeng’ × ‘Yanjing’ (A−D) and ‘Yanjing’ × ‘Yanshanzaofeng’ (E−H)

    图  2   ‘燕山早丰’ × ‘燕晶’(A ~ E)和‘燕晶’ × ‘燕山早丰’(F ~ J)杂交后代栗蓬性状分布

    Figure  2.   Frequency distribution of bur traits in the hybrids of ‘Yanshanzaofeng’ × ‘Yanjing’ (A−E) and ‘Yanjing’ × ‘Yanshanzaofeng’ (F−J)

    图  3   ‘燕山早丰’ × ‘燕晶’(A ~ C)和‘燕晶’ × ‘燕山早丰’(D ~ F)杂交后代支链淀粉含量、直链淀粉含量和总淀粉含量的分布

    Figure  3.   Frequency distribution of content of amylopection, amylose and total starch in the hybrids of ‘Yanshanzaofeng’ × ‘Yanjing’ (A−C) and ‘Yanjing’ × ‘Yanshanzaofeng’ (D−F)

    图  4   ‘燕山早丰’ × ‘燕晶’(A)和‘燕晶’ × ‘燕山早丰’(B)杂交后代可溶性糖含量分布

    Figure  4.   Frequency distribution of content of soluble sugar in the hybrids of ‘Yanshanzaofeng’ × ‘Yanjing’ (A) and ‘Yanjing’ × ‘Yanshanzaofeng’ (B)

    表  1   ‘燕山早丰’和‘燕晶’正反交后代坚果性状的遗传特点

    Table  1   Nut characteristics of crossing progeny in ‘Yanshanzaofeng’ and ‘Yanjing’

    年份
    Year
    性状
    Trait
    亲本
    Parent
    母本
    Female parent
    父本
    Male parent
    亲中值
    Mid-parent
    value
    (MP)
    子代平均值
    Progeny
    average
    value
    变异系数
    Coefficient
    of variation
    (CV)/%
    遗传传递力
    Genetic
    transmitting
    ability
    (Ta)/%
    优势率
    Heterotic
    rate
    (Ha)/%
    超高亲率
    Higher
    transgressive
    rate than parent/%
    超低亲率
    Lower
    transgressive
    rate than parent/%
    2016 单粒质量
    Single nut mass/g
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    7.61 10.92 9.27 9.54 ± 1.96 20.50 102.99 2.99 0.00 0.50
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    10.92 7.61 9.27 9.33 ± 1.88 20.15 100.62 0.62 0.11 0.11
    坚果宽
    Nut width/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    27.45 31.60 29.52 29.09 ± 2.57 8.85 98.54 −1.46 0.00 0.12
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    31.60 27.45 29.52 29.57 ± 2.84 9.62 100.15 0.15 0.00 0.50
    坚果厚
    Nut thickness/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    18.39 19.96 19.18 19.52 ± 2.18 11.15 101.79 1.79 0.00 0.36
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    19.96 18.39 19.18 19.78 ± 2.12 13.15 103.78 3.78 0.00 0.35
    坚果高
    Nut height/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    22.28 26.84 24.56 25.00 ± 1.78 7.13 101.78 1.78 0.00 1.02
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    26.84 22.28 24.56 24.84 ± 1.57 6.31 101.11 1.11 0.00 0.37
    2017 单粒质量
    Single nut mass/g
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    6.77 10.56 8.66 9.22 ± 1.71 18.52 106.46 6.46 1.13 0.00
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    10.56 6.77 8.66 9.23 ± 1.83 19.85 106.55 6.55 1.87 0.56
    坚果宽
    Nut width/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    27.37 31.89 29.63 29.54 ± 2.36 7.99 99.69 −0.31 0.00 0.19
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    31.89 27.37 29.63 29.71 ± 2.55 8.57 100.27 0.27 0.00 0.19
    坚果厚
    Nut thickness/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    17.06 20.50 18.78 19.37 ± 1.80 9.27 103.16 3.16 0.19 0.00
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    20.50 17.06 18.78 19.49 ± 2.05 10.52 106.33 6.33 0.19 0.56
    坚果高
    Nut height/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    21.98 25.98 23.98 25.08 ± 1.58 6.32 104.56 4.56 0.19 0.00
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    25.98 21.98 23.98 24.79 ± 1.60 6.44 100.91 0.91 0.56 0.19
    下载: 导出CSV

    表  2   ‘燕山早丰’和‘燕晶’正反交后代栗蓬性状的遗传特点

    Table  2   Genetic characteristics of bur traits of crossing progeny in ‘Yanshanzaofeng’ and ‘Yanjing’

    年份
    Year
    性状
    Trait
    亲本
    Parent
    母本
    Female parent
    父本
    Male parent
    亲中值
    MP
    子代平均值
    Progeny average value
    变异系数
    CV/%
    遗传
    传递力
    Ta/%
    优势率
    Ha/%
    超高亲率
    Higher
    transgressive
    rate than
    parent/%
    超低亲率
    Lower
    transgressive
    rate than
    parent/%
    2016 栗蓬总质量
    Bur total mass/g
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    37.40 72.24 54.82 63.44 ± 13.72 21.63 115.74 15.74 16.49 1.03
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    72.24 37.40 54.82 65.44 ± 16.42 25.89 117.44 17.44 9.76 2.44
    栗蓬宽
    Bur width/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    53.23 60.40 56.82 63.92 ± 8.72 13.64 112.50 12.50 37.50 8.33
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    60.40 53.23 56.82 62.85 ± 9.90 15.75 110.63 10.63 26.83 4.88
    栗蓬高
    Bur height/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    50.66 44.54 47.60 53.36 ± 7.21 32.26 112.10 12.10 32.29 8.33
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    44.54 50.66 47.60 51.45 ± 8.55 16.61 108.10 8.10 20.73 6.71
    栗蓬厚
    Bur thickness/
    mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    49.14 42.66 45.90 47.10 ± 4.59 9.75 102.62 2.62 19.79 9.38
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    42.66 49.14 45.90 47.93 ± 5.45 11.36 104.42 4.42 18.29 6.71
    刺束长度
    Prickle length/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    18.01 14.22 16.12 14.54 ± 2.60 17.85 90.25 −9.75 4.17 27.08
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    14.22 18.01 16.12 14.64 ± 2.30 15.69 90.83 −9.17 4.27 18.90
    2017 栗蓬总质量
    Bur total mass/g
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    57.47 73.88 65.67 73.61 ± 16.63 22.60 112.08 12.08 18.75 6.25
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    73.88 57.47 65.67 75.36 ± 19.85 26.34 114.75 14.75 15.85 6.10
    栗蓬宽
    Bur width/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    51.20 61.43 56.31 64.15 ± 9.86 15.37 113.93 13.93 23.96 2.08
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    61.43 51.20 56.31 62.26 ± 9.26 14.88 110.56 10.56 19.51 3.66
    栗蓬高
    Bur height/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    51.11 42.54 46.83 50.53 ± 6.02 11.91 107.90 7.90 17.71 4.17
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    42.54 51.11 46.83 50.20 ± 7.11 14.17 107.20 7.20 13.41 4.27
    栗蓬厚
    Bur thickness/
    mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    44.89 48.85 46.87 47.75 ± 3.40 7.12 101.88 1.88 14.58 8.33
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    48.85 44.89 46.87 50.01 ± 8.06 16.13 106.70 6.70 15.24 6.71
    刺束长度
    Prickle length/mm
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    16.06 9.73 12.90 12.08 ± 2.16 17.86 93.66 −6.34 1.04 9.38
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    9.73 16.06 12.90 13.54 ± 2.38 17.55 104.95 4.95 5.49 4.88
    下载: 导出CSV

    表  3   ‘燕山早丰’与‘燕晶’正反交后代支链淀粉含量、直链淀粉含量和总淀粉含量的遗传特点

    Table  3   Contents of amylopection, amylose and total starch of crossing progeny in ‘Yanshanzaofeng’ and ‘Yanjing’

    年份
    Year
    性状
    Trait
    亲本
    Parent
    母本
    Female parent
    父本
    Male parent
    MP子代平均值
    Progeny average value
    CV/%Ta/%Ha/%超高亲率
    Higher
    transgressive
    rate than
    parent/%
    超低亲率
    Lower
    transgressive
    rate than
    parent/%
    2016 支链淀粉含量
    Amylopection content/%
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    0.464 9 0.433 9 0.449 4 0.480 7 ± 0.066 1 13.75 106.96 6.96 34.38 12.50
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    0.433 9 0.464 9 0.449 4 0.486 3 ± 0.057 9 11.90 108.22 8.22 30.49 8.54
    直链淀粉含量
    Amylose content/%
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    0.200 7 0.173 7 0.187 2 0.179 7 ± 0.031 7 17.66 96.02 −3.98 13.54 18.75
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    0.173 7 0.200 7 0.187 2 0.175 3 ± 0.030 7 17.51 93.64 −6.36 7.32 22.56
    总淀粉含量
    Total starch content/%
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    0.665 6 0.607 6 0.636 6 0.660 4 ± 0.064 7 9.79 103.74 3.74 25.00 8.33
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    0.607 6 0.665 6 0.636 6 0.661 6 ± 0.066 9 10.11 103.93 3.93 21.34 8.54
    2017 支链淀粉含量
    Amylopection content/%
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    0.524 1 0.494 4 0.509 3 0.514 9 ± 0.049 9 9.69 101.11 1.11 22.92 21.88
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    0.494 4 0.524 1 0.509 3 0.538 8 ± 0.057 1 10.59 105.80 5.80 16.46 5.49
    直链淀粉含量
    Amylose content/%
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    0.203 4 0.179 6 0.191 5 0.162 5 ± 0.022 5 13.83 84.87 −15.13 1.04 39.58
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    0.179 6 0.203 4 0.191 5 0.161 7 ± 0.018 9 11.67 84.45 −15.55 0.61 20.12
    总淀粉含量
    Total starch content/%
    ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    0.727 5 0.674 0 0.700 8 0.677 4 ± 0.053 0 7.82 96.67 −3.33 8.33 25.00
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    0.674 0 0.727 5 0.700 8 0.700 5 ± 0.057 6 8.23 99.97 −0.03 7.93 6.71
    下载: 导出CSV

    表  4   ‘燕山早丰’与‘燕晶’正反交后代可溶性糖含量的遗传特点

    Table  4   Genetic characteristics of soluble sugar contents of crossing progeny in ‘Yanshanzaofeng’ and ‘Yanjing’

    年份
    Year
    亲本
    Parent
    母本
    Female
    parent
    父本
    Male
    parent
    MP子代平均值
    Progeny average value
    CV/%Ta/%Ha/%超高亲率
    Higher
    transgressive
    rate than
    parent/%
    超低亲率
    Lower
    transgressive
    rate than
    parent/%
    2016 ‘早丰’ב燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    0.229 1 0.205 4 0.217 3 0.139 3 ± 0.033 7 24.20 64.10 −35.90 1.04 51.04
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    0.205 4 0.229 1 0.217 3 0.130 2 ± 0.022 6 17.37 59.94 −40.06 0.00 39.02
    2017 ‘燕山早丰’ × ‘燕晶’
    ‘Yanshanzaofeng’ × ‘Yanjing’
    0.135 4 0.112 8 0.124 1 0.131 6 ± 0.025 6 19.46 106.03 6.03 27.08 15.63
    ‘燕晶’ × ‘燕山早丰’
    ‘Yanjing’ × ‘Yanshanzaofeng’
    0.112 8 0.135 4 0.124 1 0.144 4 ± 0.047 4 32.85 116.34 16.34 10.37 7.93
    下载: 导出CSV
  • [1] 张宇和, 柳鎏, 梁维坚, 等. 中国果树志板栗榛子卷[M]. 北京: 中国林业出版社, 2005: 63−68.

    Zhang Y H, Liu L, Liang W J, et al. The Chinese fruit tree Chinese chestnut hazelnut roll[M]. Beijing: China Forestry Publishing House, 2005: 63−68

    [2] 陈在新, 雷泽湘, 刘会宁, 等. 板栗营养成分分析及其品质的模糊综合评判[J]. 果树学报, 2000(4):286−289. doi: 10.3969/j.issn.1009-9980.2000.04.011

    Chen Z X, Lei Z X, Liu H N, et al. Natrient ingredients analysis on Chinese chestnut and fuzzy comprehensive evaluation[J]. Journal of Fruit Science, 2000(4): 286−289. doi: 10.3969/j.issn.1009-9980.2000.04.011

    [3] 柳鎏, 孙醉君. 中国重要经济树种[M]. 南京: 江苏科学技术出版社, 1986.

    Liu L, Sun Z J. Important economic tree species in China[M]. Nanjing: Jiangsu Science and Technology Press, 1986.

    [4]

    Barakat A, Diloreto D S, Zhang Y, et al. Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection[J]. BMC Plant Biology, 2009, 9(1): 51. doi: 10.1186/1471-2229-9-51

    [5]

    Prospero S, Rigling D. Invasion genetics of the chestnut blight fungus Cryphonectria parasitica in Switzerland[J]. Phytopathology, 2012, 102(1): 73−81. doi: 10.1094/PHYTO-02-11-0055

    [6]

    Huang H, Dane F, Norton J D, et al. Seguin chestnut: a precocious, dwarf chestnut species for chestnut breeding programs and food source for wildlife[J]. Northern Nut Growers Association, 1995(86): 121−123.

    [7] 徐豆, 付鸿博, 杜灵敏, 等. 欧李正反交F1果实性状的遗传变异分析[J]. 山西农业科学, 2020, 48(5):696−699, 714. doi: 10.3969/j.issn.1002-2481.2020.05.10

    Xu D, Fu H B, Du L M, et al. Genetic variation analysis of fruit traits in positive and negative cross F1 generation of Chinese dwarf cherry[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(5): 696−699, 714. doi: 10.3969/j.issn.1002-2481.2020.05.10

    [8] 刘政海, 董志刚, 李晓梅, 等. ‘威代尔’与‘霞多丽’葡萄杂交F1代果实性状遗传倾向分析[J]. 果树学报, 2020, 37(8):1122−1131. doi: 10.13925/j.cnki.gsxb.20200125

    Liu Z H, Dong Z G, Li X M, et al. Inheritance trend of fruit traits in F1 progenies of ‘Vidal’ and ‘Chardonnay’ of grape[J]. Journal of Fruit Science, 2020, 37(8): 1122−1131. doi: 10.13925/j.cnki.gsxb.20200125

    [9] 武晓红, 景晨娟, 陈雪峰, 等. ‘金太阳’与‘串枝红’杏正反交后代果实性状的遗传倾向研究[J]. 江西农业学报, 2018, 30(10):13−18. doi: 10.19386/j.cnki.jxnyxb.2018.10.03

    Wu X H, Jing C J, Chen X F, et al. Studies on genetic tendency of fruit characters in F1 generation of reciprocal crosses between apricot cultivars ‘Jintaiyang’ and ‘Chuanzhihong’[J]. Acta Agriculturae Jiangxi, 2018, 30(10): 13−18. doi: 10.19386/j.cnki.jxnyxb.2018.10.03

    [10] 张琦, 姜喜, 段黄金, 等. ‘库尔勒香梨’杂交后代果实石细胞特性与遗传倾向研究[J]. 果树学报, 2018, 35(增刊1):89−96. doi: 10.13925/j.cnki.gsxb.2018.S.14

    Zhang Q, Jiang X, Duang H J, et al. Studies on the characteristics and genetic tendency of the stone cell in hybrid offspring of ‘Kuerlexiangli’ pear[J]. Journal of Fruit Science, 2018, 35(Suppl.1): 89−96. doi: 10.13925/j.cnki.gsxb.2018.S.14

    [11] 刘月, 刘海楠, 邓宇, 等. 越橘正反交后代部分性状的遗传倾向[J]. 吉林农业大学学报, 2019, 41(1):35−41. doi: 10.13327/j.jjlau.2018.4101

    Liu Y, Liu H N, Deng Y, et al. Genetic predisposition of some traits of blueberry in hybrid progemes[J]. Journal of Jilin Agricultural University, 2019, 41(1): 35−41. doi: 10.13327/j.jjlau.2018.4101

    [12] 郭峰, 李钢, 王惠丽, 等. 浙江省两种典型落叶经济林生态恢复技术[J]. 浙江水利科技, 2018, 46(1):8−11.

    Guo F, Li G, Wang H L, et al. Ecological restoration technologies of two typical deciduous economic forests in Zhejiang Province[J]. Zhejiang Hydrotechnics, 2018, 46(1): 8−11.

    [13] 王广鹏, 孔德军, 刘庆香, 等. 板栗杂交后代3个重要经济性状的遗传特点[J]. 华北农学报, 2009, 24(B12):102−104.

    Wang G P, Kong D J, Liu Q X, et al. Inheritance characters of three economic characteristics of crossed chestnut progeny[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(B12): 102−104.

    [14] 刘国彬, 兰彦平, 姚研武, 等. 板栗杂交后代坚果表型性状的遗传变异[J]. 华北农学报, 2011(5):117−121. doi: 10.7668/hbnxb.2011.05.024

    Liu G B, Lan Y P, Yao Y W, et al. Genetic variation of nut morphological traits in crossed chestnut progenies[J]. Acta Agriculturae Boreali-Sinica, 2011(5): 117−121. doi: 10.7668/hbnxb.2011.05.024

    [15] 纪飞扬, 张惠真, 王广鹏, 等. 板栗正反交后代坚果性状遗传倾向研究[J]. 北京农学院学报, 2018, 33(4):18−22. doi: 10.13473/j.cnki.issn.1002-3186.2018.0403

    Ji F Y, Zhang H Z, Wang G P, et al. Studies on genetic tendency of nut characters in the progenies of reciprocal crosses in Castanea mollissima[J]. Journal of Beijing University of Agriculture, 2018, 33(4): 18−22. doi: 10.13473/j.cnki.issn.1002-3186.2018.0403

    [16] 孟亚楠. 核桃坚果性状遗传特性与优系选择研究[D]. 泰安: 山东农业大学, 2010.

    Meng Y N. Study on inheritance of nuts and elite trees selection of walnut (Juglans regia L.)[D]. Taian: Shandong Agricultural University, 2010.

    [17] 赵福洞. ‘绿岭’核桃杂交后代果实性状遗传及优株评价研究[D]. 保定: 河北农业大学, 2014.

    Zhao F D. Study on the fruit traits genetics of hybrid offsprings and the evaluation of superior trees of ‘Lvling’ walnut[D]. Baoding: Hebei Agricultural University, 2014.

    [18] 刘庆忠. 板栗种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006.

    Liu Q Z. Descriptors and data standard for chestnut (Castanea mollissima BL.)[M]. Beijing: China Agricultural Science and Technology Press, 2006.

    [19] 马艳弘, 钟小仙, 乔月芳, 等. 双波长法测定珍珠粟淀粉中直链和支链淀粉的含量[J]. 江苏农业科学, 2016, 44(12):331−334. doi: 10.15889/j.issn.1002-1302.2016.12.103

    Ma Y H, Zhong X X, Qiao Y F, et al. Determination of amylose and amylopectin in pearl millet starch by dual wavelength method[J]. Jiangsu Agricultural Sciences, 2016, 44(12): 331−334. doi: 10.15889/j.issn.1002-1302.2016.12.103

    [20] 王广鹏, 刘庆香, 孔德军, 等. 板栗支链淀粉含量的双波长测定方法[J]. 河北农业科学, 2008, 12(1):35−37. doi: 10.3969/j.issn.1088-1631.2008.01.015

    Wang G P, Liu Q X, Kong D J, et al. Determination of amylopectin in Castanea mollissima BL. by dual-wavelength spectrophotometry[J]. Journal of Hebei Agricultural Sciences, 2008, 12(1): 35−37. doi: 10.3969/j.issn.1088-1631.2008.01.015

    [21] 任婧. 番茄果实可溶性糖含量遗传规律的研究及QTL定位[D].哈尔滨: 东北林业大学, 2018.

    Ren J. Tomato soluble sugar content genetic regularity analysis and QTL mapping[D]. Harbin: Northeast Forestry University, 2018.

    [22] 沈德绪. 果树育种学[M]. 北京: 中国农业出版社, 1997.

    Shen D X. Fruit tree genetics[M]. Beijing: China Agricultural Press, 1997.

    [23] 黄武刚, 程丽莉, 周志军, 等. 板栗野生居群遗传多样性研究[J]. 果树学报, 2010, 27(2):227−232.

    Huang W G, Cheng L L, Zhou Z J, et al. SSR analysis on genetic diversity of wild Chinese chestnut populations[J]. Journal of Fruit Science, 2010, 27(2): 227−232.

    [24] 姜凤超, 孙浩元, 杨丽, 等. ‘串枝红’ × ‘骆驼黄’ 杏F1代糖酸性状的遗传变异分析[J]. 果树学报, 2018, 35(6):625−634. doi: 10.13925/j.cnki.gsxb.20170341

    Jiang F C, Sun H Y, Yang L, et al. Analysis of genetic variation of sugar and acid contents in F1 population of apricot derived from ‘Chuanzhihong’ × ‘Luotuohuang’[J]. Journal of Fruit Science, 2018, 35(6): 625−634. doi: 10.13925/j.cnki.gsxb.20170341

    [25]

    Russell B C. Chestnut breeding techniques and results[J]. Journal of Heredity, 1954, 45(3): 201−208. doi: 10.1093/oxfordjournals.jhered.a106474

    [26]

    Ban Y, Mitani N, Sato A, et al. Genetic dissection of quantitative trait loci for berry traits in interspecific hybrid grape (Vitis labruscana × Vitis vinifera)[J]. Euphytica, 2016, 211(3): 295−310. doi: 10.1007/s10681-016-1737-8

    [27]

    Bayazit S. Determination of relationships among kernel percentage and yield characteristics in some turkish walnut genotypes by correlation and path analysis[J]. Journal of Animal & Plantences, 2012, 22(2): 513−517. doi: 10.2754/avb201281010083

    [28] 马玉敏, 陈学森, 何天明, 等. 中国板栗3个野生居群部分表型性状的遗传多样性[J]. 园艺学报, 2008, 35(12):1717−1726.

    Ma Y M, Chen X S, He T M, et al. Genetic diversity of morphological traits in wild populations of Castanea mollissima Blume[J]. Acta Horticulturae Sinica, 2008, 35(12): 1717−1726.

    [29] 江锡兵, 龚榜初, 汤丹, 等. 中国部分板栗品种坚果表型及营养成分遗传变异分析[J]. 西北植物学报, 2013, 33(11):2216−2224. doi: 10.7606/j.issn.1000-4025.2013.11.2216

    Jiang X B, Gong B C, Tang D, et al. Genetic variation of nut phenotype and nutrient of some of Chinese chestnut cultivars[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(11): 2216−2224. doi: 10.7606/j.issn.1000-4025.2013.11.2216

  • 期刊类型引用(6)

    1. 张友谊,李松柏,钟磊. 基于地形因子的震后泥石流降雨阈值分析. 科学技术与工程. 2024(32): 13708-13717 . 百度学术
    2. 曹永强,张若凝,范帅邦. 辽宁省降雨型泥石流环境特征及分类预警. 华北水利水电大学学报(自然科学版). 2022(02): 60-68 . 百度学术
    3. 曹永强,张若凝,李玲慧,路洁,宁月. 辽宁省泥石流与不同时间尺度下降水因子的关系研究. 灾害学. 2021(03): 51-56 . 百度学术
    4. 乔建平. 降雨型滑坡泥石流灾害预警原理及系统结构. 人民长江. 2020(01): 50-55+74 . 百度学术
    5. 胡凯衡,魏丽,刘双,李秀珍. 横断山区泥石流空间格局和激发雨量分异性研究. 地理学报. 2019(11): 2303-2313 . 百度学术
    6. 凌訸,陶蓉,白晓华. 平凉鸭儿沟泥石流形成过程及特征分析. 甘肃水利水电技术. 2017(01): 18-21 . 百度学术

    其他类型引用(3)

图(4)  /  表(4)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  267
  • PDF下载量:  50
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-10-18
  • 修回日期:  2020-11-16
  • 网络出版日期:  2021-04-09
  • 发布日期:  2021-05-26

目录

    /

    返回文章
    返回