Effects of grass mulching-fertilization mode on leaf functional characters and fruit yield as well as quality of Castanea mollissima
-
摘要:目的 合理施肥与地表覆盖是干旱地区板栗高产优质的必要措施,本研究依据河北省迁西县当地实际情况提出一个优化的行间覆草和有机无机肥配施土壤管理模式,并进行效果验证,旨在为其改进和推广提供理论依据。方法 以8年生板栗品种‘燕山早丰’为研究对象,采用裂区试验设计,主处理为行间覆草(GC)和清耕(CT),副处理为4个施肥处理,即单施无机肥(F)、单施有机肥(M)、有机肥与无机肥配施(F + M)和不施肥(CK),于2019年和2020年连续两年研究覆草−施肥模式对板栗叶片功能性状与果实产量品质的影响,运用主成分分析法对各处理28项指标进行综合评价,筛选出最佳土壤管理模式。结果 (1)各施肥处理的新梢长度和粗度、叶面积、百叶干质量、百叶厚以及叶片矿质元素含量均有不同程度增加,且GC(F + M)处理显著高于其他处理。(2)地表覆草和不同施肥处理均可提高叶片叶绿素含量、光合速率和水分利用效率,增量最为明显的是GC(F + M)处理,分别比GC(CK)提高了6.00%、20.13%和44.87%。(3)有机无机肥配施(F + M)对于提高板栗坐果率、出实率、单粒质量和单株产优于单一施肥处理,其中GC(F + M)和CT(F + M)处理的单粒质量分别可达到10.32和9.92 g,较CT(CK)分别提高了26.01%和21.12%。(4)不同覆草−施肥模式处理的单株产量增幅为4.95% ~ 45.21%,GC(F + M)处理的淀粉和可溶性糖含量较CT(CK)处理分别提高了13.04%和36.57%。(5)主成分分析结果表明,GC(F + M)处理综合得分最高,其次为GC(F)处理,然后是CT(F + M)和CT(F)处理,说明有机无机肥配施比单施无机肥更有利于板栗枝条和叶片的生长发育,以及光合性能和果实产量品质的提高。结论 在迁西干旱地区板栗栽培中,地表覆草−有机无机肥配施模式是该地区板栗提质增产的最适土壤管理方式。Abstract:Objective Reasonable fertilization and surface mulching are necessary measures for high yield and quality of Castanea mollissima (Chinese chestnut) in arid areas. This study proposed an optimized soil management model of interrow mulching and combined application of organic and inorganic fertilizers based on the local actual situation in Qianxi County, Hebei Province of northern China, and verified the effect to provide a theoretical basis for its improvement and promotion.Method This experiment took the 8-year-old Chinese chestnut variety Castanea mollissima ‘Yanshanzaofeng’ as the research object, adopted a split-plot design, and the main treatments were inter-row grass covering (GC) and clearing (CT), the secondary treatments were 4 fertilization treatments, single application of inorganic fertilizer (F), single application of organic fertilizer (M), combined application of organic fertilizer and inorganic fertilizer (F + M) and no fertilization (CK). In 2019 and 2020, the effects of grass mulching-fertilization mode on leaf function and fruit yield and quality of Chinese chestnut were studied for two consecutive years. Finally, the principal component analysis (PCA) method was used to comprehensively evaluate the 28 indicators of each treatment, and the best soil management mode was selected.Result The length and roughness of shoots, leaf area, dry quality of louver, thickness of louver and mineral element content of leaf increased to different degrees in each fertilization treatment, and the GC(F + M) treatment was significantly higher than that of other treatments. The chlorophyll content, photosynthetic rate and water use efficiency of leaves could be improved by surface covering grass and different fertilization treatments. The most obvious increment was GC(F + M) treatment, which was 6.00%, 20.13% and 44.87% higher than GC(CK), respectively. The combined application of organic and inorganic fertilizer (F + M) was better than single fertilization in improving fruit setting rate, fruit yield rate, single grain quality and single plant yield of Chinese chestnut. Among them, The single grain quality of GC(F + M) and CT(F + M) treatments could reach 10.32 and 9.92 g, respectively, which were 26.01% and 21.12% higher than that of CT(CK). The yield per plant increased by 4.95% to 45.21% under different grass mulching-fertilization modes, and the content of starch and soluble sugar in GC(F + M) increased by 13.04% and 36.57%, respectively compared with CT(CK). The result of principal component analysis showed that GC (F + M) treatment had the highest comprehensive score, the second treatment was GC(F) treatment, the third was CT(F + M) and the fourth was CT(F) treatment. It showed that combined application of organic and inorganic fertilizers was more beneficial to the growth and development of Chinese chestnut branches, as well as the improvement of photosynthetic performance and fruit yield and quality than single application of inorganic fertilizer.Conclusion In the cultivation of Chinese chestnut in arid area of Qianxi County, the mulch-organic and inorganic fertilizer combined application model is the most suitable soil management method for improving quality and increasing yield of Chinese chestnut in this area.
-
Keywords:
- Castanea mollissima /
- fertilization /
- grass mulching /
- photosynthetic characteristics /
- yield /
- quality
-
水分和养分胁迫是干旱和半干旱地区经济林高产的主要限制因素。前人研究表明,合理施肥或有效的保墒措施均能提高土壤肥力,促进果树对养分的吸收,改善果实产量品质[1]。地表覆盖是当前干旱地区广泛推行的一种土壤管理方法,可以有效减少表层土壤水分蒸发,降低水分亏缺程度,提高蓄水保墒能力[2-3]。近年来,随着地表覆膜、覆草技术的推行,果园土壤水分状况得到有效改善[4-5]。而施肥是实现果树高产优质的另一重要手段,特别是有机肥和无机肥的合理施用。有研究指出有机肥与无机肥配施可以增加作物对氮素的利用率,提高作物叶绿素含量,增强光合性能[6];施用定量有机肥可明显降低非气孔因素对作物光合作用的限制,显著增强光合性能[7]。杜春燕等[8]发现有机无机肥配施有利于提高叶片养分含量,促进植物矿质元素的吸收和转运,显著提高樱桃(Cerasus pseudocerasus)的单果质量、可溶性糖含量以及产量。而且国内外大量的研究均表明,适当的有机无机肥配施能改善土壤养分状况,提高作物对氮磷钾养分的吸收能力,进而提升产量和改善品质[9-11]。因此,研究干旱地区地表覆盖条件下有机无机肥配施对果园果实产量和品质的影响具有十分重要的生产实践意义。
迁西由于其独特的自然及气候条件,被列为板栗优质产区,但因当地降雨时空分布不均、板栗园多位于山区且滥用化肥、管理粗放等因素,致使土壤贫瘠、供水保肥能力差,板栗产量与品质下降,严重影响出口贸易,降低栗农收入[12-15]。目前已有很多学者研究地表覆盖和施肥相结合对土壤养分和作物生长的影响[16-18],但是对于板栗树种的很多研究只局限于施肥[19]或地表覆盖[20]单一处理,而对于板栗园地表覆草和施肥相结合的研究较少。因此,本研究以河北迁西地区的板栗品种‘燕山早丰’(Castanea mollissima ‘Yanshanzaofeng’)为试材,采用裂区试验设计,连续两年研究行间覆草−施肥模式对旱地板栗园新梢生长、叶片功能性状以及果实产量品质的影响,以期为河北以及我国其他地区板栗园的高产优质提供技术支撑,并且为这一生态环保的土壤管理模式的推广提供理论依据。
1. 材料和方法
1.1 研究区概况
试验地位于河北省迁西县北京林业大学经济林(板栗)育种与栽培试验基地(118°54′E,40°18′N),该地气候属于暖温带大陆性季风气候,日照充足,年平均相对湿度59%,年平均无霜期176 d[21]。试验区板栗园无灌溉条件,自然降水是树体所需水分的唯一来源,2019年和2020年板栗生育期(4—10月)内总降水量分别为668.7和599.5 mm,均属于降水较少年份,其中2019年降水主要集中在7月(221.0 mm)和8月(161.5 mm),而2020年降水主要分布于5月(153.9 mm)、7月(110.6 mm)和8月(143.3 mm)。土壤类型为微酸性、沙壤、褐土,其基本理化性质为:有机质含量10.33 g/kg,碱解氮含量56.07 mg/kg,有效磷含量20.10 mg/kg,速效钾含量128.11 mg/kg,pH为6.78。
1.2 试验材料
选取生长一致、无病虫害的8年生板栗品种‘燕山早丰’作为试验材料,平均树高2.7 m,冠幅为2.3 m × 2.3 m,采用常规修剪措施,修剪时间为每年2月底。
1.3 试验设计
试验于2019年3月开始进行,采用裂区设计,两个主处理为覆草区(GC)和清耕区(CT);副处理为4个施肥处理,具体为单施无机肥(F)、单施有机肥(M)、有机肥与无机肥配施(F + M)、不施肥(CK);每个副处理选择1行10株冠幅相近的板栗树作为一个处理,随机排列,即共8个处理,分别为GC(F)、GC(M)、GC(F + M)、GC(CK)、CT(F)、CT(M)、CT(F + M)和CT(CK),且每处理重复3次,共24个小区,各小区间均设有保护行,其他田间管理措施统一按常规方法进行。试验设计如下图1。
图 1 试验设计图GC. 覆草区;CT. 清耕区;F. 单施无机肥;M. 单施有机肥;F + M. 有机肥与无机肥配施; CK. 不施肥。下同。GC, grass covering area; CT, cleaning tillage area; F, single application of inorganic fertilizer; M, single application of organic fertilizer; F + M, combined application of organic fertilizer and inorganic fertilizer; CK, no fertilization. The same below.Figure 1. Experiment design chart试验覆草属于杂草,是2018年板栗园人工锄草所收集,处于半腐熟状态,均匀覆盖于行间地面,覆盖厚度约10 cm(约12 000 kg/hm2),且于2020年春季补充干杂草至原厚度。供试肥料包括有机肥:鸡粪(55.67%有机质,1.52% N,1.96% P2O5,1.53% K2O),产于石家庄养殖总场;无机肥:施可丰板栗专用复合肥(20% N,10% P2O5,10% K2O),产于施可丰化工股份有限公司,可缓释5个月;过磷酸钙(16% P2O5)产于云南云天化股份有限公司;硫酸钾(50% K2O)产于河北高盛化肥有限公司。所有施肥处理均以等氮量1.123 kg/株为基准计算有机肥和无机肥用量[22],不足的磷和钾用过磷酸钙和硫酸钾补足。采用环状沟施方式,沿树冠投影下方开沟,沟宽30 cm、深30 cm,于每年3月中旬一次性全部施入基肥。
1.4 样品采集与处理
1.4.1 新梢生长量测定
2019年和2020年9月中旬枝条停止生长后,每个处理下选取长势中庸的板栗树10棵,选择树冠外围距地面1.5 m左右高度的发育枝,每株随机选东、西、南、北4个方向共10个发育新梢,用米尺测定自枝基芽鳞痕处至顶芽基部的长度,游标卡尺测定新梢基茎粗度[23]。
1.4.2 叶片采集与指标测定
光合指标于2019年和2020年7月中旬(叶片成熟期)的晴天上午09:00—11:00进行测定,采用美国LI-COR公司生产的Li-6400便携式光合仪进行测量,连续测定3 d。各处理下选择位于结果枝中部且大小基本一致的3个叶片,分别测定其树冠外围东、南、西、北4个方向的光合参数,每个叶片每个方向重复测定3次,测定指标包括净光合速率(Pn)、胞间CO2浓度(Ci)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)[24],采用便携式SPAD-502Plus型手持叶绿素仪测定叶绿素相对含量(SPAD),测定时间和叶片选取方法同光合指标测定一致。
叶片功能性状和养分测定的取样时间同光合指标测定时间一致,每株采集树冠外围东、西、南、北4个方向的叶片各2 ~ 3片,同一处理的重复混合样共100片。擦干叶片上的灰尘,逐个称量鲜质量和百叶质量,用YM-1242叶面仪测定叶面积,游标卡尺测定百叶厚,然后放在105 ℃烘箱中杀青30 min,80 ℃下烘至恒质量,逐个称量叶片干质量,计算干鲜比和比叶质量(SLW)。最后粉碎后过60目筛,混合保存备用。采用浓H2SO4-H2O2消煮法测定叶片全量养分,全氮(N)、全磷(P)采用全自动间断化学分析仪(Smart Chem450)测定,全钾(K)用火焰光度计测定,有机碳(C)含量使用重铬酸钾氧化−外加热法测定[25]。
1.4.3 果实样品采集与测定
在2019年和2020年板栗开花期和结果期统计树上所有雌花数和刺苞数量,成熟期统计空苞数量,计算坐果率和空苞率[23]。果实成熟后,每个处理按东、南、西、北4个方向,每个方向25个刺苞,随机采集共100个刺苞,然后用电子天平分别称量每个刺苞质量和刺苞中所有坚果质量,计算出实率和平均单株产量。最后每个处理下随机称量100个坚果的单粒质量,统计分析不同处理下单粒质量差异。随机选取20个无病虫害的单果,用烘箱105 ℃杀青30 min,80 ℃烘干,粉碎过筛后,进行果实品质的测定。果实内蛋白质、P和K含量测定方法同叶片,可溶性糖采用蒽酮比色法[26]测定,淀粉采用紫外分光光度法测定[27]。
1.5 数据统计与分析
试验数据用Microsoft Excel 2019和Origin 2018进行数据处理和作图分析,采用SPSS25.0软件进行Duncan’s差异显著性分析和独立样本t检验(P < 0.05)。本文所有数据采用2019和2020年的平均值。
2. 结果与分析
2.1 覆草−施肥模式对板栗新梢生长和叶片功能性状的影响
先对GC和CT的不同施肥处理单独进行分析,比较板栗新梢生长量、叶面积、百叶干质量、百叶厚、干鲜比和比叶质量等指标,然后再综合分析各施肥处理在两个主处理区的均值,结果如表1。不同施肥处理下的新梢生长量均表现出增加的趋势,与CT相比,GC能够增加新梢长度的生长量,显著提高新梢基径粗度(P < 0.05)。GC的叶面积、百叶干质量、百叶厚和干鲜比均以F + M处理效果最好,分别比GC(CK)高17.16%、26.75%、10.06%和17.07%;CT的F + M处理与F处理的叶片各项测定指标差异均不显著,但均显著高于CT(CK)。不同处理下比叶质量差异不显著,但是无论GC还是CT,均以F处理最高,分别比GC(CK)和CT(CK)高11.99%和4.30%,其次为F + M处理。
表 1 覆草−施肥模式对板栗新梢生长和叶片功能性状的影响Table 1. Effects of grass mulching-fertilization pattern on Chinese chestnut new shoot growth and leaf functional characteristics处理
Treatment新梢生长量 New shoot growth 叶面积
Leaf
area/cm2百叶干质量
Dry mass of one
hundred leaves/g百叶厚
Thickness of one
hundred leaves/cm干鲜比
Ratio of dry
mass to fresh mass比叶质量
Specific leaf mass (SLW)/(g·cm−2)长度
Length/cm粗度
Thickness/mmGC(F) 58.55 ± 19.93a 11.52 ± 2.05a 134.36 ± 7.78ab 111.56 ± 6.50a 1.81 ± 0.04ab 0.47 ± 0.02ab 84.54 ± 11.83a GC(M) 50.04 ± 3.68a 9.65 ± 1.52b 128.05 ± 5.73ab 95.88 ± 8.15b 1.76 ± 0.05bc 0.42 ± 0.04bc 75.01 ± 7.26ab GC(F + M) 59.91 ± 15.80a 12.34 ± 2.10a 144.86 ± 5.49a 118.03 ± 3.49a 1.86 ± 0.07a 0.48 ± 0.02a 81.60 ± 4.51a GC(CK) 48.50 ± 7.51a 9.13 ± 1.21b 123.64 ± 4.99b 93.12 ± 4.26b 1.69 ± 0.03c 0.41 ± 0.05c 75.49 ± 5.88ab CT(F) 50.78 ± 5.73a 10.71 ± 1.92a 130.54 ± 8.06a 107.17 ± 1.28a 1.78 ± 0.09a 0.46 ± 0.03a 82.38 ± 5.83a CT(M) 49.80 ± 4.99a 9.48 ± 1.35ab 127.09 ± 4.26a 94.41 ± 7.00b 1.73 ± 0.06a 0.42 ± 0.07a 74.45 ± 7.35ab CT(F + M) 50.67 ± 11.51a 9.87 ± 2.34ab 129.25 ± 4.57a 103.06 ± 4.38a 1.76 ± 0.05a 0.43 ± 0.04a 79.84 ± 4.86a CT(CK) 48.00 ± 9.69a 8.61 ± 1.57b 114.88 ± 8.34b 90.12 ± 3.60b 1.62 ± 0.12b 0.39 ± 0.06b 78.98 ± 9.20a GC 54.05 ± 13.71A 10.61 ± 2.15A 132.73 ± 13.95A 104.65 ± 12.01A 1.78 ± 0.08A 0.44 ± 0.04A 79.16 ± 8.33A CT 49.85 ± 8.32A 9.70 ± 1.96B 126.03 ± 8.62B 99.13 ± 8.07B 1.74 ± 0.08A 0.42 ± 0.06A 78.91 ± 7.07A 注:不同小写字母表示主处理相同时不同施肥处理间差异显著(P < 0.05),大写字母表示主处理之间差异显著(P < 0.05)。下同。Notes: different lowercase letters indicate significant difference between varied fertilization modes with the same primary treatment (P < 0.05), while uppercase letters indicate significant difference between the primary treatment (P < 0.05). The same below. 2.2 覆草−施肥模式对板栗叶片矿质元素含量的影响
如表2所示,施肥能够明显提高板栗叶片养分含量,对不同处理的成熟期叶片中的C、N、P、K含量进行差异性分析,发现在不同施肥条件下,虽然GC和CT中的N、P、K含量差异不显著,但是综合分析发现,GC叶片中N、P、K含量分别比CT高1.73%、7.58%和7.19%。当主处理相同时,C、N、P、K含量以及C/N值均在F + M处理下效果最好。
表 2 覆草−施肥模式对板栗叶片矿质元素含量和C/N比值的影响Table 2. Effects of grass mulching-fertilization pattern on mineral element content and C/N ratio of Chinese chestnut leaves处理
Treatment全氮 Total nitrogen
(N)/(g·kg−1)全磷 Total phosphorus
(P)/(g·kg−1)全钾 Total potassium
(K)/(g·kg−1)有机碳 Organic carbon
(C)/(g·kg−1)C/N GC(F) 23.09 ± 0.38ab 2.31 ± 0.07a 11.12 ± 0.28a 462.50 ± 2.12b 20.04 ± 0.25a GC(M) 22.60 ± 0.21bc 2.03 ± 0.06b 9.89 ± 0.42b 436.83 ± 2.45c 19.34 ± 0.28ab GC(F + M) 23.65 ± 0.40a 2.43 ± 0.11a 11.78 ± 0.13a 478.15 ± 3.73a 20.22 ± 0.49a GC(CK) 22.14 ± 0.16b 1.76 ± 0.04c 8.97 ± 0.06c 417.55 ± 3.61d 18.87 ± 0.30b CT(F) 22.77 ± 0.38a 2.14 ± 0.07a 10.26 ± 0.07b 447.50 ± 3.54a 19.66 ± 0.48a CT(M) 22.46 ± 0.49ab 1.88 ± 0.07b 9.43 ± 0.08c 428.54 ± 2.70b 19.09 ± 0.54ab CT(F + M) 23.00 ± 0.11a 2.22 ± 0.14a 10.85 ± 0.13a 457.50 ± 4.95a 19.89 ± 0.11a CT(CK) 21.69 ± 0.21b 1.68 ± 0.04b 8.44 ± 0.11d 396.61 ± 6.99c 18.29 ± 0.15b GC 22.87 ± 0.65A 2.13 ± 0.28A 10.44 ± 1.18A 448.76 ± 25.00A 19.61 ± 0.64A CT 22.48 ± 0.59A 1.98 ± 0.24A 9.74 ± 0.97A 432.54 ± 25.07A 19.23 ± 0.72A 2.3 覆草−施肥模式对板栗叶片SPAD值和光合特性的影响
先对GC和CT中不同施肥处理的叶片光合特性进行单独分析,然后再综合分析各施肥处理在两个主处理区的均值。由图2可知,覆草条件下不同施肥方式对板栗叶片光合特性和SPAD值影响差异显著(P < 0.05)。从图2a可以看出,地表覆草能显著提高叶片净光合速率,GC比CT高4.17%。当主处理相同时,施肥均能不同程度提高板栗叶片的净光合速率,但是F + M和F处理效果明显优于M处理,且以GC(F + M)处理效果最好,其净光合速率可达到16.35 μmol/(m2·s),较CT(CK)提高24.52%。由图2b可知,地表覆草和施肥均能显著降低叶片蒸腾速率,综合分析GC区比CT区低8.81%;CT中的F、M和F + M处理的蒸腾速率分别比CK低20.51%、22.44%和25.98%。由图2c可以看出,地表覆草和施肥明显提高了叶片水分利用效率,其中F + M处理效果最显著,GC(F + M)和CT(F + M)处理分别比对应的主处理CK显著高44.87%、49.07%;相同施肥条件下,GC(F + M)处理水分利用效率较CT高18.32%;综合分析发现,GC中叶片水分利用效率比CT中高14.18%。图2d、e显示,不同覆草和施肥方式均能增加胞间CO2浓度和气孔导度,其中F + M处理增加效果最明显,GC中F、M、F + M处理的胞间CO2浓度分别比CK高7.86%、3.76%和8.97%,综合分析发现,GC区胞间CO2浓度显著比CT区高4.18%;不同覆草和施肥方式处理的气孔导度的整体变化趋势为GC > CT和F + M > F > M > CK,且GC中配施处理可明显增加气孔导度,达到0.33 mol/(m2·s),分别比F和M处理高26.92%和43.48%。由图2f可知,地表覆草和不同施肥处理对SPAD值影响差异较大,其中GC比CT中SPAD值高1.85%。当主处理相同时,F + M和F处理的SPAD值较高,且均为GC > CT;而GC(F + M)处理下的SPAD值分别比M和CK高4.23%和6.00%,F处理分别比M和CK高2.27%和4.46%。
2.4 覆草−施肥模式对板栗结实特性和果实品质产量的影响
2.4.1 覆草−施肥模式对板栗结实特性的影响
由表3可知,地表覆草对板栗出实率、空苞率和单株产影响差异显著(P < 0.05),对单粒质量、坐果率差异不显著,但是GC均高于CT。单粒质量是表示板栗产量的一个重要指标,各施肥处理均能提高单粒质量;当主处理相同时,F + M处理的单粒质量最高,GC(F + M)和CT(F + M)分别可达到10.32和9.92 g,较GC(CK)和CT(CK)分别增加20.72%和21.17%。GC中各施肥处理F、M和F + M的出实率分别比GC(CK)增加了12.41%、4.37%和14.40%。GC(F + M)处理坐果率最高,达到80.11%,空苞率最低。
表 3 覆草−施肥模式对板栗结实特性的影响Table 3. Effects of grass mulching-fertilization pattern on Chinese chestnut-setting characteristics处理
Treatment坐果率
Fruit setting rate/%空苞率
Empty bract rate/%出实率
Yield rate/%单粒质量
Single grain mass/g单株产量
Yield per plant/kgGC(F) 77.82 ± 0.45a 8.13 ± 0.65b 36.31 ± 3.65a 10.21 ± 0.26a 2.02 ± 0.06a GC(M) 73.96 ± 0.06b 8.35 ± 0.49b 33.71 ± 7.20a 9.12 ± 0.51ab 1.78 ± 0.08b GC(F + M) 80.11 ± 1.87a 5.89 ± 0.25b 36.95 ± 5.78a 10.32 ± 0.54a 2.12 ± 0.01a GC(CK) 70.03 ± 0.60c 12.82 ± 0.36a 32.30 ± 7.33a 8.55 ± 0.35b 1.61 ± 0.01c CT(F) 74.80 ± 0.88ab 8.83 ± 0.70b 35.13 ± 6.09ab 9.75 ± 0.28a 1.80 ± 0.06ab CT(M) 72.14 ± 1.33b 9.21 ± 0.58b 32.66 ± 6.06ab 8.86 ± 0.21b 1.67 ± 0.07bc CT(F + M) 77.57 ± 1.95a 7.52 ± 0.53b 36.15 ± 6.64a 9.92 ± 0.23a 1.90 ± 0.13a CT(CK) 67.67 ± 1.41c 25.24 ± 0.60a 30.40 ± 4.65b 8.19 ± 0.29b 1.46 ± 0.01c GC 75.48 ± 4.17A 8.80 ± 0.91B 35.12 ± 6.27A 9.22 ± 1.64A 1.88 ± 0.22A CT 73.04 ± 4.05A 12.70 ± 0.82A 34.39 ± 6.35B 9.32 ± 1.06A 1.71 ± 0.18B 2.4.2 覆草−施肥模式对板栗品质的影响
板栗品质指标通常主要包括淀粉、可溶性糖和蛋白质等物质,养分供应不足或施肥不合理均会降低果实品质养分含量[19]。由表4可知:地表覆草条件下,板栗果实的蛋白质、淀粉和可溶性糖含量均显著高于CT,P和K含量差异不显著,但均高于清耕处理。在CT的不同施肥处理下,蛋白质含量差异不显著,其中F、M和F + M处理分别比CK高23.80%、22.71%和25.35%。在相同施肥条件下,GC(F + M)处理下的淀粉和可溶性糖含量分别比CT高2.73%和12.13%。而且本研究发现,无论是覆草还是清耕处理,均以F + M的处理效果最好,总体表现为F + M > F > M > CK。
表 4 覆草−施肥模式对板栗品质的影响Table 4. Effects of grass mulching-fertilization pattern on Chinese chestnut quality处理
Treatment蛋白质
Protein content/%淀粉
Starch content/%可溶性糖
Soluble sugar content/%P/(g·kg−1) K/(g·kg−1) GC(F) 8.40 ± 0.19b 47.12 ± 0.15b 19.00 ± 0.02b 3.31 ± 0.08a 3.46 ± 0.62a GC(M) 7.90 ± 0.00c 45.76 ± 0.09c 17.97 ± 0.13c 2.58 ± 0.21b 2.94 ± 0.11a GC(F + M) 8.84 ± 0.11a 48.19 ± 0.15a 20.80 ± 0.23a 3.41 ± 0.07a 3.57 ± 0.35a GC(CK) 7.78 ± 0.06c 43.97 ± 0.01d 16.90 ± 0.17d 2.47 ± 0.14b 2.58 ± 0.44a CT(F) 7.96 ± 0.01a 46.33 ± 0.25b 18.19 ± 0.12ab 2.63 ± 0.02ab 3.18 ± 0.24ab CT(M) 7.89 ± 0.11a 45.22 ± 0.01c 17.57 ± 0.07bc 2.51 ± 0.09bc 2.77 ± 0.05ab CT(F + M) 8.06 ± 0.28a 46.91 ± 0.08a 18.55 ± 0.45a 2.84 ± 0.14a 3.40 ± 0.39a CT(CK) 6.43 ± 0.02b 42.63 ± 0.15d 15.23 ± 0.35c 2.22 ± 0.13c 2.47 ± 0.33b GC 8.23 ± 0.46A 46.26 ± 1.69A 18.67 ± 1.54A 2.94 ± 0.46A 3.14 ± 0.53A CT 7.58 ± 0.73B 45.27 ± 1.76B 17.38 ± 1.40B 2.55 ± 0.25A 2.95 ± 0.44A 2.5 板栗叶片功能性状和果实等各项指标的主成分分析
为进一步探讨覆草条件下不同施肥方式对板栗营养生长和生殖生长的影响,采用本研究中新梢生长量、叶片表型性状、叶片养分和光合指标以及果实结实状况和产量品质等共28项测定指标进行主成分分析,各指标以及不同处理的主成分载荷分布如图3所示,结果表明:第一主成分PC1、第二主成分PC2和第三主成分PC3的方差贡献率分别为90.0%、5.2%和2.0%,前2个主成分累计方差贡献率为95.2%,说明其包含了板栗各项生理指标性状的大部分信息。由不同指标的箭头指向可知,除蒸腾速率(x14)和空苞率(x22)外,其余指标均在第一主成分上有较高载荷,而且GC和CT中的F + M和F处理的各项指标在图中分布较为集中,在PC1正得分较高,说明其更有利于板栗的营养生长和生殖生长。
图 3 各指标在前3个主成分上的载荷分布(a)和不同处理的得分情况(b)x1. 新梢长度;x2. 新梢粗度;x3. 叶面积;x4. 百叶干质量;x5. 百叶厚;x6. 干鲜比;x7. 比叶质量;x8. 叶片全氮;x9. 叶片全磷;x10. 叶片全钾;x11. 叶片有机碳;x12. 叶片碳氮比;x13. 净光合速率;x14. 蒸腾速率;x15. 水分利用效率;x16. 胞间CO2浓度;x17. 气孔导度;x18. SPAD值;x19. 单粒质量;x20. 出实率;x21. 坐果率;x22. 空苞率;x23. 单株产量;x24. 蛋白质;x25. 淀粉;x26. 可溶性糖;x27. 果实全磷;x28. 果实全钾。蓝色箭头表示不同指标在三维空间的载荷分布,红色箭头为不同指标在PC1和PC2上的投影。x1, new shoot length; x2, new shoot thickness; x3, leaf area; x4, mass of one hundred leaves; x5, thickness of one hundred leaves; x6, ratio of dry mass to fresh mass; x7, specific leaf mass; x8, leaf total N; x9, leaf total P; x10, leaf total K; x11, leaf organic C; x12, C/N of leaf; x13, net photosynthetic rate; x14, transpiration rate; x15, water use efficiency; x16, intercellular CO2 concentration; x17, stomatal conductance; x18, relative chlorophyll content; x19, single-grain mass; x20, yield rate; x21, fruit setting rate; x22, empty bract rate; x23, yield per plant; x24, protein; x25, starch; x26, soluble sugar; x27, fruit total P; x28, fruit total K. The blue arrow represents the load distribution of different indexes in 3D space, and the red arrow represents the projection of different indexes on PC1 and PC2.Figure 3. Load distribution of each index on the first three principal components (a) and scores of different treatments (b)结合图3和表5,由不同覆草和施肥处理在PC1和PC2上的得分系数以及综合排名得出结论:GC(F + M)处理效果最好,GC(F)次之,而CT(CK)处理效果最差。
表 5 各处理的主成分及综合得分Table 5. Principal component and comprehensive scoreof each treatment处理
TreatmentPC1 PC2 PC 综合排名
Comprehensive rankingGC(F) 0.95 0.91 0.95 2 GC(M) −0.17 −1.12 −0.23 5 GC(F + M) 1.52 0.20 1.45 1 GC(CK) −0.86 −0.65 −0.85 7 CT(F) 0.22 0.66 0.24 4 CT(M) −0.49 −1.17 −0.53 6 CT(F + M) 0.43 −0.39 0.38 3 CT(CK) −1.59 1.57 −1.42 8 3. 讨 论
3.1 覆草−施肥模式对板栗树新梢生长量和叶片功能性状的影响
新梢生长量是反映树势强弱的指标之一,本研究表明:相比于清耕,板栗园地表覆草更能促进新梢生长,显著增加新梢基径粗度,这可能是由于粗壮枝条翌年更容易转化为结果枝,并与果实承载量等有关,与李涛涛等[28]在生草覆盖条件下不同施肥对果园苹果(Malus pumila)树枝条生长发育的研究结果相似。叶片不仅是植物进行光合作用的功能器官,同时也是为当年花芽分化、果实生长发育提供和储藏养分的重要库源器官[29]。叶片光合作用的能力在一定程度上取决于叶绿素含量的高低[30],若叶绿素含量较低,则叶片的捕光能力下降,进而降低光合速率[31],本试验也证实了这一结论,覆草后不同施肥处理在一定程度上能促进板栗叶片的光合作用和水分利用效率,抑制蒸腾速率,这可能与覆草和施肥均可以提高植物的抗旱性机理有关[32]。由于地表覆草阻挡太阳光直接照射地面,具有降温、减少土壤水分无效蒸发的作用,同时施无机肥能满足树体生长对养分的需求,促进枝条、叶片的生长,扩大与太阳光照的接触面积,而且增施有机肥后,土壤中微生物数量增加,有机物分解加快,释放大量CO2,增加光合作用的主要原料,从而提高光合效率[33-34]。因此,通过一些合理的地表覆盖−施肥模式促进树体生长发育 为后期养分积累、果实产量品质的提升奠定基础。叶面积、百叶厚和百叶干质量等都是叶片重要的性状指标,可直接反映叶片长势的好坏,本研究表明,地表覆草和施肥处理能增加叶面积、百叶厚和一些矿质元素含量,其中覆草条件下有机无机肥配施处理的各项指标值最大,与前人研究结果相似[35-36]。
3.2 覆草−施肥模式对板栗果实产量和品质的影响
果实的品质、单粒质量和产量是影响消费取向和经济效益的重要因素,已有大量研究表明[28, 37]:有机肥与化肥配施可以显著增加果实的果形指数、维生素C含量、可溶性固形物,改善果实的外观品质,提高单果质量和产量等指标。本研究发现,有机无机肥配施处理的板栗果实品质指标含量均高于其他施肥处理,而且覆草区的蛋白质、淀粉和可溶性糖含量均值分别比清耕区高8.58%、2.19%和7.42%,与卢精林等[38]研究结果相似。地表覆草条件下不同施肥模式均能提高板栗的坐果率和出实率,降低空苞率,增加板栗单粒质量和单株产量,其中单株产增加幅度为4.95% ~ 45.21%,但是仍未达到理想的高产,这可能与试验期间自然降水量偏少、肥效未能充分发挥有关,所以在以后的相关研究中可以通过延长试验年份来减小自然条件对试验数据的误差。
该试验还发现当主处理相同时,单施化肥或者有机肥均没有有机无机肥配施增产效果好,但是当使用单一肥料时,化肥的增产能力要优于有机肥,与卢海蛟等[39]人研究一致。这可能由于无机肥肥效快,在短时间内易被植物吸收,进而提高产量,但是如果长期单施无机肥,土壤培肥能力会变差,不利于土壤的可持续利用;当单独使用有机肥时,虽然其肥效较为持久,但是速效养分供应能力差、释放缓慢,不能及时满足植物关键生育期对养分的需求,短期内较难实现高产稳产[40]。同时,有机肥或杂草的碳氮比很高,会抑制土壤微生物的分解作用,所以在施用碳氮比高的有机物料时必须补充含氮较高的无机肥来调节,促进有机物的分解矿化,既能满足作物对养分的需求,还可以改善土壤生态环境[41]。而且本研究中有机无机肥配施处理是将单施无机肥处理中50%的氮素用有机肥鸡粪替代,本试验设置的肥料养分配比模式较少,后续研究也可以换作其他堆肥、绿肥或生物肥等,同时设置多种梯度模式进一步探讨筛选最优配施养分比。此外,不合理的使用有机肥和覆盖杂草也会带来负面影响,例如覆盖太厚可能影响杂草的腐化速度,而且腐化过程产生过量的有机酸也会损害树体根系,以及有机物料中重金属含量是否超标、板栗园病虫害等问题,在实际操作中,还需要栗农多关注。
主成分分析结果表明:覆草区和清耕区有机无机肥配施和单施无机肥处理的各项指标在图中分布较为集中,在PC1正得分较高,而且各处理得分综合排名为GC(F + M) > GC(F) > CT(F + M) > CT(F) > GC(M) > CT(M) > GC(CK) > CT(CK),可知在相同施肥条件下,覆草区明显优于清耕区,说明施肥效应与土壤含水量有相关关系,同时也与覆草增加了土壤有机质等养分含量有关[4]。前人在农作物玉米(Zea mays)的研究中已经表明,土壤灌水量和施肥量与玉米生产力呈正相关,即使在高肥效条件下,不合理的施肥方式和土壤缺水均会导致玉米产量降低[34, 42]。但是目前关于板栗园土壤水分、养分和树体之间关系的相互作用机理,养分和水分的吸收特性方面还缺乏系统研究。综上这些结果表明,板栗园行间覆草−有机无机肥配施模式不仅能充分利用板栗园杂草资源,而且还能提高生态、经济和社会效益。所以对于干旱地区无灌溉条件的板栗园,建议当地栗农一方面收集板栗园杂草以及秸秆等农业废弃物资源,经过堆积腐熟后,将其均匀平铺在板栗园行间,覆盖厚度根据当地实际情况而定,并定期适量增加,以此来减少土壤蒸腾耗水,充分利用山区有限的降水资源;另一方面通过有机无机肥配施模式(本研究中有机无机肥质量比约为13∶1)促进树体内部生理活动,增加植物叶片水分利用效率,这种双重效应更有利于山区板栗的抗旱节水栽培,是当地板栗增产优质的最适土壤管理模式,可广泛应用。
4. 结 论
本研究主要结果如下:(1)不同施肥方式均能够促进板栗叶片和枝条的生长发育,增加叶片矿质元素含量,增加碳氮比,提高树体对氮素的利用率,且覆草区明显优于清耕区。(2)地表覆草和有机无机肥配施能显著提高板栗叶片光合速率和叶绿素含量,提升叶片对水分的利用效率。(3)行间覆草结合合理施肥模式能够显著提高板栗单粒质量和单株产量,改善板栗果实品质。主成分分析结果表明覆草区有机无机肥配合施用效果优于其他施肥处理,而且在相同施肥条件下,地表覆草有效提高了施肥效应。
-
图 1 试验设计图
GC. 覆草区;CT. 清耕区;F. 单施无机肥;M. 单施有机肥;F + M. 有机肥与无机肥配施; CK. 不施肥。下同。GC, grass covering area; CT, cleaning tillage area; F, single application of inorganic fertilizer; M, single application of organic fertilizer; F + M, combined application of organic fertilizer and inorganic fertilizer; CK, no fertilization. The same below.
Figure 1. Experiment design chart
图 3 各指标在前3个主成分上的载荷分布(a)和不同处理的得分情况(b)
x1. 新梢长度;x2. 新梢粗度;x3. 叶面积;x4. 百叶干质量;x5. 百叶厚;x6. 干鲜比;x7. 比叶质量;x8. 叶片全氮;x9. 叶片全磷;x10. 叶片全钾;x11. 叶片有机碳;x12. 叶片碳氮比;x13. 净光合速率;x14. 蒸腾速率;x15. 水分利用效率;x16. 胞间CO2浓度;x17. 气孔导度;x18. SPAD值;x19. 单粒质量;x20. 出实率;x21. 坐果率;x22. 空苞率;x23. 单株产量;x24. 蛋白质;x25. 淀粉;x26. 可溶性糖;x27. 果实全磷;x28. 果实全钾。蓝色箭头表示不同指标在三维空间的载荷分布,红色箭头为不同指标在PC1和PC2上的投影。x1, new shoot length; x2, new shoot thickness; x3, leaf area; x4, mass of one hundred leaves; x5, thickness of one hundred leaves; x6, ratio of dry mass to fresh mass; x7, specific leaf mass; x8, leaf total N; x9, leaf total P; x10, leaf total K; x11, leaf organic C; x12, C/N of leaf; x13, net photosynthetic rate; x14, transpiration rate; x15, water use efficiency; x16, intercellular CO2 concentration; x17, stomatal conductance; x18, relative chlorophyll content; x19, single-grain mass; x20, yield rate; x21, fruit setting rate; x22, empty bract rate; x23, yield per plant; x24, protein; x25, starch; x26, soluble sugar; x27, fruit total P; x28, fruit total K. The blue arrow represents the load distribution of different indexes in 3D space, and the red arrow represents the projection of different indexes on PC1 and PC2.
Figure 3. Load distribution of each index on the first three principal components (a) and scores of different treatments (b)
表 1 覆草−施肥模式对板栗新梢生长和叶片功能性状的影响
Table 1 Effects of grass mulching-fertilization pattern on Chinese chestnut new shoot growth and leaf functional characteristics
处理
Treatment新梢生长量 New shoot growth 叶面积
Leaf
area/cm2百叶干质量
Dry mass of one
hundred leaves/g百叶厚
Thickness of one
hundred leaves/cm干鲜比
Ratio of dry
mass to fresh mass比叶质量
Specific leaf mass (SLW)/(g·cm−2)长度
Length/cm粗度
Thickness/mmGC(F) 58.55 ± 19.93a 11.52 ± 2.05a 134.36 ± 7.78ab 111.56 ± 6.50a 1.81 ± 0.04ab 0.47 ± 0.02ab 84.54 ± 11.83a GC(M) 50.04 ± 3.68a 9.65 ± 1.52b 128.05 ± 5.73ab 95.88 ± 8.15b 1.76 ± 0.05bc 0.42 ± 0.04bc 75.01 ± 7.26ab GC(F + M) 59.91 ± 15.80a 12.34 ± 2.10a 144.86 ± 5.49a 118.03 ± 3.49a 1.86 ± 0.07a 0.48 ± 0.02a 81.60 ± 4.51a GC(CK) 48.50 ± 7.51a 9.13 ± 1.21b 123.64 ± 4.99b 93.12 ± 4.26b 1.69 ± 0.03c 0.41 ± 0.05c 75.49 ± 5.88ab CT(F) 50.78 ± 5.73a 10.71 ± 1.92a 130.54 ± 8.06a 107.17 ± 1.28a 1.78 ± 0.09a 0.46 ± 0.03a 82.38 ± 5.83a CT(M) 49.80 ± 4.99a 9.48 ± 1.35ab 127.09 ± 4.26a 94.41 ± 7.00b 1.73 ± 0.06a 0.42 ± 0.07a 74.45 ± 7.35ab CT(F + M) 50.67 ± 11.51a 9.87 ± 2.34ab 129.25 ± 4.57a 103.06 ± 4.38a 1.76 ± 0.05a 0.43 ± 0.04a 79.84 ± 4.86a CT(CK) 48.00 ± 9.69a 8.61 ± 1.57b 114.88 ± 8.34b 90.12 ± 3.60b 1.62 ± 0.12b 0.39 ± 0.06b 78.98 ± 9.20a GC 54.05 ± 13.71A 10.61 ± 2.15A 132.73 ± 13.95A 104.65 ± 12.01A 1.78 ± 0.08A 0.44 ± 0.04A 79.16 ± 8.33A CT 49.85 ± 8.32A 9.70 ± 1.96B 126.03 ± 8.62B 99.13 ± 8.07B 1.74 ± 0.08A 0.42 ± 0.06A 78.91 ± 7.07A 注:不同小写字母表示主处理相同时不同施肥处理间差异显著(P < 0.05),大写字母表示主处理之间差异显著(P < 0.05)。下同。Notes: different lowercase letters indicate significant difference between varied fertilization modes with the same primary treatment (P < 0.05), while uppercase letters indicate significant difference between the primary treatment (P < 0.05). The same below. 表 2 覆草−施肥模式对板栗叶片矿质元素含量和C/N比值的影响
Table 2 Effects of grass mulching-fertilization pattern on mineral element content and C/N ratio of Chinese chestnut leaves
处理
Treatment全氮 Total nitrogen
(N)/(g·kg−1)全磷 Total phosphorus
(P)/(g·kg−1)全钾 Total potassium
(K)/(g·kg−1)有机碳 Organic carbon
(C)/(g·kg−1)C/N GC(F) 23.09 ± 0.38ab 2.31 ± 0.07a 11.12 ± 0.28a 462.50 ± 2.12b 20.04 ± 0.25a GC(M) 22.60 ± 0.21bc 2.03 ± 0.06b 9.89 ± 0.42b 436.83 ± 2.45c 19.34 ± 0.28ab GC(F + M) 23.65 ± 0.40a 2.43 ± 0.11a 11.78 ± 0.13a 478.15 ± 3.73a 20.22 ± 0.49a GC(CK) 22.14 ± 0.16b 1.76 ± 0.04c 8.97 ± 0.06c 417.55 ± 3.61d 18.87 ± 0.30b CT(F) 22.77 ± 0.38a 2.14 ± 0.07a 10.26 ± 0.07b 447.50 ± 3.54a 19.66 ± 0.48a CT(M) 22.46 ± 0.49ab 1.88 ± 0.07b 9.43 ± 0.08c 428.54 ± 2.70b 19.09 ± 0.54ab CT(F + M) 23.00 ± 0.11a 2.22 ± 0.14a 10.85 ± 0.13a 457.50 ± 4.95a 19.89 ± 0.11a CT(CK) 21.69 ± 0.21b 1.68 ± 0.04b 8.44 ± 0.11d 396.61 ± 6.99c 18.29 ± 0.15b GC 22.87 ± 0.65A 2.13 ± 0.28A 10.44 ± 1.18A 448.76 ± 25.00A 19.61 ± 0.64A CT 22.48 ± 0.59A 1.98 ± 0.24A 9.74 ± 0.97A 432.54 ± 25.07A 19.23 ± 0.72A 表 3 覆草−施肥模式对板栗结实特性的影响
Table 3 Effects of grass mulching-fertilization pattern on Chinese chestnut-setting characteristics
处理
Treatment坐果率
Fruit setting rate/%空苞率
Empty bract rate/%出实率
Yield rate/%单粒质量
Single grain mass/g单株产量
Yield per plant/kgGC(F) 77.82 ± 0.45a 8.13 ± 0.65b 36.31 ± 3.65a 10.21 ± 0.26a 2.02 ± 0.06a GC(M) 73.96 ± 0.06b 8.35 ± 0.49b 33.71 ± 7.20a 9.12 ± 0.51ab 1.78 ± 0.08b GC(F + M) 80.11 ± 1.87a 5.89 ± 0.25b 36.95 ± 5.78a 10.32 ± 0.54a 2.12 ± 0.01a GC(CK) 70.03 ± 0.60c 12.82 ± 0.36a 32.30 ± 7.33a 8.55 ± 0.35b 1.61 ± 0.01c CT(F) 74.80 ± 0.88ab 8.83 ± 0.70b 35.13 ± 6.09ab 9.75 ± 0.28a 1.80 ± 0.06ab CT(M) 72.14 ± 1.33b 9.21 ± 0.58b 32.66 ± 6.06ab 8.86 ± 0.21b 1.67 ± 0.07bc CT(F + M) 77.57 ± 1.95a 7.52 ± 0.53b 36.15 ± 6.64a 9.92 ± 0.23a 1.90 ± 0.13a CT(CK) 67.67 ± 1.41c 25.24 ± 0.60a 30.40 ± 4.65b 8.19 ± 0.29b 1.46 ± 0.01c GC 75.48 ± 4.17A 8.80 ± 0.91B 35.12 ± 6.27A 9.22 ± 1.64A 1.88 ± 0.22A CT 73.04 ± 4.05A 12.70 ± 0.82A 34.39 ± 6.35B 9.32 ± 1.06A 1.71 ± 0.18B 表 4 覆草−施肥模式对板栗品质的影响
Table 4 Effects of grass mulching-fertilization pattern on Chinese chestnut quality
处理
Treatment蛋白质
Protein content/%淀粉
Starch content/%可溶性糖
Soluble sugar content/%P/(g·kg−1) K/(g·kg−1) GC(F) 8.40 ± 0.19b 47.12 ± 0.15b 19.00 ± 0.02b 3.31 ± 0.08a 3.46 ± 0.62a GC(M) 7.90 ± 0.00c 45.76 ± 0.09c 17.97 ± 0.13c 2.58 ± 0.21b 2.94 ± 0.11a GC(F + M) 8.84 ± 0.11a 48.19 ± 0.15a 20.80 ± 0.23a 3.41 ± 0.07a 3.57 ± 0.35a GC(CK) 7.78 ± 0.06c 43.97 ± 0.01d 16.90 ± 0.17d 2.47 ± 0.14b 2.58 ± 0.44a CT(F) 7.96 ± 0.01a 46.33 ± 0.25b 18.19 ± 0.12ab 2.63 ± 0.02ab 3.18 ± 0.24ab CT(M) 7.89 ± 0.11a 45.22 ± 0.01c 17.57 ± 0.07bc 2.51 ± 0.09bc 2.77 ± 0.05ab CT(F + M) 8.06 ± 0.28a 46.91 ± 0.08a 18.55 ± 0.45a 2.84 ± 0.14a 3.40 ± 0.39a CT(CK) 6.43 ± 0.02b 42.63 ± 0.15d 15.23 ± 0.35c 2.22 ± 0.13c 2.47 ± 0.33b GC 8.23 ± 0.46A 46.26 ± 1.69A 18.67 ± 1.54A 2.94 ± 0.46A 3.14 ± 0.53A CT 7.58 ± 0.73B 45.27 ± 1.76B 17.38 ± 1.40B 2.55 ± 0.25A 2.95 ± 0.44A 表 5 各处理的主成分及综合得分
Table 5 Principal component and comprehensive scoreof each treatment
处理
TreatmentPC1 PC2 PC 综合排名
Comprehensive rankingGC(F) 0.95 0.91 0.95 2 GC(M) −0.17 −1.12 −0.23 5 GC(F + M) 1.52 0.20 1.45 1 GC(CK) −0.86 −0.65 −0.85 7 CT(F) 0.22 0.66 0.24 4 CT(M) −0.49 −1.17 −0.53 6 CT(F + M) 0.43 −0.39 0.38 3 CT(CK) −1.59 1.57 −1.42 8 -
[1] 温美娟, 党娜, 翟丙年, 等. 施肥配合薄膜生草二元覆盖有效提高渭北苹果的产量和品质[J]. 植物营养与肥料学报, 2016, 22(5): 1339−1347. doi: 10.11674/zwyf.15381 Wen M J, Dang N, Zhai B N, et al. Improving yield and quality of apples though double mulching of film and cabbage combined with fertilization in Weibei dryland, Shaanxi Province[J]. Plant Nutrition and Fertilizer Science, 2016, 22(5): 1339−1347. doi: 10.11674/zwyf.15381
[2] 李永刚. 生草覆盖下不同肥料配合施用对果实产量和品质及水分利用效率的影响[D]. 杨凌: 西北农林科技大学, 2015. Li Y G. Effects of combined application of fertilizers on water use efficiency, fruit yield and quality in apple orchard under grass mulching [D]. Yangling: Northwest A&F University, 2015.
[3] Qian X, Gu J, Pan H J, et al. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils[J]. European Journal of Soil Biology, 2015, 70: 23−30. doi: 10.1016/j.ejsobi.2015.06.005
[4] 尹晓宁, 刘兴禄, 董铁, 等. 苹果园不同覆盖材料对土壤与近地微域环境及树体生长发育的影响[J]. 中国生态农业学报, 2018, 26(1): 83−95. Yin X N, Liu X L, Dong T, et al. Effects of different mulching materials on soil and near-surface environment and of apple orchard tree growth[J]. Chinese Journal of Eco-Agriculture, 2018, 26(1): 83−95.
[5] 胥生荣, 张恩和, 马瑞丽, 等. 不同覆盖措施对枸杞根系生长和土壤环境的影响[J]. 中国生态农业学报, 2018, 26(12): 1802−1810. Xu S R, Zang E H, Ma R L, et al. Effects of mulching patterns on root growth and soil environment of Lycium barbarum[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1802−1810.
[6] 杜研, 杨文忠, 孙林琦, 等. 不同施肥处理对核桃叶片光合作用和叶绿素荧光特性的影响[J]. 甘肃农业大学学报, 2015, 50(4): 97−102. doi: 10.3969/j.issn.1003-4315.2015.04.018 Du Y, Yang W Z, Sun L Q, et al. Effects of different fertilization treatments on photosynthesis, chlorophyll fluorescence characteristics of walnut[J]. Journal of Gansu Agricultural University, 2015, 50(4): 97−102. doi: 10.3969/j.issn.1003-4315.2015.04.018
[7] Yang F, Feng L Y, Liu Q L, et al. Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition[J]. Environmental and Experimental Botany, 2018, 150: 79−87. doi: 10.1016/j.envexpbot.2018.03.008
[8] 杜春燕, 张齐, 冯涛, 等. 有机肥与化肥对樱桃产量、品质及叶片养分的影响[J]. 干旱地区农业研究, 2020, 38(2): 105−109. doi: 10.7606/j.issn.1000-7601.2020.02.15 Du C Y, Zang Q, Feng T, et al. Effects of organic and chemical fertilizers on yield, quality and leaf nutrient of cherry[J]. Agricultural Research in the Arid Areas, 2020, 38(2): 105−109. doi: 10.7606/j.issn.1000-7601.2020.02.15
[9] Yang Z C, Zhao N, Huang F, et al. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain[J]. Soil & Tillage Research, 2015, 146: 47−52.
[10] 高义民, 同延安, 路永莉, 等. 陕西渭北红富士苹果园土壤有效养分及长期施肥对产量的影响[J]. 园艺学报, 2013, 40(4): 613−622. Gao Y M, Tong Y A, Lu Y L, et al. Effects of soil available nutrients and long-term fertilization on yield of Fuji apple orchard of Weibei area in Shaanxi, China[J]. Acta Horticulturae Sinica, 2013, 40(4): 613−622.
[11] 赵佐平, 高义民, 刘芬, 等. 化肥有机肥配施对苹果叶片养分、品质及产量的影响[J]. 园艺学报, 2013, 40(11): 2229−2236. doi: 10.3969/j.issn.0513-353X.2013.11.015 Zhao Z P, Gao Y M, Liu F, et al. Effects of organic manure application combined with chemical fertilizers on the leaf nutrition, quality and yield of Fuji apple[J]. Acta Horticulturae Sinica, 2013, 40(11): 2229−2236. doi: 10.3969/j.issn.0513-353X.2013.11.015
[12] 温联明, 孙显维. 灌水和施肥对促进板栗产量和生长量的影响[J]. 贵州林业科技, 2018, 46(1): 36−38. Wen L M, Sun X W. Effects of irrigation and fertilization on the yield and growth of Castanea mollissima[J]. Guizhou Forestry Science and Technology, 2018, 46(1): 36−38.
[13] 王庆鲁, 祝鹏飞, 丁凡. 地膜覆盖和有机肥施用对农田土壤和作物C、N、P化学计量学的影响[J]. 生态学杂志, 2020, 39(4): 1191−1197. Wang Q L, Zhu P F, Ding F. Effects of plastic film mulching and organic manure application on soil and crop C, N, and P stoichiometry[J]. Journal of Ecology, 2020, 39(4): 1191−1197.
[14] 郑小春, 卢海蛟, 车金鑫, 等. 白水县苹果产量及施肥现状调查[J]. 西北农林科技大学学报(自然科学版), 2011, 39(9): 145−151. Zheng X C, Lu H J, Che J X, et al. Investigation of present yield and fertilization on Fuji apple in Baishui County[J]. Journal of Northwest A&F University (Natural Science Edition), 2011, 39(9): 145−151.
[15] 杜志辉, 樊红科, 吕周锋, 等. 渭北旱塬不同施肥方案对富士苹果生长、产量及品质的影响[J]. 西北农业学报, 2011, 20(5): 121−125. doi: 10.3969/j.issn.1004-1389.2011.05.023 Du Z H, Fan H K, Lü Z F, et al. Effects of fertilization regime on growth, yield and quality of Fuji apple in Weibei Highland[J]. Journal of Northwest Agriculture, 2011, 20(5): 121−125. doi: 10.3969/j.issn.1004-1389.2011.05.023
[16] Lilian W M, Veronica A M, Jennifer D B, et al. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity implications for soil quality[J]. Soil Biology and Biochemistry, 2015, 89: 24−34. doi: 10.1016/j.soilbio.2015.06.016
[17] 张礼军, 鲁清林, 白斌, 等. 施肥和地膜覆盖对黄土高原旱地冬小麦籽粒品质和产量的影响[J]. 草业学报, 2019, 28(4): 70−80. doi: 10.11686/cyxb2018567 Zhang L J, Lu Q L, Bai B, et al. Effect of different combinations of fertilizer and plastic film mulch on grain quality and yield of winter wheat in dryland areas of the Loess Plateau[J]. Acta Prataculturae Sinica, 2019, 28(4): 70−80. doi: 10.11686/cyxb2018567
[18] 巩庆利, 翟丙年, 郑伟, 等. 渭北旱地苹果园生草覆盖下不同肥料配施对土壤养分和酶活性的影响[J]. 应用生态学报, 2018, 29(1): 205−212. Gong Q L, Zhai B N, Zheng W, et al. Effects of grass cover combined with different fertilization regimes on soil nutrients and enzyme activities in apple orchard in Weibei dryland, China[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 205−212.
[19] 宋影, 郭素娟, 谢明明, 等. 有机-无机配施比例对板栗叶片氮磷营养、产量及品质的影响[J]. 东北农业大学学报, 2017, 48(9): 28−35. doi: 10.3969/j.issn.1005-9369.2017.09.004 Song Y, Guo S J, Xie M M, et al. Effect of different application ratios of inorganic and organic fertilizers on nitrogen and phosphorus contents of leaves, yield and quality of Castanea mollissima[J]. Journal of Northeast Agricultural university, 2017, 48(9): 28−35. doi: 10.3969/j.issn.1005-9369.2017.09.004
[20] 田寿乐, 孙晓莉, 沈广宁. 不同覆盖物对山地板栗园土壤性状及幼苗生长的影响[J]. 山东农业科学, 2017, 49(11): 37−44. Tian S L, Sun X L, Shen G N. Effects of different mulches on soil properties of hilly orchard and chestnut seedling growth[J]. Shandong Agricultural Sciences, 2017, 49(11): 37−44.
[21] 张亦弛, 郭素娟, 孙传昊. 生长延缓剂对板栗叶片解剖结构及非结构性碳水化合物的影响[J]. 北京林业大学学报, 2020, 42(1): 46−53. doi: 10.12171/j.1000-1522.20180437 Zhang Y C, Guo S J, Sun C H. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46−53. doi: 10.12171/j.1000-1522.20180437
[22] 刘正民, 郭素娟, 徐丞, 等. 基于饱和D-最优设计的‘燕山早丰’施肥研究[J]. 北京林业大学学报, 2015, 37(1): 70−77. Liu Z M, Guo S J, Xu C, et al. Optimal fertilization for Castanea mollissima ‘Yanshanzaofeng’ based on the saturated D-optimal design[J]. Journal of Beijing Forestry University, 2015, 37(1): 70−77.
[23] 刘庆忠. 板栗种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006. Liu Q Z. Description specification and data standard of chestnut germplasm resources [M]. Beijing: China Agricultural Press, 2006.
[24] 彭晶晶, 郭素娟, 王静, 等. 修剪强度对不同密度板栗叶片质量与光合特征的影响[J]. 东北林业大学学报, 2014, 42(11): 47−50. doi: 10.3969/j.issn.1000-5382.2014.11.012 Peng J J, Guo S J, Wang J, et al. Effect of different pruning intensity on leaf traits and photosynthetic characteristics of Chinese chestnut with different plant densities[J]. Journal of Northeast Forestry University, 2014, 42(11): 47−50. doi: 10.3969/j.issn.1000-5382.2014.11.012
[25] 鲍士旦. 土壤农化分析(第3版) [M]. 北京: 中国农业出版社, 2005. Bao S D. Soil agricultural chemical analysis (3rd ed.) [M]. Beijing: China Agricultural Press, 2005.
[26] 梁丽松, 徐娟, 王贵禧, 等. 板栗淀粉糊化特性与淀粉粒粒径及直链淀粉含量的关系[J]. 中国农业科学, 2009, 42(1): 251−260. doi: 10.3864/j.issn.0578-1752.2009.01.032 Liang L S, Xu J, Wang G X, et al. Relationship between starch pasting, amylose content and starch granule size in different Chinese chestnut variety groups[J]. Scientia Agricultura Sinica, 2009, 42(1): 251−260. doi: 10.3864/j.issn.0578-1752.2009.01.032
[27] 张乐, 王赵改, 杨慧, 等. 不同板栗品种营养成分及风味物质分析[J]. 食品科学, 2016, 37(10): 164−169. doi: 10.7506/spkx1002-6630-201610028 Zhang L, Wang Z G, Yang H, et al. Nutritional components and flavor substances of different varieties of Chinese chestnut[J]. Food Science, 2016, 37(10): 164−169. doi: 10.7506/spkx1002-6630-201610028
[28] 李涛涛. 生草覆盖条件下长期不同施肥对苹果园土壤肥力及果树生长发育的影响[D]. 杨凌: 西北农林科技大学, 2013. Li T T. Effects of long-term different fertilization on soil fertility, growth and development of fruit tree in apple orchard under grass covering[D]. Yangling: Northwest A&F University, 2013.
[29] 郭全恩, 郭天文, 王益权, 等. 甘肃省干旱地区苹果叶片营养和土壤养分相关性研究[J]. 土壤通报, 2009, 40(1): 114−117. doi: 10.3321/j.issn:0564-3945.2009.01.031 Guo Q E, Guo T W, Wang Y Q, et al. Correlation analysis on apple leaves nutrition and soil nutrient in arid area in Gansu Province[J]. Chinese Journal of Soil Science, 2009, 40(1): 114−117. doi: 10.3321/j.issn:0564-3945.2009.01.031
[30] 张亦弛, 郭素娟. 2种生长延缓剂对板栗枝条生长和叶片碳氮代谢物积累的影响[J]. 林业科学, 2020, 56(5): 29−36. doi: 10.11707/j.1001-7488.20200504 Zhang Y C, Guo S J. Effects of two growth retardants on the growth of chestnut branches and the accumulation of carbon and nitrogen metabolites in leaves[J]. Scientia Silvae Sinicae, 2020, 56(5): 29−36. doi: 10.11707/j.1001-7488.20200504
[31] 李云翔, 赵营, 尹志荣, 等. 枸杞树不同器官氮磷钾吸收规律及其合理施肥初探[J]. 中国农学通报, 2018, 34(28): 61−66. doi: 10.11924/j.issn.1000-6850.casb18050055 Li Y X, Zhao Y, Yin Z R, et al. Primary exploration of N, P and K uptake in wolfberry tree organs and the rational application rates[J]. Chinese Agricultural Science Bulletin, 2018, 34(28): 61−66. doi: 10.11924/j.issn.1000-6850.casb18050055
[32] 林利, 李吉跃, 苏淑钗. “施丰乐”对板栗光合特性、水分利用效率及产量的影响[J]. 北京林业大学学报, 2006, 28(增刊1): 60−63. Lin L, Li J Y, Su S C. Effects of “Shifengle” on the photosynthetic characteristics, water use efficiency and products of Castanea mollissima Blume[J]. Journal of Beijing Forestry University, 2006, 28(Suppl.1): 60−63.
[33] 王莉婷. 专用肥和地表覆盖在陕北山地红枣的应用效果研究[D]. 杨凌: 西北农林科技大学, 2015. Wang L T. Research on effects of special fertilizer and plastic film mulching on jujube in the hilly regions of northern Shaanxi[D]. Yangling: Northwest A&F University, 2015.
[34] Moser S B, Feil B, Jampatong S, et al. Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize[J]. Agricultural Water Management, 2006, 81(1): 41−58.
[35] 李宏建, 王宏, 于年文, 等. 地面覆盖对苹果树体生长和果实品质的影响[J]. 果树学报, 2019, 36(3): 296−307. Li H J, Wang H, Yu N W, et al. Effects of mulching on the growth and fruit quality of apple trees[J]. Journal of Fruit Science, 2019, 36(3): 296−307.
[36] 付晓凤, 朱原, 黄杰, 等. 氮磷钾配比施肥对扁桃幼苗生长及叶片养分含量的影响[J]. 四川农业大学学报, 2019, 37(5): 629−635. Fu X F, Zhu Y, Huang J, et al. Effects of N, P and K fertilization treatments on the growth and nutrient contents in leaves of Mangifera persiciformis C. seedlings[J]. Journal of Sichuan Agricultural University, 2019, 37(5): 629−635.
[37] 何学涛, 牛俊义, 刘建华. 不同施肥水平对苹果产量及品质的影响[J]. 甘肃农业大学学报, 2010, 45(2): 83−86. doi: 10.3969/j.issn.1003-4315.2010.02.018 He X T, Niu J Y, Liu J H. Effects of the different fertilizer application level on the yield and quality of apple[J]. Journal of Gansu Agricultural University, 2010, 45(2): 83−86. doi: 10.3969/j.issn.1003-4315.2010.02.018
[38] 卢精林, 张红菊, 赵怀勇, 等. 有机肥与N、P、K化肥配施对苹果梨品质的影响[J]. 土壤通报, 2013, 44(4): 931−933. Lu J L, Zhang H J, Zhao H Y, et al. Effect of organic fertilizer combined with inorganic fertilizers of N, P and K on apple-pear quality[J]. Chinese Journal of Soil Science, 2013, 44(4): 931−933.
[39] 卢海蛟, 翟丙年, 刘玲玲, 等. 生草覆盖条件下不同施肥模式对红富士苹果生长发育、产量及品质的影响[J]. 北方园艺, 2012(10): 5−8. Lu H J, Zhai B N, Liu L L, et al. The effects of different fertilization pattern on growth, yield and quality of Fuji apple under grass cover in orchard[J]. Northern Horticulture, 2012(10): 5−8.
[40] Wei W L, Yan Y, Cao J, et al. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: an integrated analysis of long-term experiments[J]. Agriculture, Ecosystems & Environment, 2016, 225: 86−92.
[41] 公华锐, 李静, 马军花, 等. 秸秆还田配施有机无机肥料对冬小麦土壤水氮变化及其微生物群落和活性的影响[J]. 生态学报, 2019, 39(6): 2203−2214. Gong H R, Li J, Ma J H, et al. Effects of straw incorporation combined with inorganic-organic fertilization on soil water and nitrogen changes and microbial community structure in winter wheat[J]. Acta Ecologica Sinica, 2019, 39(6): 2203−2214.
[42] Paolo E D, Rinaldi M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment[J]. Field Crops Research, 2007, 105(3): 202−210.
-
期刊类型引用(4)
1. 王高升,宁德鲁,马婷,吴涛,潘莉,肖良俊,刘娇. 云南省板栗人工林物种组成及多样性分析. 西部林业科学. 2024(06): 25-29+73 . 百度学术
2. 向才. 大方县板栗早实丰产种植技术. 农业技术与装备. 2023(01): 149-151 . 百度学术
3. 郭迎节,贾月慧,刘杰,杨雨萍,梁琼,周建,王紫琦. 羊粪用量对北寨红杏光合特性、产量和品质的影响. 北京农学院学报. 2023(02): 18-25 . 百度学术
4. 徐建伟,罗海风,阚江明,李文彬,仝思源. 林果类地下自密封压力注灌装置研究. 北京林业大学学报. 2023(06): 137-144 . 本站查看
其他类型引用(6)