高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DSC法研究水分含量对低分子量MUF树脂固化特性的影响

李中昊 李贤军 张晓萌 吕建雄 周川玲 徐康

李中昊, 李贤军, 张晓萌, 吕建雄, 周川玲, 徐康. DSC法研究水分含量对低分子量MUF树脂固化特性的影响[J]. 北京林业大学学报, 2021, 43(1): 119-126. doi: 10.12171/j.1000-1522.20200317
引用本文: 李中昊, 李贤军, 张晓萌, 吕建雄, 周川玲, 徐康. DSC法研究水分含量对低分子量MUF树脂固化特性的影响[J]. 北京林业大学学报, 2021, 43(1): 119-126. doi: 10.12171/j.1000-1522.20200317
Li Zhonghao, Li Xianjun, Zhang Xiaomeng, Lü Jianxiong, Zhou Chuanling, Xu Kang. Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method[J]. Journal of Beijing Forestry University, 2021, 43(1): 119-126. doi: 10.12171/j.1000-1522.20200317
Citation: Li Zhonghao, Li Xianjun, Zhang Xiaomeng, Lü Jianxiong, Zhou Chuanling, Xu Kang. Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method[J]. Journal of Beijing Forestry University, 2021, 43(1): 119-126. doi: 10.12171/j.1000-1522.20200317

DSC法研究水分含量对低分子量MUF树脂固化特性的影响

doi: 10.12171/j.1000-1522.20200317
基金项目: 国家自然科学基金项目(31800479),湖南省自然科学基金项目(2020JJ5978),湖南省教育厅优秀青年项目(19B592),中南林业科技大学引进人才科研启动基金项目(2019YJ015)
详细信息
    作者简介:

    李中昊。研究方向:木材功能性改良。Email:Lzh9684@163.com 地址:410004 湖南省长沙市韶山南路498号中南林业科技大学

    责任作者:

    徐康,博士,硕士生导师。主要研究方向:木材功能性改良和木材干燥。Email:xkang86@126.com 地址:同上

  • 中图分类号: TQ433.4+3

Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method

  • 摘要:   目的  探究水分含量对低分子量三聚氰胺脲醛(MUF)树脂溶液固化特性的影响,为阐明树脂浸渍材在不同干燥阶段、不同空间层位中的树脂固化特性提供数据支撑。  方法  以实验室自制的MUF树脂溶液为研究对象,将其稀释成20%、30%、40%、50%后进行升温差示扫描量热测试(DSC),通过外推法消除升温速率对峰顶温度的影响,拟合求解其最佳固化温度,定性阐述水分含量对MUF树脂固化特性的影响,并运用Kissinger微分法和Flynn-Wall-Ozawa积分法计算20%、30%、40%、50%树脂溶液固化反应的表观活化能,定量分析水分对树脂固化特性的影响。  结果  随着MUF树脂溶液质量分数的降低,DSC曲线中峰顶温度整体上呈现向高温方向偏移的趋势,但是在升温速率15和20 ℃/min条件下,20%树脂溶液DSC曲线的峰顶温度峰位置向低温区域发生了偏移;通过外推法得到的20%、30%、40%、50% MUF树脂溶液的最佳固化温度分别为93.99、90.71、85.46和79.71 ℃;运用Kissinger微分法计算得到其表观活化能分别为92.94、82.37、65.93和50.68 kJ/mol,其结果与Flynn-Wall-Ozawa积分法验算结果相近。  结论  整体上,消除升温速率的影响后,水分对树脂固化反应起阻碍作用,并且水分越多,阻碍效应越明显;但在较高升温速率(15和20 ℃/min)条件下,20%MUF树脂溶液的DSC测试结果表明水分促进树脂固化反应,这可能是由分子运动加剧造成的。

     

  • 图  1  低分子量MUF树脂溶液制备流程

    Figure  1.  Preparing process of low molecular mass MUF resin solution

    图  2  不同质量分数MUF树脂溶液的不同升温速率DSC曲线

    Figure  2.  DSC curves of different heating rates of MUF resin solution with different mass fractions

    图  3  与不同结构单元相连的二亚甲基醚键和亚甲基键

    Figure  3.  Dimethylene ether and methylene linkage with different structural units

    图  4  不同质量分数MUF树脂溶液峰顶温度对升温速率的线性拟合关系图

    Figure  4.  Linear fitting diagram of peak temperature versus the heating rate of MUF resin solution with different mass fractions

    表  1  MUF树脂溶液固化反应表观活化能

    Table  1.   Apparent activation energy of MUF resin solution during curing process

    参数 Parameter20% MUF30% MUF40% MUF50% MUF
    β/(℃·min−1) 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
    $ {\rm{ - ln(}}\beta {\rm{/}}T_{\rm{p}}^{\rm{2}})$ 10 9.6 9.2 8.9 10 9.6 9.2 8.9 10 9.6 9.2 8.9 10 9.5 9.2 8.9
    $(1/{T_{\rm{p}}}) \times {10^3}$ 2.7 2.62 2.61 5.59 2.71 2.65 2.61 5.58 2.75 2.67 2.62 2.59 5.8 2.67 5.63 2.62
    $\ln (\beta /T_{\rm{p}}^2) = a +b \dfrac{1}{{{T_{\rm{p}}}}}$ $\ln (\beta /T_{\rm{p}}^2) = -11.18 \dfrac{1}{{{T_{\rm{p}}}}} + 19.96$ $\ln (\beta /T_{\rm{p}}^2) = -9.90 \dfrac{1}{{{T_{\rm{p}}}}} + 16.66$ $\ln (\beta /T_{\rm{p}}^2) = -7.93 \dfrac{1}{{{T_{\rm{p}}}}} + 11.60$ $\ln (\beta /T_{\rm{p}}^2) = -6.10 \dfrac{1}{{{T_{\rm{p}}}}} + 6.90$
    Ea/(kJ·mol−1) 92.94 82.37 65.93 50.68
    注:β为升温速率;Tp为峰顶温度;Ea为固化反应表观活化能。Notes: β is heating rate, Tp is peak temperature, and Ea is apparent activation energy of curing reaction.
    下载: 导出CSV
  • [1] Hill C A S. Wood modification: an update[J]. Bioresources, 2011, 6(2): 918−919.
    [2] Furuno T, Imamura Y, Kajita H. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls[J]. Wood Science & Technology, 2004, 37(5): 349−361.
    [3] 刘君良, 江泽慧, 孙家杰. 酚醛树脂处理杨树木材物理力学性能测试[J]. 林业科学, 2002, 38(4):176−180. doi: 10.3321/j.issn:1001-7488.2002.04.028.

    Liu J L, Jiang Z H, Sun J J. Measurement the physical-mechanical properties of poplar lumber by PF resin treatment[J]. Scientia Silvae Sinicae, 2002, 38(4): 176−180. doi: 10.3321/j.issn:1001-7488.2002.04.028.
    [4] 谢延军, 符启良, 王清文, 等. 木材化学功能改良技术进展与产业现状[J]. 林业科学, 2012, 48(9):154−163. doi: 10.11707/j.1001-7488.20120924.

    Xie Y J, Fu Q L, Wang Q W, et al. Wood chemical modification: the state of the art of technologies and commercialization[J]. Scientia Silvae Sinicae, 2012, 48(9): 154−163. doi: 10.11707/j.1001-7488.20120924.
    [5] 徐康, 吕建雄, 刘君良, 等. 浸渍后处理及干燥处理对木材树脂浸渍改性效果的影响[J]. 林业科学, 2018, 54(4):84−92. doi: 10.11707/j.1001-7488.20180410.

    Xu K, Lü J X, Liu J L, et al. Influence of post-treatment and drying process on the modification of wood with resin-impregnation[J]. Scientia Silvae Sinicae, 2018, 54(4): 84−92. doi: 10.11707/j.1001-7488.20180410.
    [6] 周永东. 低分子量酚醛树脂强化毛白杨木材干燥特性及其机理研究[D]. 北京: 中国林业科学研究院, 2009.

    Zhou Y D. Study on drying characteristics and mechanism of poplar lumber strengthened with low molecular weight phenol-formaldehyde resin[D]. Beijing: Chinese Academy of Forestry, 2009.
    [7] Militz H, Lande S. Challenges in wood modification technology on the way to practical applications[J]. Wood Material Science & Engineering, 2009, 4(1−2): 23−29.
    [8] 王舒. 浸渍处理人工林杉木干燥特性的研究[D]. 北京: 北京林业大学, 2009.

    Wang S. Study on the drying characteristic of resin-impregnated Chinese fir[D]. Beijing: Beijing Forestry Universty, 2009.
    [9] 彭冲, 张振伟, 夏朝彦, 等. 浸渍毛白杨锯材的干燥工艺[J]. 福建农林大学学报(自然科学版), 2015, 44(3):329−332.

    Peng C, Zhang Z W, Xia C Y, et al. Optimized drying process for resin impregnated Aspen wood[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(3): 329−332.
    [10] Li Y, Li X, Quan P, et al. Investigation of drying characteristics in superheated steam drying of UF-impregnated Chinese fir[J]. European Journal of Wood & Wood Products, 2018, 76(2): 583−589.
    [11] 钱俊, 叶良明, 余肖红, 等. 速生杉木的改性研究—UF树脂浸渍后热压法改性[J]. 木材工业, 2001, 15(2):14−16. doi: 10.3969/j.issn.1001-8654.2001.02.005.

    Qian J, Ye L M, Yu X H, et al. Modification on fast-growing Chinese fir by hot-pressing after impregnated with UF resin[J]. China Wood Industry, 2001, 15(2): 14−16. doi: 10.3969/j.issn.1001-8654.2001.02.005.
    [12] Wu G F, Lang Q A, Qu P, et al. Eeffect of chemical modification and hot-press dring on poplar wood[J]. BioResources, 2010, 5(4): 2581−2590.
    [13] Li W, Zhang L, Peng J, et al. Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin[J]. Industrial Crops & Products, 2008, 28(2): 143−154.
    [14] Shams M I, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin (I): effects of pressing pressure and pressure holding[J]. Journal of Wood Science, 2004, 50(4): 337−342. doi: 10.1007/s10086-003-0570-6.
    [15] Gibson L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface, 2012, 9(76): 2749−2766. doi: 10.1098/rsif.2012.0341.
    [16] Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions[J]. Wood Science and Technology, 2013, 47(1): 141−161. doi: 10.1007/s00226-012-0514-7.
    [17] 王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123−133.

    Wang Z, Wang X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123−133.
    [18] Siimer K, Kaljuvee T, Christjanson P, et al. Changes in curing behaviour of aminoresins during storage[J]. Journal of Thermal Analysis & Calorimetry, 2005, 80(1): 123−130.
    [19] He G, Yan N. Effect of wood on the curing behavior of commercial phenolic resin systems[J]. Journal of Applied Polymer Science, 2005, 95(2): 185−192. doi: 10.1002/app.21115.
    [20] 徐康. MUF树脂浸渍杨木干燥过程中水分迁移和树脂固化特性研究[D]. 北京: 中国林业科学研究院, 2017.

    Xu K. Moisture transfer and resin curing characteristics of MUF impregnated poplar wood during drying process[D]. Beijing: Chinese Academy of Forestry, 2017.
    [21] Xu K, Yuan S F, Gao Y L, et al. Characterization of moisture states and transport in MUF resin impregnated poplar wood using low field nuclear magnetic resonance[J/OL]. Drying Technology, 2020 [2020−08−23]. http://doi.org/10.1080/07373937.2020.1719503.
    [22] Kamal M R, Sourour S. Kinetics and thermal characterization of thermoset cure[J]. Polymer Engineering and Science, 2010, 13(1): 59−64.
    [23] 何平笙. 热固性树脂及树脂基复合材料的固化[M]. 合肥: 中国科技大学出版社, 2011.

    He P S. Curing of thermosetting resins and resin matrix composites[M]. Hefei: Press of University of Science and Technology of China, 2011.
    [24] 吴晓青, 李嘉禄, 康庄, 等. TDE-85环氧树脂固化动力学的DSC和DMA研究[J]. 固体火箭技术, 2007, 30(3):264−268. doi: 10.3969/j.issn.1006-2793.2007.03.020.

    Wu X Q, Li J L, Kang Z, et al. Study on curing kinetics of TDE-85 epoxy resin by means of DSC and DMA[J]. Journal of Solid Rocket Technology, 2007, 30(3): 264−268. doi: 10.3969/j.issn.1006-2793.2007.03.020.
    [25] 王辉, 杜官本, 雷洪. 高性能三聚氰胺–尿素–甲醛共缩聚树脂研制(1):缩聚反应后期尿素的影响[J]. 化学与粘合, 2010, 32(2):45−49. doi: 10.3969/j.issn.1001-0017.2010.02.014.

    Wang H, Du G B, Lei H. Development of high-performance melamine-urea-formaldehyde co-condensation resin (1): influence of urea addition at later condensation reaction[J]. Chemistry and Adhesion, 2010, 32(2): 45−49. doi: 10.3969/j.issn.1001-0017.2010.02.014.
    [26] Pizzi A, Panamgama L A. Diffusion hindrance vs. wood-induced catalytic activation of MUF adhesive polycondensation[J]. Journal of Applied Polymer Science, 1995, 58(1): 109−115. doi: 10.1002/app.1995.070580112.
    [27] Jones F N, Chu G, Samaraweera U. Recent studies of self-condensation and co-condensation of melamine-formaldehyde resins; cure at low temperatures[J]. Progress in Organic Coatings, 1994, 24(1−4): 189−208. doi: 10.1016/0033-0655(94)85014-3.
    [28] 潘祖仁. 高分子化学[M]. 北京: 化学工业出版社, 2011.

    Pan Z R. Polymer chemistry[M]. Beijing: Chemical Industry Press, 2011.
    [29] 刘乃亮, 齐暑华, 理莎莎, 等. 高固含量聚醚醚酮改性酚醛树脂固化动力学研究[J]. 中国胶粘剂, 2011, 20(3):16−20. doi: 10.3969/j.issn.1004-2849.2011.03.005.

    Liu N L, Qi S H, Li S S, et al. Study on curing kinetics of high solid content polyetheretherketone modified phenolic resin[J]. China Adhesives, 2011, 20(3): 16−20. doi: 10.3969/j.issn.1004-2849.2011.03.005.
    [30] 陈玉竹. 脲醛树脂预固化特性及控制机理研究[D]. 北京: 中国林业科学研究院, 2015.

    Chen Y Z. Pre-curing characters and regulating mechanism of uea-frmaldehyde resin[D]. Beijing: Chinese Academy of Forestry, 2015.
    [31] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702−1706. doi: 10.1021/ac60131a045.
    [32] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881−1886.
    [33] 郝朝瑜, 王鑫阳, 赵庆彪, 等. 低变质程度煤自燃特性的改进着火活化能方法研究[J]. 中国安全科学学报, 2013, 23(10):27−32. doi: 10.3969/j.issn.1003-3033.2013.10.005.

    Hao C Y, Wang X Y, Zhao Q B, et al. Study on an improved ignition activation energy method for evaluating spontaneous combustion characteristics of low metamorphic coal[J]. China Safety Science Journal, 2013, 23(10): 27−32. doi: 10.3969/j.issn.1003-3033.2013.10.005.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  166
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 修回日期:  2020-10-29
  • 网络出版日期:  2020-12-21
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回