高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同密度调控强度对华北落叶松人工林土壤质量的影响

刘慧敏 韩海荣 程小琴 蔡锰柯 刘旭军 刘莉 张文雯 刘铭波

刘慧敏, 韩海荣, 程小琴, 蔡锰柯, 刘旭军, 刘莉, 张文雯, 刘铭波. 不同密度调控强度对华北落叶松人工林土壤质量的影响[J]. 北京林业大学学报, 2021, 43(6): 50-59. doi: 10.12171/j.1000-1522.20200322
引用本文: 刘慧敏, 韩海荣, 程小琴, 蔡锰柯, 刘旭军, 刘莉, 张文雯, 刘铭波. 不同密度调控强度对华北落叶松人工林土壤质量的影响[J]. 北京林业大学学报, 2021, 43(6): 50-59. doi: 10.12171/j.1000-1522.20200322
Liu Huimin, Han Hairong, Cheng Xiaoqin, Cai Mengke, Liu Xujun, Liu Li, Zhang Wenwen, Liu Mingbo. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(6): 50-59. doi: 10.12171/j.1000-1522.20200322
Citation: Liu Huimin, Han Hairong, Cheng Xiaoqin, Cai Mengke, Liu Xujun, Liu Li, Zhang Wenwen, Liu Mingbo. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(6): 50-59. doi: 10.12171/j.1000-1522.20200322

不同密度调控强度对华北落叶松人工林土壤质量的影响

doi: 10.12171/j.1000-1522.20200322
基金项目: 国家重点研发计划项目(2019YFA0607304)
详细信息
    作者简介:

    刘慧敏。主要研究方向:生态管理与规划。Email:lhmbam518@163.com 地址:100083北京市海淀区清华东路 35 号北京林业大学生态与自然保护学院

    责任作者:

    韩海荣,教授,博士生导师。主要研究方向:生态管理与规划、生态系统全球变化。Email:hanhr@bjfu.edu.cn 地址:同上

  • 中图分类号: S714.5

Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation

  • 摘要:   目的  探究不同密度调控强度华北落叶松人工林土壤质量的变化规律,为合理利用林地资源及人工林的可持续经营提供理论依据。  方法  以山西太岳山好地方林场华北落叶松人工林为研究对象,基于土壤密度、含水率、养分含量、酶活性等18项土壤指标,并结合主成分分析和相关系数法建立土壤质量评价最小数据集,采用加权求和指数法对不同密度调控强度的(对照,2 096株/hm2,CK;低强度处理,1 850株/hm2,LT;中强度处理,1 402株/hm2,MT;高强度处理,1 106株/hm2,HT)华北落叶松人工林土壤质量进行综合评价。  结果  与对照相比,LT、MT和HT样地土壤含水率呈增加趋势;从密度调控对土壤养分影响而言,MT处理下C、N和P等养分含量均较高。此外,土壤生物学性状也对不同调控强度存在显著响应,其中土壤微生物生物量碳、氮含量在MT显著高于CK;脲酶和多酚氧化酶活性在MT最高,过氧化物酶活性在LT最高,蔗糖酶活性在CK最高,而纤维素酶活性随密度调控强度增加整体呈下降趋势。结合主成分分析和相关性分析结果可知,有机质、含水率、微生物生物量氮、多酚氧化酶、过氧化物酶构成了土壤质量评价的最小数据集。不同密度调控强度华北落叶松人工林土壤质量指数大小为MT(0.598) > HT(0.510) > LT(0.432) > CK(0.339)。  结论  密度调控可有效改善华北落叶松人工林土壤质量状况,中等林分密度下土壤质量指数最高。建议对华北落叶松人工林进行适度密度调控处理,以提高人工林地土壤质量。

     

  • 图  1  不同强度密度调控华北落叶松人工林土壤质量指数

    Figure  1.  Soil quality index of Larix principis-rupprechtii plantation with different density regulation intensities

    图  2  最小数据集土壤质量指数与全集土壤质量指数的相关性

    Figure  2.  Correlation between the minimum data set soil quality index (MDS-SQIw) and total data set soil quality index (TDS-SQIw)

    图  3  不同密度调控强度华北落叶松人工林土壤质量指数土层分布

    Figure  3.  Distribution of soil quality index of Larix principis-rupprechtii plantation under different density regulation intensities

    表  1  华北落叶松人工林标准地概况

    Table  1.   Information of Larix principis-rupprechtii plantations

    处理
    Treatment
    密度调控强度
    Density regulation intensity/%
    林分密度/
    (株·hm−2)
    Stand density/
    (tree·ha−1)
    平均胸径
    Mean
    DBH/cm
    平均树高
    Mean
    tree height/m
    优势高
    Dominant
    height/m
    林龄/a
    Stand
    age/year
    海拔
    Altitude/m
    坡度
    Slope degree/(°)
    坡向
    Slope
    aspect
    坡位
    Slope
    position
    CK 0 2 096 ± 64a 15.01 ± 0.51a 14.19 ± 2.30a 17.13 ± 1.91a 35 2 327 25 北 North 上坡 Upslope
    LT 15 1 850 ± 121a 14.85 ± 0.69a 14.06 ± 2.02a 16.89 ± 1.64a 35 2 334 24 北 North 上坡 Upslope
    MT 35 1 402 ± 90b 15.96 ± 0.38a 15.86 ± 0.96a 18.20 ± 0.92a 35 2 346 24 北 North 上坡 Upslope
    HT 50 1 106 ± 187c 16.81 ± 1.26a 15.41 ± 2.22a 17.56 ± 1.15a 35 2 339 25 北 North 上坡 Upslope
    注:CK为对照;LT为低强度调控处理;MT为中强度调控处理;HT为高强度调控处理。不同小写字母表示不同密度调控强度间差异显著(P < 0.05)。下同。Notes: CK, control; LT, low intensity regulation treatment; MT, moderate intensity regulation treatment; HT, high intensity regulation treatment. Different lowercase letters mean significant differences among varied density regulation intensities at P < 0.05 level. The same below.
    下载: 导出CSV

    表  2  不同密度调控强度华北落叶松人工林土壤理化性质

    Table  2.   Soil physical and chemical properties of Larix principis-rupprechtii plantations with different density regulation intensities

    土壤性质 Soil property土层 Soil layer/cmCKLTMTHT
    含水率
    Moisture content/%
    0 ~ 10 15.58 ± 1.13Ba 18.78 ± 2.40ABa 18.16 ± 1.70ABa 22.12 ± 1.10Aa
    10 ~ 20 15.40 ± 1.14Ba 17.55 ± 1.85ABa 17.85 ± 1.93ABa 20.69 ± 1.08Aa
    20 ~ 30 14.69 ± 0.44Ba 16.21 ± 2.51ABa 16.87 ± 1.89ABa 20.03 ± 2.49Aa
    土壤密度
    Soil density/(g·cm−3)
    0 ~ 10 1.03 ± 0.04Aa 1.03 ± 0.08Aa 1.00 ± 0.03Ab 0.92 ± 0.03Aa
    10 ~ 20 1.05 ± 0.11Aa 1.07 ± 0.14Aa 1.08 ± 0.04Aab 1.01 ± 0.07Aa
    20 ~ 30 1.20 ± 0.12Aa 1.13 ± 0.13Aa 1.12 ± 0.05Aa 1.08 ± 0.13Aa
    pH 0 ~ 10 6.66 ± 0.04Ab 6.48 ± 0.15ABa 6.36 ± 0.06Bb 6.43 ± 0.03ABa
    10 ~ 20 6.72 ± 0.04Aab 6.51 ± 0.04Ba 6.38 ± 0.06Bab 6.39 ± 0.03Ba
    20 ~ 30 6.85 ± 0.06Aa 6.62 ± 0.09ABa 6.61 ± 0.05ABa 6.53 ± 0.05Ba
    有机质含量
    Organic matter content/(g·kg−1)
    0 ~ 10 66.41 ± 2.77Ba 70.17 ± 6.46ABa 80.35 ± 1.99Aa 74.48 ± 3.14ABa
    10 ~ 20 63.96 ± 1.23Aa 60.34 ± 6.49Ab 68.53 ± 4.28Ab 66.86 ± 5.45Aa
    20 ~ 30 47.93 ± 1.96Ab 50.34 ± 3.36Ab 52.69 ± 3.36Ac 52.13 ± 1.66Ab
    全氮含量
    Total nitrogen content/(g·kg−1)
    0 ~ 10 3.03 ± 0.62Aa 2.57 ± 0.12Aa 3.17 ± 0.24Aa 3.07 ± 0.06Aa
    10 ~ 20 2.33 ± 0.73Aab 1.98 ± 0.11Ab 2.79 ± 0.27Aab 2.61 ± 0.38Aa
    20 ~ 30 1.16 ± 0.33Cb 1.41 ± 0.14BCc 2.16 ± 0.41Ab 1.90 ± 0.34ABb
    全磷含量
    Total phosphorus content/(g·kg−1)
    0 ~ 10 0.43 ± 0.03BCa 0.40 ± 0.02Ca 0.56 ± 0.04Aa 0.50 ± 0.06ABa
    10 ~ 20 0.41 ± 0.03ABa 0.37 ± 0.03Bab 0.53 ± 0.09Aa 0.46 ± 0.05ABa
    20 ~ 30 0.31 ± 0.02Bb 0.34 ± 0.01Bb 0.45 ± 0.07Aa 0.44 ± 0.04Aa
    铵态氮含量
    Ammonium nitrogen content/(mg·kg−1)
    0 ~ 10 6.97 ± 0.44Ba 9.84 ± 2.27ABa 12.54 ± 2.11Aa 10.87 ± 0.80Aa
    10 ~ 20 5.03 ± 0.54Bb 5.13 ± 0.88Bb 9.60 ± 0.84Ab 8.32 ± 0.63Ab
    20 ~ 30 4.44 ± 0.27Cb 4.79 ± 0.67Cb 8.85 ± 0.72Ab 7.00 ± 0.64Bb
    硝态氮含量
    Nitrate nitrogen content/(mg·kg−1)
    0 ~ 10 12.90 ± 0.81Aa 14.96 ± 1.85Aa 15.15 ± 0.42Aa 15.01 ± 1.38Aa
    10 ~ 20 7.76 ± 0.52Ab 9.00 ± 0.43Ab 9.17 ± 0.28Ab 8.41 ± 1.04Ab
    20 ~ 30 2.98 ± 0.41Bc 3.51 ± 0.29Bc 8.64 ± 0.89Ab 3.91 ± 0.51Bc
    有效磷含量
    Available phosphorus content/(mg·kg−1)
    0 ~ 10 2.82 ± 0.55Ba 3.13 ± 0.39Ba 4.09 ± 0.41Aa 4.10 ± 0.51Aa
    10 ~ 20 2.26 ± 0.09Ba 2.33 ± 0.13Bb 3.07 ± 0.46Ab 2.60 ± 0.24ABb
    20 ~ 30 1.71 ± 0.32Ba 2.09 ± 0.37ABb 2.65 ± 0.57Ab 1.91 ± 0.34ABb
    速效钾含量
    Available potassium content/(mg·kg−1)
    0 ~ 10 6.53 ± 0.50Ba 7.85 ± 0.49Ba 11.15 ± 1.57Aa 8.21 ± 0.89Ba
    10 ~ 20 5.96 ± 0.99Ba 6.53 ± 1.11ABab 8.76 ± 1.24Aab 7.64 ± 1.11ABa
    20 ~ 30 5.64 ± 1.24Ba 5.50 ± 1.06Bb 7.94 ± 1.14Ab 7.48 ± 0.81ABa
    电导率
    Electrical conductivity/(μs·cm−1)
    0 ~ 10 64.65 ± 5.44Aa 54.23 ± 4.05Aa 66.93 ± 8.80Aa 73.47 ± 9.39Aa
    10 ~ 20 52.65 ± 3.18Aa 51.40 ± 3.60Aab 53.50 ± 6.42Aab 65.77 ± 2.75Aa
    20 ~ 30 48.25 ± 3.15Aa 44.47 ± 3.43Ab 49.30 ± 2.05Ab 59.20 ± 3.12Aa
    下载: 导出CSV

    表  3  不同密度调控强度华北落叶松人工林土壤生物学性质

    Table  3.   Soil biological properties of Larix principis-rupprechtii plantations with different density regulation intensities

    土壤性质 Soil property土层 Soil layer/cmCKLTMTHT
    微生物生物量碳含量
    Microbial biomass carbon
    content/(mg·kg−1)
    0 ~ 10 461.47 ± 44.79Ca 309.95 ± 62.23Da 808.28 ± 87.89Aa 652.09 ± 57.44Ba
    10 ~ 20 277.09 ± 38.42Cb 210.56 ± 36.59Cb 629.09 ± 60.36Ab 499.59 ± 45.48Bb
    20 ~ 30 249.59 ± 34.94Cb 128.04 ± 25.85Db 456.11 ± 34.63Ac 374.37 ± 41.34Bc
    微生物生物量氮含量
    Microbial biomass nitrogen
    content/(mg·kg−1)
    0 ~ 10 48.47 ± 3.21Da 64.68 ± 2.67Ca 97.21 ± 5.19Aa 75.50 ± 4.17Ba
    10 ~ 20 40.59 ± 1.47Cab 45.46 ± 3.71Cb 81.55 ± 1.50Ab 68.34 ± 5.47Ba
    20 ~ 30 36.36 ± 3.01Cb 40.19 ± 3.80Cb 73.19 ± 3.04Ac 49.62 ± 2.61Bb
    蔗糖酶活性
    Sucrase activity/(mg·g−1·h−1)
    0 ~ 10 2.93 ± 0.32Aa 2.19 ± 0.12Ba 2.30 ± 0.37Ba 2.22 ± 0.14Ba
    10 ~ 20 2.41 ± 0.29Aa 1.45 ± 0.26Bb 2.05 ± 0.34ABa 2.02 ± 0.23ABa
    20 ~ 30 1.53 ± 0.08Ab 1.21 ± 0.28Ab 1.29 ± 0.21Ab 1.46 ± 0.32Ab
    脲酶活性
    Urease activity/(mg·g−1·d−1)
    0 ~ 10 0.17 ± 0.10Ba 0.12 ± 0.05Ba 0.43 ± 0.10Aa 0.10 ± 0.03Ba
    10 ~ 20 0.07 ± 0.04Ba 0.06 ± 0.01Bab 0.23 ± 0.04Ab 0.08 ± 0.02Ba
    20 ~ 30 0.07 ± 0.03ABa 0.03 ± 0.01Bb 0.10 ± 0.03Ab 0.06 ± 0.01ABa
    多酚氧化酶活性
    Polyphenol oxidase activity/(mL·g−1·h−1)
    0 ~ 10 1.34 ± 0.14Aa 1.48 ± 0.28Aa 1.89 ± 0.36Aa 1.59 ± 0.16Aa
    10 ~ 20 0.87 ± 0.14Bb 1.06 ± 0.26ABab 1.51 ± 0.17Aab 1.22 ± 0.29ABab
    20 ~ 30 0.75 ± 0.09Bb 0.78 ± 0.15Bb 1.31 ± 0.21Ab 1.05 ± 0.29ABb
    过氧化物酶活性
    Peroxidase activity/(mL·g−1·h−1)
    0 ~ 10 0.26 ± 0.03ABa 0.35 ± 0.05Aa 0.24 ± 0.05Ba 0.28 ± 0.04ABa
    10 ~ 20 0.25 ± 0.02ABa 0.31 ± 0.01Aab 0.22 ± 0.04Ba 0.25 ± 0.05ABa
    20 ~ 30 0.23 ± 0.01ABa 0.28 ± 0.02Ab 0.20 ± 0.03Ba 0.24 ± 0.04ABa
    纤维素酶活性
    Cellulose activity/(mg·g−1·h−1)
    0 ~ 10 0.19 ± 0.01Aa 0.15 ± 0.02ABa 0.13 ± 0.02Ba 0.12 ± 0.03Ba
    10 ~ 20 0.16 ± 0.01Aab 0.13 ± 0.02ABab 0.11 ± 0.02Ba 0.10 ± 0.01Bab
    20 ~ 30 0.13 ± 0.02Ab 0.10 ± 0.01Bb 0.04 ± 0.01Db 0.07 ± 0.02Cb
    下载: 导出CSV

    表  4  土壤质量评价指标的主成分分析结果

    Table  4.   Results of principal component analysis of soil quality evaluation indexes

    指标
    Index
    主成分 Principal component公因子方差
    Common factor variance
    PC1PC2PC3PC4PC5
    pH −0.723 −0.002 −0.043 −0.377 0.037 0.668
    土壤有机质 Soil organic matter 0.144 0.167 0.775 0.222 −0.021 0.799
    全氮 Total nitrogen 0.760 0.201 0.392 0.177 0.044 0.860
    全磷 Total phosphorus 0.859 0.042 −0.070 0.203 0.273 0.804
    铵态氮 Ammonium nitrogen 0.829 0.268 0.103 0.104 −0.016 0.780
    硝态氮 Nitrate nitrogen 0.706 0.429 0.389 −0.077 −0.101 0.850
    有效磷 Available phosphorus 0.776 0.500 0.088 −0.034 0.084 0.868
    速效钾 Available potassium 0.883 −0.124 −0.062 0.234 −0.016 0.854
    土壤密度 Soil density −0.315 −0.643 −0.133 −0.045 0.013 0.532
    含水率 Moisture content 0.268 0.128 0.034 0.867 −0.034 0.842
    电导率 Electrical conductivity 0.362 0.329 0.248 0.649 0.273 0.797
    微生物生物量碳 Microbial biomass carbon 0.834 0.197 0.033 0.199 0.258 0.842
    微生物生物量氮 Microbial biomass nitrogen 0.927 0.137 −0.055 0.067 0.040 0.887
    蔗糖酶 Sucrase 0.131 0.344 0.678 −0.194 0.151 0.682
    脲酶 Urease 0.548 −0.301 0.161 −0.208 0.404 0.624
    多酚氧化酶 Polyphenol oxidase −0.039 0.799 0.164 0.286 0.001 0.749
    过氧化物酶 Peroxidase −0.042 −0.006 0.046 −0.081 −0.897 0.814
    纤维素酶 Cellulose −0.372 −0.195 0.600 0.161 −0.328 0.670
    特征值 Eigenvalue 6.742 2.071 1.920 1.751 1.337
    方差贡献率 Variance contribution rate/% 37.456 11.507 10.667 9.728 7.430
    累计方差贡献率 Cumulative variance contribution rate/% 37.456 48.964 59.631 69.359 76.789
    下载: 导出CSV
  • [1] 任启文, 毕君, 李联地, 等. 冀北山地3种森林植被恢复类型对土壤质量的影响[J]. 生态环境学报, 2018, 27(10):1818−1824.

    Ren Q W, Bi J, Li L D, et al. Effects of three forest vegetation restoration types on soil quality in northern Hebei mountain area[J]. Ecology and Environment Sciences, 2018, 27(10): 1818−1824.
    [2] Gaurav M, Rossana M, Krishna G, et al. Soil quality assessment across different stands in tropical moist deciduous forests of Nagaland, India[J]. Journal of Forestry Research, 2018, 30: 1479−1485.
    [3] Doran J W, Parkin T B. Defining and assessing soil quality[M]// Doran J W, Coleman D C, Bezdicek D F, et al. Defining soil quality for a sustainable environment. Madison: American Soil Agronomy, 1994: 3−21.
    [4] Christersson L. Wood production potential in poplar plantations in Sweden[J]. Biomass & Bioenergy, 2010, 34(9): 1289−1299.
    [5] Winjum J K, Schroeder P E. Forest plantations of the world: their extent, ecological attributes, and carbon storage[J]. Agricultural and Forest Meteorology, 1997, 84: 153−167. doi: 10.1016/S0168-1923(96)02383-0
    [6] 马祥庆. 人工林地力衰退研究综述[J]. 南京林业大学学报 (自然科学版), 1997, 21(2):77−82.

    Ma X Q. Review on the decline of plantation capacity[J]. Journal of Nanjing Forestry University (Natural Sciences), 1997, 21(2): 77−82.
    [7] 周霆, 盛炜彤. 关于我国人工林可持续问题[J]. 世界林业研究, 2008, 21(3):49−53.

    Zhou T, Sheng W T. On the plantation sustainability in China[J]. World Forestry Research, 2008, 21(3): 49−53.
    [8] Bünemann E K, Bongiorno G, Bai Z, et al. Soil quality: a critical review[J]. Soil Biology & Biochemistry, 2018, 120: 105−125.
    [9] 刘占锋, 傅伯杰, 刘国华, 等. 土壤质量与土壤质量指标及其评价[J]. 生态学报, 2006, 26(3):901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036

    Liu Z F, Fu B J, Liu G H, et al. Soil quality: concept, indicators and its assessment[J]. Acta Ecologica Sinica, 2006, 26(3): 901−913. doi: 10.3321/j.issn:1000-0933.2006.03.036
    [10] Yu P J, Tang X G, Zhang A C, et al. Responses of soil specific enzyme activities to short-term land use conversions in a salt-affected region, northeastern China[J]. Science of The Total Environment, 2019, 687: 939−945. doi: 10.1016/j.scitotenv.2019.06.171
    [11] Niemeyer J C, Lolata G B, de Carvalho G M, et al. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil[J]. Applied Soil Ecology, 2012, 59: 96−105.
    [12] 骆东奇, 白洁, 谢德体. 论土壤肥力评价指标和方法[J]. 生态环境学报, 2002, 11(2):202−205. doi: 10.3969/j.issn.1674-5906.2002.02.020

    Luo D Q, Bai J, Xie D T. Research on evaluation norm and method of soil fertility[J]. Ecology and Environment Sciences, 2002, 11(2): 202−205. doi: 10.3969/j.issn.1674-5906.2002.02.020
    [13] Guo L L, Sun Z G, Zhu O Y, et al. A comparison of soil quality evaluation methods for fluvisol along the lower Yellow River[J]. Catena, 2017, 152: 135−143. doi: 10.1016/j.catena.2017.01.015
    [14] Willy D K, Muyanga M, Mbuvi J, et al. The effect of land use change on soil fertility parameters in densely populated areas of Kenya[J]. Geoderma, 2019, 343: 254−262. doi: 10.1016/j.geoderma.2019.02.033
    [15] 吴玉红, 田霄鸿, 同延安, 等. 基于主成分分析的土壤肥力综合指数评价[J]. 生态学杂志, 2010, 29(1):173−180.

    Wu Y H, Tian X H, Tong Y A, et al. Assessment of integrated soil fertility index based on principal components analysis[J]. Chinese Journal of Ecology, 2010, 29(1): 173−180.
    [16] 杨奇勇, 杨劲松, 姚荣江, 等. 基于GIS和改进灰色关联模型的土壤肥力评价[J]. 农业工程学报, 2010, 26(4):100−105. doi: 10.3969/j.issn.1002-6819.2010.04.016

    Yang Q Y, Yang J S, Yao R J, et al. Comprehensive evaluation of soil fertility by GIS and improved grey relation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 100−105. doi: 10.3969/j.issn.1002-6819.2010.04.016
    [17] Liu Z J, Zhou W, Shen J B, et al. Soil quality assessment of albic soils with different productivities for eastern China[J]. Soil & Tillage Research, 2014, 140: 74−81.
    [18] Nabiollahi K, Golmohamadi F, Taghizadeh-Mehrjardi R, et al. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate[J]. Geoderma, 2018, 318: 16−28. doi: 10.1016/j.geoderma.2017.12.024
    [19] Andrés-Abellán M, Wic-Baena C, López-Serrano F R, et al. A soil-quality index for soil from Mediterranean forests[J]. European Journal of Soil Science, 2019, 70: 1001−1011.
    [20] 罗红, 普布顿珠, 朱雪林, 等. 西藏人工造林作业区土壤肥力评价[J]. 应用生态学报, 2017, 28(5):1507−1514.

    Luo H, Pubudunzhu, Zhu X L, et al. Soil fertility evaluation of artificial afforestation areas in Tibet, China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1507−1514.
    [21] 邵国栋, 艾娟娟, 孙启武, 等. 昆嵛山不同林分类型土壤质量状况及评价[J]. 林业科学研究, 2018, 31(6):178−187.

    Shao G D, Ai J J, Sun Q W, et al. Soil quality status and assessment of different forest types in Kunyushan Mountains[J]. Forest Research, 2018, 31(6): 178−187.
    [22] Zhou Z, Wang C, Jin Y, et al. Impacts of thinning on soil carbon and nutrients and related extracellular enzymes in a larch plantation[J]. Forest Ecology and Management, 2019, 450: 1−9.
    [23] Zhao B, Cao J, Geng Y, et al. Inconsistent responses of soil respiration and its components to thinning intensity in a Pinus tabuliformis plantation in northern China[J]. Agricultural and Forest Meteorology, 2019, 265: 370−380. doi: 10.1016/j.agrformet.2018.11.034
    [24] Wang Z, Yang H, Wang D, et al. Response of height growth of regenerating trees in a Pinus tabulaeformis Carr. plantation to different thinning intensities[J]. Forest Ecology and Management, 2019, 444: 280−289. doi: 10.1016/j.foreco.2019.04.042
    [25] 朱江, 韩海荣, 康峰峰, 等. 山西太岳山华北落叶松生物量分配格局与异速生长模型[J]. 生态学杂志, 2016, 35(11):2918−2925.

    Zhu J, Han H R, Kang F F, et al. Biomass allocation patterns and allometric models of Larix principis-rupprechtii in Mt. Taiyue, Shanxi[J]. Chinese Journal of Ecology, 2016, 35(11): 2918−2925.
    [26] 国家林业局. 森林土壤分析方法: LY/T 1210 ~ 1275—1999[S]. 北京: 中国标准出版社, 1999.

    State Forestry Administration. Forest soil analysis method: LY/T 1210 ~ 1275−1999[S]. Beijing: Standards Press of China, 1999.
    [27] 吴然, 康峰峰, 韩海荣, 等. 山西太岳山不同林龄华北落叶松林土壤微生物特性[J]. 生态学杂志, 2016, 35(12):3183−3190.

    Wu R, Kang F F, Han H R, et al. Soil microbial properties in Larix principis-rupprechtii plantations of different ages in Mt. Taiyue, Shanxi, China[J]. Chinese Journal of Ecology, 2016, 35(12): 3183−3190.
    [28] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.

    Guan S Y. Soil enzyme and its research method[M]. Beijing: China Agriculture Press, 1986.
    [29] Andrews S S, Karlen D L, Cambardella C A. The soil management assessment framework: a quantitative soil quality evaluation method[J]. Soil Science Society of America Journal, 2004, 68: 1945−1962. doi: 10.2136/sssaj2004.1945
    [30] 邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326−1333.

    Deng S H, Zeng L T, Guan Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedologica Sinica, 2016, 53(5): 1326−1333.
    [31] 杨振奇, 秦富仓, 于晓杰, 等. 基于最小数据集的砒砂岩区人工林地土壤质量评价指标体系构建[J]. 土壤通报, 2019, 50(5):1072−1078.

    Yang Z Q, Qin F C, Yu X J , et al. Construction of artificial forest soil quality evaluation indices in the feldspathic sandstone region based on minimum data set[J]. Chinese Journal of Soil Science, 2019, 50(5): 1072−1078.
    [32] 康冰, 刘世荣, 蔡道雄, 等. 马尾松人工林林分密度对林下植被及土壤性质的影响[J]. 应用生态学报, 2009, 20(10):2323−2331.

    Kang B, Liu S R, Cai D X, et al. Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties[J]. Chinese Journal of Applied Ecology, 2009, 20(10): 2323−2331.
    [33] 毛志宏, 朱教君, 刘足根, 等. 间伐对落叶松人工林内草本植物多样性及其组成的影响[J]. 生态学杂志, 2006, 25(10):1201−1207. doi: 10.3321/j.issn:1000-4890.2006.10.010

    Mao Z H, Zhu J J, Liu Z G, et al. Effects of thinning on species diversity and composition of understory herbs in a larch plantation[J]. Chinese Journal of Ecology, 2006, 25(10): 1201−1207. doi: 10.3321/j.issn:1000-4890.2006.10.010
    [34] 马芳芳, 贾翔, 赵卫, 等. 间伐强度对辽东落叶松人工林土壤理化性质的影响[J]. 生态学杂志, 2017, 36(4):971−977.

    Ma F F, Jia X, Zhao W, et al. Effects of thinning intensity on soil physicochemical properties of Larix kaempferi plantation in eastern Liaoning Province[J]. Chinese Journal of Ecology, 2017, 36(4): 971−977.
    [35] 向元彬, 黄从德, 胡庭兴, 等. 不同密度巨桉人工林土壤有机碳及微生物量碳氮特征[J]. 西北植物学报, 2014, 34(7):1476−1481. doi: 10.7606/j.issn.1000-4025.2014.07.1476

    Xiang Y B, Huang C D, Hu T X, et al. Characteristics of soil organic carbon and microbial biomass carbon and nitrogen in Eucalyptus grand plantations with different densities[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(7): 1476−1481. doi: 10.7606/j.issn.1000-4025.2014.07.1476
    [36] Baldrian P, Šnajdr J, Merhautová V, et al. , Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change[J]. Soil Biology & Biochemistry, 2013, 56: 60−68.
    [37] 赵汝东, 樊剑波, 何园球, 等. 林分密度对马尾松林下土壤养分及酶活性的影响[J]. 土壤, 2012, 44(2):297−301. doi: 10.3969/j.issn.0253-9829.2012.02.019

    Zhao R D, Fan J B, He Y Q, et al. Effects of stand density on soil nutrients and enzyme activities in Pinus massoniana plantation[J]. Soils, 2012, 44(2): 297−301. doi: 10.3969/j.issn.0253-9829.2012.02.019
    [38] Qiu X C, Peng D L, Wang H B, et al. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China[J]. Ecological Indicators, 2019, 103: 236−247. doi: 10.1016/j.ecolind.2019.04.010
    [39] 赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2):351−358.

    Zhao N, Meng P, Zhang J S, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 351−358.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  109
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-02-23
  • 网络出版日期:  2021-05-26
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回