高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国不同草本功能群叶片钾含量的空间格局及控制因素

何奕成 田大栓 汪金松 符义稳 魏学红 李景文

何奕成, 田大栓, 汪金松, 符义稳, 魏学红, 李景文. 中国不同草本功能群叶片钾含量的空间格局及控制因素[J]. 北京林业大学学报, 2021, 43(8): 83-89. doi: 10.12171/j.1000-1522.20200324
引用本文: 何奕成, 田大栓, 汪金松, 符义稳, 魏学红, 李景文. 中国不同草本功能群叶片钾含量的空间格局及控制因素[J]. 北京林业大学学报, 2021, 43(8): 83-89. doi: 10.12171/j.1000-1522.20200324
He Yicheng, Tian Dashuan, Wang Jinsong, Fu Yiwen, Wei Xuehong, Li Jingwen. Spatial patterns and impacting factors of leaf potassium content among different functional groups of herbaceous plants across China[J]. Journal of Beijing Forestry University, 2021, 43(8): 83-89. doi: 10.12171/j.1000-1522.20200324
Citation: He Yicheng, Tian Dashuan, Wang Jinsong, Fu Yiwen, Wei Xuehong, Li Jingwen. Spatial patterns and impacting factors of leaf potassium content among different functional groups of herbaceous plants across China[J]. Journal of Beijing Forestry University, 2021, 43(8): 83-89. doi: 10.12171/j.1000-1522.20200324

中国不同草本功能群叶片钾含量的空间格局及控制因素

doi: 10.12171/j.1000-1522.20200324
基金项目: 国家自然科学基金项目(31971538),国家重点研发计划课题(2017YFA0604801)
详细信息
    作者简介:

    何奕成。主要研究方向:恢复生态学。Email:heyicheng@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号

    责任作者:

    李景文,博士,博士生导师。主要研究方向:恢复生态学和生物多样性。Email:lijingwen@bjfu.edu.cn 地址:同上

  • 中图分类号: Q945.79

Spatial patterns and impacting factors of leaf potassium content among different functional groups of herbaceous plants across China

  • 摘要:   目的  钾是维持植物生长和水分高效利用的重要生命元素,特别在当前干旱化趋势增强的背景下尤为重要。但是,前人关于植物钾元素的研究主要集中在局部尺度上,仍然不清楚大尺度上不同草本功能群叶片钾含量的空间格局及控制因素有何差异。  方法  本研究基于中国164个地点739种草本植物,旨在揭示不同功能群叶片钾含量的空间格局及其与气候、土壤养分之间的定量关系。  结果  (1)中国草本叶片钾含量随纬度线性增加,但随经度线性降低。并且不同草本功能群叶片钾含量的空间格局存在差异。(2)总体上来说,中国草本叶片钾含量主要受湿润指数和土壤全氮的共同影响。(3)不同功能群叶片钾含量的影响因素存在差异。如一年生草本叶片钾含量主要受湿润指数和土壤全氮的共同作用,而多年生草本只受土壤全氮的影响。低钾利用效率草本的叶片钾含量主要受湿润指数和土壤全氮的影响,而高钾利用效率草本则受土壤全氮和全磷的作用。菊科和莎草科植物叶片钾含量的主控因素为土壤全氮,而禾本科植物为湿润指数。  结论  本研究首次系统比较和揭示中国不同草本功能群叶片钾含量的空间格局及影响因素的异同,对理解全球干旱化趋势日趋严峻背景下植物功能群的适应策略以及植物群落组成动态变化具有重要的参考价值。

     

  • 图  1  中国草本植物以及不同草本功能群叶片钾含量的空间格局

    PFG. 植物功能群;KUE. 钾利用效率。PFG, plant functional group; KUE, K use efficiency.

    Figure  1.  Spatial patterns of leaf K content in herbaceous plants across China and among different herbaceous PFG

    图  2  中国草本植物叶片钾含量与湿润指数(HI)、土壤全氮(SN)、全磷(SP)或全钾(SK)之间的关系

    误差棒与虚线相交为无显著差异(P > 0.05)。下同。There is no significant difference (P > 0.05) when the error bar covers the dotted line. The same below.

    Figure  2.  Relationship of leaf K content with humanity index (HI), soil total N (SN), total P (SP) or total K (SK)

    图  3  不同草本功能群的叶片钾含量

    AH. 一年生草本;PH. 多年生草本。不同字母代表显著性差异(P < 0.05), 数字代表样本量。AH, annual herb; PH, perennial herb. Different lowercase letters indicate significant differences (P < 0.05), and numbers represent the sample size of observations.

    Figure  3.  Leaf potassium content among different PFGs

    图  4  一年生和多年生草本叶片钾含量与HI、SN、SP或SK之间关系

    Figure  4.  Relationship of leaf K content withHI, SN, SP or SK among annual versus perennial herbs

    图  5  低和高钾利用效率草本的叶片钾含量与HI、SN、SP或SK之间的关系

    Figure  5.  Relationship of leaf K content with HI, SN, SP or SK among PFGs with low versus high K use efficiency

    图  6  不同科草本的叶片钾含量与HI、SN、SP或SK之间的关系

    Figure  6.  Relationship of leaf K content with HI, SN, SP or SK among Asteraceae, Cyperaceae versus Poaceae plants

  • [1] Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8): 788−796. doi: 10.1111/j.1461-0248.2011.01641.x
    [2] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton[J]. Physiologia Plantarum, 2008, 13: 670−681.
    [3] Sardans J, Peñuelas J. Potassium: a neglected nutrient in global change[J]. Global Ecology & Biogeography, 2015, 24(3): 261−275.
    [4] IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
    [5] Sardans J, Peñuelas J, Coll M, et al. Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests[J]. Functional Ecology, 2012, 26(5): 1077−1089. doi: 10.1111/j.1365-2435.2012.02023.x
    [6] Singh S K, Reddy V R, Sicher R C. Seasonal critical concentration and relationships of leaf phosphorus and potassium status with biomass and yield traits of soybean[J]. Journal of Plant Nutrition and Soil Science, 2018, 181: 575−585. doi: 10.1002/jpln.201700392
    [7] Lu Z, Xie K, Pan Y, et al. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy[J]. Plant Cell Environment, 2019, 42: 2231−2244. doi: 10.1111/pce.13553
    [8] Mao W, Ginger A, Li Y L, et al. Life history strategy influences biomass allocation in response to limiting nutrients and water in an arid system[J]. Polish Journal of Ecology, 2012, 60: 381−389.
    [9] Kanai S, Moghaieb R E, El-Shemy H A, et al. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity[J]. Plant Science, 2011, 180: 368−374. doi: 10.1016/j.plantsci.2010.10.011
    [10] Boxman A W, Cobben P L W, Roelofs J G M. Does (K + Mg + Ca + P) fertilization lead to recovery of tree health in a nitrogen stressed Quercus rubra L. stand?[J]. Environmental Pollution, 1994, 85: 297−303. doi: 10.1016/0269-7491(94)90051-5
    [11] Neirynck J, Maddelein D, de Keersmaeker L, et al. Biomass and nutrient cycling of a highlyproductive Corsican pine stand on former heathland in northern Belgium[J]. Annales des Sciences Forestieres, 1998, 55: 389−405. doi: 10.1051/forest:19980401
    [12] 姜存仓, 王运华, 鲁剑巍, 等. 植物钾效率基因型差异机理的研究进展[J]. 华中农业大学学报, 2004(4):483−487. doi: 10.3321/j.issn:1000-2421.2004.04.023

    Jiang C C, Wang Y H, Lu J W, et al. Advances of study on the K-efficiency in different plant genotypes[J]. Journal of Huazhong Agricultural University, 2004(4): 483−487. doi: 10.3321/j.issn:1000-2421.2004.04.023
    [13] Graham R D. Breeding for nutritional charact eristi c in cereals[J]. Advance Plant Nutrition, 1984(1): 57−107.
    [14] 汪自强, 董明远. 不同钾水平下春大豆品种的钾利用效率研究[J]. 大豆科学, 1996, 15(3):202−207.

    Wang Z Q, Dong M Y. Potassium use efficiency of spring soybean under various potassium supply[J]. Soybean Science, 1996, 15(3): 202−207.
    [15] Watson R, Pritchard J, Malone M. Direct measurement of sodium and potassium in the transpirating stream of salt-excluding and non-excluding varieties of wheat[J]. Journal of Experimental Botany, 2001, 52: 1873−1881. doi: 10.1093/jexbot/52.362.1873
    [16] Sharifi M, Cheema M, Mcvicar K, et al. Evaluation of liming properties and potassium bioavailability of three Atlantic Canada wood ash sources[J]. Canadian Journal of Plant Science, 2013, 93(6): 1209−1216. doi: 10.4141/cjps2013-168
    [17] Chen G, Hu Q, Luo L, et al. Rice potassium transporter O sHAK 1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant Cell Environment, 2015(38): 2747−2765.
    [18] Wright S J, Yavitt J B, Wurzburger N, et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest[J]. Ecology, 2011, 92: 1616−1625. doi: 10.1890/10-1558.1
    [19] Tobias C, Carly J S, Luc D, et al. Soil phosphorus constrains biodiversity across European grasslands[J]. Global Change Biology, 2014, 20(12): 3814−3822. doi: 10.1111/gcb.12650
    [20] 陈琼, 李肖夏, 王慧. 菊科12种外来植物的有性繁殖特征和入侵风险研究[J]. 植物科学学报, 2018, 36(3):345−353. doi: 10.11913/PSJ.2095-0837.2018.30345

    Chen Q, Li X X, Wang H. Investigation on sexual reproduction and invasion risk of 12 alien Compositae species[J]. Plant Science Journal, 2018, 36(3): 345−353. doi: 10.11913/PSJ.2095-0837.2018.30345
    [21] Spalink D, Drew B T, Pace M C, et al. Biogeography of the cosmopolitan sedges (Cyperaceae) and the area-richness correlation in plants[J]. Journal of Biogeography, 2016, 43: 1893−1904. doi: 10.1111/jbi.12802
    [22] Linder H P, Lehmann C E R, Archibald S, et al. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation[J]. Biological Reviews, 2018, 93: 1125−1144. doi: 10.1111/brv.12388
    [23] Dong J, Cui X, Wang S, et al. Changes in biomass and quality of alpine steppe in response to N & P fertilization in the Tibetan Plateau[J/OL]. PLoS ONE, 2016, 11(5): e0156146 [2020−10−13]. https://doi.org/10.1371/journal.pone.0156146.
    [24] Chapin III F S, Moilanen L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves[J]. Ecology, 1991, 72: 709−715. doi: 10.2307/2937210
    [25] 史培军, 孙劭, 汪明, 等. 中国气候变化区划(1961—2010年)[J]. 中国科学: 地球科学, 2014, 44(10):2294−2306. doi: 10.1360/zd-2014-44-10-2294

    Shi P J, Sun S, Wang M, et al. The climate regionalization in China for 1961−2010[J]. Scientia Sinica (Terrae), 2014, 44(10): 2294−2306. doi: 10.1360/zd-2014-44-10-2294
    [26] Tomlinson K W, Poorter L, Sterck F J, et al. Leaf adaptations of evergreen and deciduous trees of semiarid and humid savannas on three continents[J]. Journal of Ecology, 2013, 101(2): 430−440. doi: 10.1111/1365-2745.12056
    [27] Oliveira R H, Rosolem C A, Trigueiro R M. Importance of mass flow and diffusion on the potassium supply to cotton plants as affected by soil water and potassium[J]. Revista Brasileira Ciencia Solo, 2004, 28: 439−445. doi: 10.1590/S0100-06832004000300005
    [28] Fyllas N M, Patino S, Baker T R, et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate[J]. Biogeosciences, 2009(6): 2677−2708.
    [29] Tian D S , Niu S L. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10 (2): 1714−1721.
    [30] Yang T, Zhang S, Hu Y, et al. The role of a potassium transporter OsHAK5 in potassium acquisition and trans port from roots to shoots in rice at low potassium supply levels[J]. Plant Physiology, 2014, 166: 945−959. doi: 10.1104/pp.114.246520
    [31] 陈光, 高振宇, 徐国华. 植物响应缺钾胁迫的机制及提高钾利用效率的策略[J]. 植物学报, 2017, 52(1):89−101. doi: 10.11983/CBB16231

    Chen G, Gao Z Y, Xu G H. Adaption of plants to potassium deficiency and strategies to improve potassium use efficiency[J]. Chinese Bulletin of Botany, 2017, 52(1): 89−101. doi: 10.11983/CBB16231
    [32] Li F, Hu H, McCormlack M L, et al. Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests[J]. Journal of Ecology, 2019, 107: 1238−1249. doi: 10.1111/1365-2745.13125
    [33] 王艳丽, 王京, 刘国顺, 等. 磷施用量对烤烟根系生理及叶片光合特性的影响[J]. 植物营养与肥料学报, 2016, 22(2):410−417. doi: 10.11674/zwyf.14437

    Wang Y L, Wang J, Liu G S, et al. Effects of different phosphorus levels on root physiological and leaf photosynthetic characteristics of flue-cured tobacco[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 410−417. doi: 10.11674/zwyf.14437
    [34] Wang H Y, Zhou J M, Du C W, et al. Potassium fractions in soils as affected by monocalcium phosphate, ammonium sulfate, and potassium chloride application[J]. Pedosphere, 2010, 20(3): 0−377.
    [35] Britzke D, da Silva L S, Moterle D F, et al. A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands[J]. Journal of Soils and Sediments, 2012, 12: 185−197. doi: 10.1007/s11368-011-0431-7
    [36] Casper B B, Ferseth I N, Kempenich H, et al. Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava[J]. Functional Ecology, 2001, 15: 740−747. doi: 10.1046/j.0269-8463.2001.00583.x
    [37] Alon M, Sternberg M. Effects of extreme drought on primary production, species composition and species diversity of a Mediterranean annual plant community[J]. Journal of Vegetation Science, 2019, 30: 1045−1061. doi: 10.1111/jvs.12807
    [38] 胡承孝, 王运华. 不同小麦品种钾吸收、分配特性及其钾营养效率的差异[J]. 华中农业大学学报, 2000, 19(3):233−239. doi: 10.3321/j.issn:1000-2421.2000.03.011

    Hu C X, Wang Y H. Variation among wheat varieties in characteristics of potassium uptake and distribution, and potassium nutrition efficiency[J]. Journal of Huazhong Agricultural University, 2000, 19(3): 233−239. doi: 10.3321/j.issn:1000-2421.2000.03.011
    [39] Lobban C S, Harrison P J, Duncan M J. The physio-logical ecology of seaweeds[M]. New York: Cambridge University Press, 1985: 11−22.
    [40] 赵燕, 王辉, 李吉跃. 氮、磷、钾对毛白杨幼苗光合生理的影响[J]. 西北林学院学报, 2015, 30(5):34−38, 137. doi: 10.3969/j.issn.1001-7461.2015.05.06

    Zhao Y, Wang H, Li Y J. Effects of nitrogen, phosphorus and potassium on photosynthetic physiology of Populus tomentosa seedlings[J]. Journal of Northwest Forestry University, 2015, 30(5): 34−38, 137. doi: 10.3969/j.issn.1001-7461.2015.05.06
    [41] Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants[J]. Journal of Plant Nutrition and Soil Science, 2005, 168: 521−530. doi: 10.1002/jpln.200420485
    [42] Arquero O, Barranco D, Benlloch M. Potassium starvation increases stomatal conductance in olive trees[J]. Hort Science, 2006, 41: 433−436.
    [43] Levi A, Paterson A H, Cakmak I, et al. Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits[J]. Physiologia Plantarum, 2011, 141: 265−275. doi: 10.1111/j.1399-3054.2010.01438.x
    [44] Liu H Y, Mi Z R, Lin L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4051−4056. doi: 10.1073/pnas.1700299114
    [45] Moroney J R, Rundel P W, Sork V L. Phenotypic plasticity and differentiation in fitness-related traits in invasive populations of the Mediterranean forb Centaurea melitensis (Asteraceae)[J]. American Journal of Botany, 2013, 100: 2040−2051. doi: 10.3732/ajb.1200543
    [46] Spalink D, Pender J, Escudero M, et al. The spatial structure of phylogenetic and functional diversity in the United States and Canada: an example using the sedge family (Cyperaceae)[J]. Journal of Systematics and Evolution, 2018, 56: 449−465. doi: 10.1111/jse.12423
  • 加载中
图(6)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  66
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 修回日期:  2020-11-24
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回