高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风沙环境下防风挡沙墙复变作用规律的风洞模拟

闫敏 左合君 郭跃 贾光普 乔硕 席成

闫敏, 左合君, 郭跃, 贾光普, 乔硕, 席成. 风沙环境下防风挡沙墙复变作用规律的风洞模拟[J]. 北京林业大学学报, 2021, 43(5): 108-117. doi: 10.12171/j.1000-1522.20200339
引用本文: 闫敏, 左合君, 郭跃, 贾光普, 乔硕, 席成. 风沙环境下防风挡沙墙复变作用规律的风洞模拟[J]. 北京林业大学学报, 2021, 43(5): 108-117. doi: 10.12171/j.1000-1522.20200339
Yan Min, Zuo Hejun, Guo Yue, Jia Guangpu, Qiao Shuo, Xi Cheng. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108-117. doi: 10.12171/j.1000-1522.20200339
Citation: Yan Min, Zuo Hejun, Guo Yue, Jia Guangpu, Qiao Shuo, Xi Cheng. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108-117. doi: 10.12171/j.1000-1522.20200339

风沙环境下防风挡沙墙复变作用规律的风洞模拟

doi: 10.12171/j.1000-1522.20200339
基金项目: 内蒙古自治区科技重大专项(2019ZD007)
详细信息
    作者简介:

    闫敏,讲师。主要研究方向:荒漠化防治研究。Email:ym5233@126.com 地址:010011 内蒙古呼和浩特市鄂尔多斯东街29号沙漠治理学院

    责任作者:

    左合君,教授。主要研究方向:荒漠化防治、道路风沙及风吹雪灾害防治研究。Email:zuohj@126.com 地址:同上

  • 中图分类号: S288

Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment

  • 摘要:   目的  风沙防护是干旱环境下人类基础设施建设和维护的关键工程问题之一,为探明不透风防风阻沙措施风沙运移的变化规律,筛选特殊风沙区域防护体系构建合适设置参数。  方法  采用风洞模拟对不同风向夹角条件下防风挡沙墙的气流速度场、风沙流结构以及沙粒阻截率/输导率的变化规律进行研究。  结果  (1)迎风侧模型4倍障高处始终为气流急剧变化的拐点,且不随着指示风速的变化而变化;当指示风速小于10 m/s,背风侧弱风区或静风区的范围随着指示风速的增大而增大,大于12 m/s则呈相反规律;同一指示风速作用下,随风向夹角的增大有效防护范围逐渐增加。(2)迎风侧积沙主要集中于近地表0 ~ 10 cm,平均占总输沙量的85.31%;45°、60°、75°与 90°4 种风向夹角条件下背风侧输沙量主要集中在20 ~ 30 cm高度范围内,分别占总输沙量的71.25%、88.75%、85.25%、86.00%。(3)背风侧0 ~ 10 cm高度层沙粒截留随指示风速的增加而增加,75°夹角时最大,平均为95.64%;10 ~ 30 cm高度层沙粒输导随着指示风速的增加有增大趋势,45°夹角时最大,平均为81.09%。  结论  指示风速的变化对防风挡沙墙气流速度场变化规律影响不显著,而对背风侧弱风区或静风区的范围影响较大,75°时有效防护范围最佳;迎风侧输沙量随高度的增加逐渐减少,背风侧随高度的增大呈现出先增加后减少的变化趋势;作为防风阻沙措施风向夹角应设置为75°左右。

     

  • 图  1  试验场景

    Figure  1.  Experimental scenarios

    图  2  气流速度场测点分布示意图

            H为模型高度,取值10 cm。H is model height, 10 cm.

    Figure  2.  Layout diagram measuring points of the airflow velocity field

    图  3  防风挡沙墙水平气流速度变化规律

    Figure  3.  Law of horizontal airflow velocity on retaining wall

    图  4  防风挡沙墙垂向气流速度廓线变化规律

    图4a4b括号内容表示测点位置。Informations in the brackets of Fig.4a and Fig. 4b mean the test position.

    Figure  4.  Law of vertical velocity profile on retaining wall

    图  5  防风挡沙墙风沙流垂直分布

    Figure  5.  Vertical distribution of wind-sand flow on retaining wall

    表  1  不同模型风洞内雷诺数值

    Table  1.   Reynolds values of different models in wind tunnels

    模型高度 Model height/cm平均风速 Mean wind speed/(m·s−1)温度 Temperature/℃气压 Air pressure/hPa雷诺数 Reynolds number
    58 ~ 14138553.87 × 105 ~ 6.78 × 105
    108 ~ 14138543.87 × 105 ~ 6.78 × 105
    208 ~ 14158603.84 × 105 ~ 6.72 × 105
    308 ~ 14138583.89 × 105 ~ 6.79 × 105
    下载: 导出CSV

    表  2  防风挡沙墙风沙流结构变化

    Table  2.   Wind-sand flow structure changes of retaining wall

    模型与风向夹角
    Angle of model and wind
    direction angle/(°)
    指示风速
    Indicated wind
    speed/(m·s−1)
    QF/
    (g·cm−2·min−1)
    QB/
    (g·cm−2·min−1)
    Q0 ~ 10/QF/%Q0 ~ 10/QB/%Q10 ~ 20/QB/%Q20 ~ 30/QB/%
    4580.501.650.900.010.240.75
    102.884.100.870.010.280.72
    129.327.720.830.010.310.68
    1416.1813.470.880.010.290.70
    6080.944.230.850.010.110.88
    103.079.760.850.010.100.89
    128.2618.630.810.010.100.89
    1414.1832.620.910.010.100.89
    7581.533.250.810.010.120.87
    103.296.740.820.010.150.84
    127.5915.220.790.010.140.85
    1415.7125.210.880.010.140.85
    9080.802.710.890.010.130.86
    103.066.560.850.010.130.86
    127.8719.930.810.010.130.86
    1413.8729.190.900.010.130.86
    注:QF为模型迎风侧3H处输沙总量;QB为模型背风侧3H处输沙总量。Notes: QF is total amount of sediment transport at 3H on the windward side of the model, QB is total amount of sediment transport at 3H on the leeward side of the model.
    下载: 导出CSV

    表  3  防风挡沙墙阻截率/输导率

    Table  3.   Rejection rate/conducting rate of retaining wall %

    风速
    Wind speed/(m·s−1)
    近地面高度层
    Near ground height level/cm
    模型与风向夹角 Angle of model and wind direction/(°)
    45607590
    80 ~ 10−97.34−95.15−97.25−94.44
    10 ~ 20+88.14+71.31+30.73+80.68
    20 ~ 30+99.04+99.56+99.56+99.29
    100 ~ 10−98.62−97.12−98.75−95.85
    10 ~ 20+73.43+62.88+59.86+56.37
    20 ~ 30+97.27+98.81+98.81+97.22
    120 ~ 10−99.14−97.31−99.03−96.58
    10 ~ 20+41.55+25.41+36.30+46.70
    20 ~ 30+96.23+98.99+99.00+98.13
    140 ~ 10−99.21−97.73−99.54−97.49
    10 ~ 20+54.89+64.87+53.62+67.83
    20 ~ 30+98.00+99.66+99.66+99.24
    注:−为模型截留率,+为模型输导率。Notes: − is the model rejection rate, + is the model conducting rate.
    下载: 导出CSV
  • [1] Xie S B, Qu J J, Pang Y J. Dynamic wind differences in the formation of sand hazards at high and low altitude railway sections[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 169: 39−46.
    [2] Zhao W Z, Hu G L, Zhang Z H, et al. Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region: a case study in the Hexi Corridor, northwest China[J]. Ecological Engineering, 2008, 33(2): 119−125. doi: 10.1016/j.ecoleng.2008.02.010
    [3] 屈建军, 刘贤万, 雷加强, 等. 尼龙网栅栏防沙效应的风洞模拟实验[J]. 中国沙漠, 2001(3):62−66. doi: 10.3321/j.issn:1000-694X.2001.01.012

    Qu J J, Liu X W, Lei J Q, et al. Simulation experiments on sand-arresting effect of nylon net fence in wind tunnel[J]. Journal of Desert Research, 2001(3): 62−66. doi: 10.3321/j.issn:1000-694X.2001.01.012
    [4] Xiao J H, Yao Z Y, Qu J J. Influence of Golmud-Lhasa section of Qinghai-Tibet Railway on blown sand transport[J]. Chinese Geographical Science, 2015, 25: 39−50. doi: 10.1007/s11769-014-0722-1
    [5] Zhang C L, Li Q, Zhou N, et al. Field observations of wind profiles and sand fluxes above the windward slope of a sand dune before and after the establishment of semi-buried straw checkerboard barriers[J]. Aeolian Research, 2016, 20: 59−70. doi: 10.1016/j.aeolia.2015.11.003
    [6] Zhang S, Ding G D, Yu M H, et al. Effect of straw checkerboards on wind proofing, sand fixation, and ecological restoration in shifting sandy land[J/OL]. Environmental Research and Public Health, 2018, 15(10): 2184 [2018−10−06]. https://doi.org/10.3390/ijerph15102184.
    [7] Xu X L, Zhang K L, Kong Y P, et al. Effectiveness of erosion control measures along the Qinghai-Tibet Highway, Tibet Plateau, China[J]. Transportation Research Part D: Transport and Environment, 2006, 11(4): 302−309. doi: 10.1016/j.trd.2006.06.001
    [8] Dong Z, Li H L, Wang J, et al. Wind tunnel test on effect of controlling windand deposited sand of geogrid sand-barrier[J]. Journal of Soil and Water Conservation, 2007, 5: 35−39.
    [9] 程建军, 蒋富强, 杨印海, 等. 戈壁铁路沿线风沙灾害特征与挡风沙措施及功效研究[J]. 中国铁道科学, 2010, 31(5):15−20.

    Cheng J J, Jiang F Q, Yang Y H, et al. Study on the hazard characteristics of the drifting sand along the railway in Gobi area and the efficacy of the control engineering measures[J]. China Railway Science, 2010, 31(5): 15−20.
    [10] Zhang K, Qu J, Liao K, et al. Damage by wind-blown sand and its control along Qinghai-Tibet railway in China[J]. Aeolian Research, 2010, 1: 143−146. doi: 10.1016/j.aeolia.2009.10.001
    [11] Cheng J J, Xue C X. The sand-damage-prevention engineering system for the railway in the desert region of the Qinghai-Tibet Plateau[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 125: 30−37. doi: 10.1016/j.jweia.2013.11.016
    [12] 韩致文, 王涛, 董治宝, 等. 风沙危害防治的主要工程措施及其机理[J]. 地理科学进展, 2004(1):13−21. doi: 10.11820/dlkxjz.2004.01.002

    Han Z W, Wang T, Dong Z B, et al. Main engineering measurements and mechanism of blown sand hazard control[J]. Progress in Geography, 2004(1): 13−21. doi: 10.11820/dlkxjz.2004.01.002
    [13] Zhang C L, Zou X Y, Pan X H, et al. Near-surface airflow field and aerodynamic characteristics of the railway-protection system in the Shapotou region and their significance[J]. Journal of Arid Environments, 2007, 71: 169−187. doi: 10.1016/j.jaridenv.2007.03.006
    [14] Li B, Sherman D J. Aerodynamics and morphodynamics of sand fences: a review[J]. Aeolian Research, 2015, 17: 33−48. doi: 10.1016/j.aeolia.2014.11.005
    [15] Luca B, Davide F, Aandrea L G. Solid barriers for windblown sand mitigation: aerodynamic behavior and conceptual design guidelines[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 173: 79−90.
    [16] 屈建军, 喻文波, 秦晓波. HDPE功能性固沙障防风效应试验[J]. 中国沙漠, 2014, 34(5):1185−1193.

    Qu J J, Yu W B, Qin X B. Wind-protecting efficiency of HDPE functional sand-fixing barriers[J]. Journal of Desert Research, 2014, 34(5): 1185−1193.
    [17] 何志辉, 李生宇, 王海峰, 等. 塔克拉玛干沙漠4种结构尼龙阻沙网的防风阻沙效益对比[J]. 干旱区研究, 2014, 31(2):369−374.

    He Z H, Li S Y, Wang H F, et al. Comparison of wind prevention and sand blocking effects of 4 types of sand blocking nylon nets in the central Taklimakan Desert[J]. Arid Zone Research, 2014, 31(2): 369−374.
    [18] 李凯崇, 石龙, 孔令伟, 等. 兰新高铁沿线不同挡沙措施防护效果评价[J]. 铁道工程学报, 2017, 34(3):11−14, 21. doi: 10.3969/j.issn.1006-2106.2017.03.003

    Li K C, Shi L, Kong L W, et al. Protection effect of different kinds of sand-barriers along Lanzhou-Xinjiang High-Speed Railway[J]. Journal of Railway Engineering Society, 2017, 34(3): 11−14, 21. doi: 10.3969/j.issn.1006-2106.2017.03.003
    [19] 辛文栋. 风区高速铁路路基沙害防治研究与设计[J]. 铁道工程学报, 2015, 32(10):61−65, 72. doi: 10.3969/j.issn.1006-2106.2015.10.011

    Xin W D. Sand disaster prevention research and design for high speed railway subgrade in the wind zone[J]. Journal of Railway Engineering Society, 2015, 32(10): 61−65, 72. doi: 10.3969/j.issn.1006-2106.2015.10.011
    [20] 袁鑫鑫, 王海峰, 雷加强, 等. 不同间距双排尼龙阻沙网防风效应的风洞模拟[J]. 中国沙漠, 2016, 36(5):1238−1246.

    Yuan X X, Wang H F, Lei J Q, et al. Wind tunnel simulation of windbreak effect of double-row nylon net fence with different interval[J]. Journal of Desert Research, 2016, 36(5): 1238−1246.
    [21] Baines W. Effects of velocity distribution on wind loads and flow patterns on buildings [C]// Proceedings of the symposium on wind effects on buildings and structures. Teddington: National Physical Laboratories, 1963: 198−225.
    [22] Good M C, Joubert P N. The form drag of two-dimensional bluff-plates immersed in turbulent boundary layers[J]. Journal of Fluid Mechanics, 1968, 31(3): 547−582. doi: 10.1017/S0022112068000327
    [23] Luca B, Marko H, Lorenzo R. Windblown sand along railway infrastructures: a review of challenges and mitigation measures[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 177: 340−365.
    [24] 张克存, 屈建军, 牛清河, 等. 青藏铁路沿线砾石方格固沙机理风洞模拟研究[J]. 地球科学进展, 2010, 25(3):284−289.

    Zhang K C, Qu J J, Niu Q H, et al. Simulative research on the mechanism of rocky checkerboard sand barriers along Qinghai-Tibet Railway in wind tunnel[J]. Advances in Earth Science, 2010, 25(3): 284−289.
    [25] 韩致文, 陈广庭, 胡英娣, 等. 塔里木沙漠公路防沙体系建设几个问题的探讨[J]. 干旱区资源与环境, 2000, 14(2):35−40. doi: 10.3969/j.issn.1003-7578.2000.02.007

    Han Z W, Chen G T, Hu Y T, et al. Discussion on problems about construction of sand-controlling systems along desert highway in Tarim Basin, Taklimakan Desert[J]. Journal of Arid Land Resources and Environment, 2000, 14(2): 35−40. doi: 10.3969/j.issn.1003-7578.2000.02.007
    [26] 吴望一. 流体力学[M]. 北京: 北京大学出版社, 1982.

    Wu W Y. Hydromechanics[M]. Beijing: Peking University Press, 1982.
    [27] Liu H Y, Hou Z F, Chen Z, et al. Effects of standing stubble on the interception of soil erosion particles[J]. Land Degradation & Development, 2019, 30(3): 1−9.
    [28] Mcewan I K, Willetts B B. Adaptation of the near-surface wind to the development of sand transport[J]. Journal of Fluid Mechanics, 1993, 252: 99−101. doi: 10.1017/S0022112093003684
    [29] Liu X P, Dong Z B. Experimental investigation of concentration profile of a blowing sand cloud[J]. Geomorphology, 2004, 60(3): 371−381.
    [30] Dong Z B, Wang H T, Zhang X H, et al. Height profile of particle concentration in an aeolian saltating cloud: a wind tunnel investigation by PIV MSD[J]. Geophysical Research Letters, 2004, 30(19): 1−4.
    [31] 李凯崇, 薛春晓, 刘贺业, 等. 不同类型挡沙措施风沙防护机理的风洞实验研究[J]. 铁道工程学报, 2015, 32(1):17−21. doi: 10.3969/j.issn.1006-2106.2015.01.004

    Li K C, Xue C X, Liu H Y, et al. Wind tunnel test on sand-preventing mechanism of different kinds of sand-barriers[J]. Journal of Railway Engineering Society, 2015, 32(1): 17−21. doi: 10.3969/j.issn.1006-2106.2015.01.004
    [32] 左合君. 临策铁路防沙明洞防风阻沙机理及对风沙环境的影响[D]. 呼和浩特: 内蒙古农业大学, 2013.

    Zuo H J. The impact of opencut tunnel on wind and sand resistance and its around environment in Lin-Ce Railway[D]. Hohhot: Inner Mongolia Agricultural University, 2013.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  132
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-01-20
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2021-05-27

目录

    /

    返回文章
    返回