高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石门国家森林公园夏季不同林分保健功能综合评价

朱舒欣 何双玉 胡菲菲 何茜 苏艳 李吉跃

朱舒欣, 何双玉, 胡菲菲, 何茜, 苏艳, 李吉跃. 石门国家森林公园夏季不同林分保健功能综合评价[J]. 北京林业大学学报, 2021, 43(6): 60-74. doi: 10.12171/j.1000-1522.20200343
引用本文: 朱舒欣, 何双玉, 胡菲菲, 何茜, 苏艳, 李吉跃. 石门国家森林公园夏季不同林分保健功能综合评价[J]. 北京林业大学学报, 2021, 43(6): 60-74. doi: 10.12171/j.1000-1522.20200343
Zhu Shuxin, He Shuangyu, Hu Feifei, He Qian, Su Yan, Li Jiyue. Comprehensive evaluation of healthcare functions among different stands in Shimen National Forest Park of southern China in summer[J]. Journal of Beijing Forestry University, 2021, 43(6): 60-74. doi: 10.12171/j.1000-1522.20200343
Citation: Zhu Shuxin, He Shuangyu, Hu Feifei, He Qian, Su Yan, Li Jiyue. Comprehensive evaluation of healthcare functions among different stands in Shimen National Forest Park of southern China in summer[J]. Journal of Beijing Forestry University, 2021, 43(6): 60-74. doi: 10.12171/j.1000-1522.20200343

石门国家森林公园夏季不同林分保健功能综合评价

doi: 10.12171/j.1000-1522.20200343
基金项目: 广东省林业科技创新项目(2018KJCX012)
详细信息
    作者简介:

    朱舒欣。主要研究方向:森林康养。Email:2450315979@qq.com 地址:510642广东省广州市天河区五山街道华南农业大学林学与风景园林学院

    责任作者:

    李吉跃,教授,博士生导师。主要研究方向:森林康养。Email:564857527@qq.com 地址:同上

  • 中图分类号: S731.2

Comprehensive evaluation of healthcare functions among different stands in Shimen National Forest Park of southern China in summer

  • 摘要:   目的  开展不同林分保健功能综合评价,不仅能为森林康养游憩出行提供选择依据,还能为今后森林康养林的构建与管理提供科学依据。  方法  于2020年夏季(6—8月),在广东省广州市石门国家森林公园中选取了毛竹林、亚热带季风常绿阔叶林、枫香林、杉木林和枫香杉木混交林5种林分,并设置1个无林地对照组,分析空气负离子浓度、空气含氧量、人体舒适度和植物精气4个指标的变化特征,采用主成分分析法和系统聚类法构建森林综合保健指数和评价等级,对不同林分的综合保健功能进行评价。  结果  (1)从空气负离子浓度来看,亚热带季风常绿阔叶林((8 377 ± 3 749)个/cm3)和毛竹林((4 257 ± 2 021)个/cm3)处于Ⅰ级很适宜水平,杉木林((2 930 ± 1 917)个/cm3)、枫香杉木混交林((2 907 ± 2 012)个/cm3)和枫香林((2 529 ± 1 996)个/cm3)均处于Ⅱ级适宜水平;无林地对照组((1 386 ± 556)个/cm3)处于Ⅲ级较适宜水平。(2)5种林分和无林地对照组的空气含氧量均处于Ⅱ级较高水平,其中枫香杉木混交林(21.807%)最高,无林地对照组(21.338%)最低。(3)从人体舒适度来看,毛竹林(2.78)最佳,其次为亚热带季风常绿阔叶林(2.81),无林地对照组(4.85)最差,5种林分均处于Ⅰ级非常舒适水平,无林地对照组处于Ⅱ级舒适水平。(4)从植物精气相对含量来看,亚热带季风常绿阔叶林最高(21.11%),其次为杉木林(14.75%)。在6—8月,植物精气种类数量和相对含量呈现递增趋势,不同月份森林释放的植物精气物质有较大差异,6月主要为萜烯类(占50.7%)和醇类;7月释放的主要为醇类(占30.9%)、酯类和萜烯类;8月释放植物精气种类的相对含量较均衡,以萜烯类(占23.1%)为主。(5)构建了森林综合保健指数(FCHI),根据FCHI值划分为5个评价等级,其中亚热带季风常绿阔叶林(0.904)和毛竹林(0.614)的综合保健功能处于Ⅰ级,其保健功能非常强;杉木林(0.455)、枫香杉木混交林(0.407)和枫香林(0.390)处于Ⅱ级,保健功能强;而无林地对照组(0.00)处于Ⅴ级,不具备保健功能。  结论  在夏季,亚热带季风常绿阔叶林的保健功效最佳,其次为毛竹林,在森林康养旅游中,建议游客优先选择这两种林分进行游憩。此外,今后在森林康养基地规划建设中,应注重保护性开发亚热带季风常绿阔叶林和毛竹林的景观资源,合理利用其康养活动空间;在提升康养保健功能的林分改造中,可以仿照天然林的群落结构,适当配植多树种混交林。

     

  • 图  1  研究区域——石门国家森林公园

    Figure  1.  Study area of Shimen National Forest Park

    图  2  系统聚类分析结果——树状图

    Figure  2.  Results of system cluster analysis: tree diagram

    图  3  不同林分空气负离子浓度比较

    不同小写字母表示同一月份不同林分间差异显著(P < 0.05)。下同。Different lowercase letters indicate significant differences in varied forest stands in the same month (P < 0.05). The same below.

    Figure  3.  Comparison of negative air ion concentration in different stands

    图  4  6—8月不同林分的温度和相对湿度

    Figure  4.  Temperature and relative humidity in different stands from June to August

    图  5  不同林分空气含氧量比较

    Figure  5.  Comparison of air oxygen content in different stands

    图  6  不同林分人体舒适度比较

    Figure  6.  Comparison of human comfort index in different stands

    图  7  不同林分植物精气种类及相对含量比较

    Figure  7.  Comparison of phytoncide types and relative content in different stands

    表  1  样地概况

    Table  1.   Overview of the sample land

    样地
    Sample plot
    林分类型
    Forest type
    面积/hm2
    Area/ha
    主要乔木层
    Main tree layer
    郁闭度
    Canopy density
    林龄/a
    Stand age/year
    海拔
    Altitude/
    m
    距水源距离
    Distance from
    water source/m
    A 毛竹林
    Phyllostachys edulis forest
    19.3 毛竹 Phyllostachys edulis 0.9 ≥ 30 810 ≈ 300
    B 亚热带季风常绿阔叶林
    Subtropical monsoon evergreen
    broadleaved forest
    65.0 短序润、浙江润楠、华润楠、罗浮柿、烟斗柯等
    Machilus breviflora, M. chekiangensis, M. chinensis, Diospyros morrisian, Lithocarpus corneus, etc.
    0.95 ≥ 100 820 ≈ 400
    C 无林地对照组
    Forestless control group
    1.7 无乔木层,主要为花草地被
    With no tree layer, mainly herbs
    790 ≈ 30
    D 枫香林 Liquidambar formosana forest 15.6 枫香 Liquidambar formosana 0.6 ≥ 20 450
    E 杉木林 Cunninghamia lanceolata forest 17.9 杉木 Cunninghamia lanceolata 0.7 ≥ 30 350
    F 枫香杉木混交林
    Coniferous and broadleaved mixed forest
    25.6 枫香、杉木
    Liquidambar formosana, Cunninghamia lanceolata
    0.5 ≥ 20 290 ≈ 150
    下载: 导出CSV

    表  2  空气负离子浓度评价标准

    Table  2.   Evaluation criteria for negative air ion concentration

    评价等级 Evaluation grade空气负离子浓度/(个·cm−3) Negative air ion concentration (NAIC)/(ions·cm−3)保健作用 Healthcare benefit
    Ⅰ级 Grade Ⅰ NAIC > 3 000 很适宜 Extraordinarily comfortable
    Ⅱ级 Grade Ⅱ 2 200 < NAIC ≤ 3 000 适宜 Comfortable
    Ⅲ级 Grade Ⅲ 1 100 < NAIC ≤ 2 200 较适宜 Averagely wholesome
    Ⅳ级 Grade Ⅳ 600 < NAIC ≤ 1 100 不适宜 Uncomfortable
    下载: 导出CSV

    表  3  空气含氧量评价标准

    Table  3.   Evaluation criteria for air oxygen content

    评价等级
    Evaluation grade
    空气含氧量
    Air oxygen
    content (AOC)/%
    程度
    Degree
    Ⅰ级 Grade Ⅰ AOC ≥ 22.0 高 High
    Ⅱ级 Grade Ⅱ 22.0 > AOC ≥ 20.8 较高 Relatively high
    Ⅲ级 Grade Ⅲ 20.8 > AOC ≥ 20.0 中等 Medium
    Ⅳ级 Grade Ⅳ 20.0 > AOC ≥ 19.5 较低 Relatively low
    Ⅴ级 Grade Ⅴ AOC < 19.5 低 Low
    下载: 导出CSV

    表  4  人体舒适度评价标准

    Table  4.   Evaluation criteria for human comfort index

    评价等级
    Evaluation grade
    人体舒适度
    Human comfort index (HCI)
    人体感觉
    Human feeling
    Ⅰ级 Grade Ⅰ HCI ≤ 4.55 非常舒适
    Very comfortable
    Ⅱ级 Grade Ⅱ 4.55 < HCI ≤ 6.95 舒适 Comfortable
    Ⅲ级 Grade Ⅲ 6.95 < HCI ≤ 9.00 不舒适 Uncomfortable
    Ⅳ级 Grade Ⅳ HCI > 9.00 极不舒适
    Extremely uncomfortable
    下载: 导出CSV

    表  5  各指标主成分得分系数矩阵及指标权重

    Table  5.   Principal component score coefficient matrix and index weight of all indicators

    指标 Indicator主成分得分系数矩阵
    Principal component score coefficient matrix
    线性组合系数
    Linear combination coefficient
    权重
    Weight value
    1212
    NAIC (X1) 0.365 −0.171 0.611 −0.105 0.27
    AOC (X2) 0.052 0.843 −0.170 0.891 0.12
    HCI (X3) 0.352 −0.094 0.569 −0.027 0.26
    PRC (X4) 0.408 0.343 0.525 0.440 0.35
    特征根 Eigenvalue 2.441 1.131
    方差贡献率 Variance contribution rate/% 61.032 28.282
    累积贡献率 Cumulative contribution rate/% 61.032 89.314
    下载: 导出CSV

    表  6  森林综合保健功能指数(FCHI)等级标准

    Table  6.   Criteria for forest comprehensive healthcare index (FCHI) grades

    等级
    Grade
    指数范围
    Index range
    综合保健功能等级
    Degree of comprehensive
    healthcare benefits
    Ⅰ级 Grade Ⅰ FCHI ≥ 0.494 非常强 Very strong
    Ⅱ级 Grade Ⅱ 0. 494 > FCHI ≥ 0.180 强 Strong
    Ⅲ级 Grade Ⅲ 0.180 > FCHI ≥ 0.043 弱 Weak
    Ⅳ级 Grade Ⅳ 0.043 > FCHI ≥ 0.008 非常弱 Very weak
    Ⅴ级 Grade Ⅴ FCHI < 0.008 无 Null
    下载: 导出CSV

    表  7  植物精气相对含量(6月)

    Table  7.   Relative content of phytoncide (June)

    序号
    No.
    种类
    Type
    化合物
    Chemical compound
    化学式
    Chemical formula
    植物精气相对含量
    Relative content of phytoncide/%
    ABDEF
    1 萜烯类 Terpenes α-蒎烯 α-pinene C10H16 0.56 0.12 0.86 1.23
    2 β-蒎烯 β-pinene C10H16 1.41 0.54 0.78 0.69
    3 柠檬烯 Limonene C10H16 3.17 1.23 0.89 0.56
    4 长叶烯 Longifolene C10H16 0.66 0.84 1.52
    5 β-月桂烯 β-myrcene C10H16 0.55 0.69 0.75 0.70 0.36
    6 2,3-二甲基-1-戊烯 2,3-dimethylpent-1-ene C7H14 0.15 0.76
    7 1-十一烯 1-undecene C11H22 1.16
    8 6,6-二甲基富烯 6,6-dimethylfulvene C8H10 0.23 0.52
    9 顺-3-甲基-2-戊烯 Cis-3-methyl-2-pentene C6H12 2.66 0.87 3.92
    10 2,3-二甲基-2-丁烯 Tetramethylethylene C6H12 0.25 1.62
    11 2-甲基-2-庚烯 2-methylhept-2-ene C8H16 0.08 0.42 1.62
    12 反-3-甲基-2-戊烯 trans-3-methyl-2-pentene C6H12 0.23 0.81
    13 醇类 Alcohols 2-乙基己醇 2-ethylhexanol C8H18O 2.10 2.55 0.44 1.07 1.38
    14 1-十六烷醇 1-hexadecanol C16H34O 0.56
    15 异植物醇 Isophytol C20H40O 1.54 0.84
    16 叶绿醇 Phytol C20H40O 0.54 1.32
    17 十三醇 Tridecanol C13H28O 0.21 0.87 0.71
    18 2-丙基-1-戊醇 2-propylpentan-1-ol C8H18O 2.10 0.56 0.56
    19 (E)-3-甲基戊-2-烯-4-炔-1-醇
    (E)-3-methylpent-2-en-4-yn-1-ol
    C6H8O 0.58 0.47
    20 酯类 Esters 乙酸龙脑酯 Bornyl acetate C12H20O2 2.51 1.56
    21 酮类 Ketones 2-乙酰环戊酮 2-acetyl-cyclopentanone C7H10O2 0.50 0.58 1.12 0.13
    22 3-辛酮 3-octanone C8H16O 0.89 0.24 0.57
    23 醛类 Aldehydes 反式-2-癸烯醛 trans-2-decenal C10H18O 2.10
    24 壬醛 Nonanal C9H18O 0.24 0.51 0.08
    25 十一醛 Undecanal C11H22O 0.24
    26 2-壬烯醛 2-nonenal C9H16O 1.51
    27 酸类 Acids 新癸酸 Neodecanoic acid C10H20O2 0.50 0.49
    28 肉豆蒄酸 Myristic acid C14H28O2 0.36
    合计 Total (65.94%) 15.04 19.21 7.35 10.47 13.87
    下载: 导出CSV

    表  8  植物精气相对含量(7月)

    Table  8.   Relative content of phytoncide (July)

    序号
    No.
    种类
    Type
    化合物
    Chemical compound
    化学式
    Chemical formula
    植物精气相对含量
    Relative content of phytoncide/%
    ABDEF
    1 萜烯类
    Terpenes
    右旋萜二烯 d-limonene C10H16 0.24 0.47 0.75 0.37 0.14
    2 1,5-二甲基-1,5-环辛二烯
    1,5-dimethyl-1,5-cyclooctadiene
    C10H16 0.28 0.71
    3 双戊烯 Dipentene C10H16 0.19 0.11
    4 1-十一烯 1-undecene C11H22 0.18 0.02 0.38 0.50
    5 莰烯 Comphene C10H16 0.78 0.51 0.14 0.57
    6 蒎烯 Pinene C10H16 0.41 0.86 0.58 0.60 0.20
    7 6,6-二甲基富烯 6,6-dimethylfulvene C8H10 0.24 0.27 1.25
    8 顺-3-甲基-2-戊烯 Cis-3-methyl-2-pentene C6H12 0.20 0.70 0.23 0.26
    9 三环烯 Tricyclene C15H24 0.21 0.06
    10 1-十三烯 1-tridecene C13H26 0.14 0.02 0.06
    11 萜品烯 Terpinen-4-ol C10H16 0.07 0.24 0.08
    12 3-蒈烯 3-carene C10H16 0.12 0.58 0.30
    13 β-蒎烯 β-pinene C10H16 0.94 0.90 0.41 0.20
    14 醇类
    Alcohols
    2-乙基己醇 2-ethylhexanol C8H18O 1.23 1.52 1.46 1.06 1.72
    15 2-丙基-1-戊醇 2-propylpentan-1-ol C8H18O 0.48 1.46
    16 桉油烯醇 Spathulenol C15H24O 0.80 1.41 2.34
    17 香叶醇 Geraniol C10H18O 0.56 1.02 0.22
    18 2-茨醇 Borneol C10H18O 0.05 0.81
    19 芳樟醇 Linalool C10H18O 1.02 1.35 0.98 0.47
    20 右旋香茅醇 d-citronellol C10H18O 0.21 0.14
    21 α-松油醇 α-terpineol C10H18O 0.72 0.47 0.23
    22 酯类
    Esters
    乙酸龙脑酯 Bornyl acetate C12H20O2 0.44 0.51 2.36 5.73
    23 乙酸异龙脑酯 Isobornyl acetate C12H20O2 0.68 0.79
    24 左旋乙酸龙脑酯 l-bornyl acetate C12H20O2 0.55 1.18 5.73
    25 乙酸芳樟酯 Linalyl acetate C12H20O2 1.18 0.51
    26 酮类
    Ketones
    2-莰酮 2-camphanone C10H16O 1.02 0.23 0.15
    27 2-甲基-5-(1-甲基乙烯基)-2-环己烯-1-酮
    2-methyl-5-(1-methylethenyl)-2-cyclohexen-1-one
    C10H14O 0.40 0.03
    28 6-甲基-5-庚烯-2-酮 6-methyl-5-hepten-2-one C8H14O 0.06 0.26 0.56
    29 3-烯-2-壬酮 3-ene-nonanone-2 C9H16O 0.42
    30 醛类
    Aldehydes
    α-龙脑烯醛 α-longine alkenal C10H16O 0.39 0.51 0.41 0.27
    31 β-环柠檬醛 β-cyclocitral C10H16O 0.25 0.57 0.49
    32 反式肉桂醛 trans-cinnamaldehyde C9H8O 0.27 0.50
    33 酸类
    Acids
    新松脂酸 Neoabietic acid C20H30O2 5.62
    合计 Total (70.27%) 10.36 20.56 12.38 17.95 9.02
    下载: 导出CSV

    表  9  植物精气相对含量(8月)

    Table  9.   Relative content of phytoncide (August)

    序号
    No.
    种类
    Type
    化合物
    Chemical compound
    化学式
    Chemical formula
    植物精气相对含量
    Relative content of phytoncide/%
    ABDEF
    1 萜烯类
    Terpenes
    (E)-β-金合欢烯 (E)-β-farnesene C15H24 0.23 0.54 0.52
    2 α-柏木烯 α-cedrene C15H24 0.06 0.17 0.03 0.54
    3 长叶烯 Longifolene C15H24 0.25 1.38 0.24 0.67 0.34
    4 莰烯 Comphene C10H16 0.51 0.74 0.41 0.12
    5 蒎烯 Pinene C10H16 0.14 1.05 1.01
    6 桧烯 Sabinene C10H16 0.67 1.54 0.75
    7 异松油烯 Terpinolene C10H16 0.69 0.03
    8 β-月桂烯 β-pinene C10H16 0.93 0.67 0.58 0.75 0.30
    9 顺式-2-辛烯 Cis-2-octene C8H16 0.08 0.02 0.37
    10 α-长蒎烯 α-longipinene C10H16 0.14 0.07
    11 醇类
    Alcohols
    芳樟醇 Linalool C10H18O 0.14 1.34 0.92 0.77
    12 香叶基芳樟醇 Geranyllinalool C20H34O 0.42 0.05
    13 2-乙基己醇 2-ethylhexanol C8H18O 1.20 1.60 0.78 0.56 0.74
    14 雪松醇 Cedrol C15H26O 0.75 0.32
    15 香叶醇 Geraniol C10H18O 0.29 0.64 0.24
    16 α-松油醇 α-terpineol C10H18O 0.35 0.54 0.16
    17 异辛醇 Isooctyl alcohol C8H18O 0.50 0.21
    18 十三醇 Tridecanol C13H28O 0.14 0.01
    19 酯类
    Esters
    壬酸异戊酯 Isoamyl nonanoate C14H28O2 0.56 1.98 1.20 2.54 0.53
    20 乙酸异辛酯 2-ethylhexyl acetate C10H20O2 0.53 0.43 0.12
    21 乙酸龙脑酯 Bornyl acetate C12H20O2 0.54 1.87 0.24 1.41 0.89
    22 柠檬酸三乙酯 Triethyl citrate C12H20O7 0.32 0.03
    23 酮类
    Ketones
    1-薄荷酮 1-menthone C10H18O 1.21 1.14 1.33 1.30 0.78
    24 长叶薄荷酮 Pulegone C10H18O 1.02 1.89 1.90 0.52
    25 左旋香芹酮 l(-)-carvone C9H12O2 0.85 0.41
    26 6-甲基-5-庚烯-2-酮 6-methyl-5-hepten-2-one C8H14O 0.15 0.54 0.21
    27 6-甲基-2-庚酮 6-methyl-2-heptanone C8H16O 0.81 0.11
    28 醛类
    Aldehydes
    α-柠檬醛 α-citral C10H16O 0.26 0.84 0.42 0.89 1.20
    29 壬醛 Nonanal C9H18O 0.50 0.58
    30 十一醛 Undecanal C11H22O 0.64 0.22 0.44
    31 癸醛 Decyl aldehyde C10H20O 0.12 0.52
    32 庚醛 Heptaldehyde C7H14O 0.57 0.40
    33 正辛醛 Octanal C8H18 0.32 0.21 0.18
    34 肉豆蔻醛 Undecan-4-olide C14H28O 0.43 0.47 0.84 0.80
    35 十三醛 Tridecanal C13H26O 0.18
    36 酸类
    Acids
    月桂酸 Lauric acid C12H24O2 0.42 0.75 0.45
    37 肉豆蔻酸 Myristic acid C14H28O2 0.17 0.02
    38 棕榈酸 Palmitic acid C16H32O2 1.18 0.12 0.80
    合计 Total (71.51%) 10.24 23.55 11.08 15.84 10.80
    下载: 导出CSV

    表  10  各项指标归一化值及综合保健功能评价

    Table  10.   Normalized value of indicators and comprehensive healthcare function evaluation

    林分类型 Forest typeNAICAOCHCIPRCFCHI等级 Grade
    毛竹林 Phyllostachys edulis forest 0.411 0.381 1.000 0.563 0.614 Ⅰ级 Grade Ⅰ
    亚热带季风常绿阔叶林 Subtropical monsoon evergreen broadleaved forest 1.000 0.236 0.985 1.000 0.904 Ⅰ级 Grade Ⅰ
    无林地对照组 Forestless control group 0.000 0.000 0.000 0.000 0.000 Ⅴ级 Grade Ⅴ
    枫香林 Liquidambar formosana forest 0.163 0.535 0.430 0.487 0.390 Ⅱ级 Grade Ⅱ
    杉木林 Cunninghamia lanceolata forest 0.221 0.669 0.270 0.699 0.455 Ⅱ级 Grade Ⅱ
    枫香杉木混交林 Coniferous and broadleaved mixed forest 0.218 1.000 0.160 0.532 0.407 Ⅱ级 Grade Ⅱ
    下载: 导出CSV
  • [1] UNWTO/GTERC. Asia tourism trends: 2019 edition, executive summary[R]. Macao: World Tourism Organization (UNWTO) and Global Tourism Economy Research Centre (GTERC), 2019.
    [2] 朱舒欣, 何双玉, 胡菲菲, 等. 森林康养旅游意愿及其影响因素研究: 以广州市为例[J]. 中南林业科技大学学报(社会科学版), 2020, 14(3):114−122.

    Zhu S X, He S Y, Hu F F, et al. Study on forest therapy tourism intention and its influencing factors: a case study of Guangzhou[J]. Journal of Central South University of Forestry and Technology (Social Sciences), 2020, 14(3): 114−122.
    [3] 赵庆, 钱万惠, 唐洪辉, 等. 广东省云勇森林公园6种林分保健功能差异比较[J]. 浙江农林大学学报, 2018, 35(4):750−756. doi: 10.11833/j.issn.2095-0756.2018.04.021

    Zhao Q, Qian W H, Tang H H, et al. Differences of health care functions of six forest stands in Yunyong Forest Park, Guangdong[J]. Journal of Zhejiang A&F University, 2018, 35(4): 750−756. doi: 10.11833/j.issn.2095-0756.2018.04.021
    [4] Ling D. Review on research of the negative air ion concentration distribution and its correlation with meteorological elements in mountain tourist area[J]. Earth Sciences, 2019, 8(1): 60−68. doi: 10.11648/j.earth.20190801.15
    [5] Wang Y, Ni Z, Wu D, et al. Factors influencing the concentration of negative air ions during the year in forests and urban green spaces of the Dapeng Peninsula in Shenzhen, China[J]. Journal of Forestry Research, 2019, 31: 2537−2547. doi: 10.1007/s11676-019-01047-z
    [6] Jiang S, Ma A, Ramachandran S. Negative air ions and their effects on human health and air quality improvement[J/OL]. International Journal of Molecular Sciences, 2018, 19(10): 2966 [2020−10−12]. https://doi.org/10.3390/ijms19102966.
    [7] 潘剑彬, 董丽, 廖圣晓, 等. 北京奥林匹克森林公园空气负离子浓度及其影响因素[J]. 北京林业大学学报, 2011, 33(2):59−64.

    Pan J B, Dong L, Liao S X, et al. Negative air ion concentration and affecting factors in Beijing Olympic Forest Park[J]. Journal of Beijing Forestry University, 2011, 33(2): 59−64.
    [8] Yan X, Wang H, Hou Z, et al. Spatial analysis of the ecological effects of negative air ions in urban vegetated areas: a case study in Maiji, China[J]. Urban Forestry & Urban Greening, 2015, 14(3): 636−645.
    [9] Hakola H, Tarvainen V, Laurila T, et al. Seasonal variation of VOC concentrations above a boreal coniferous forest[J]. Atmospheric Environment, 2003, 37(12): 1623−1634. doi: 10.1016/S1352-2310(03)00014-1
    [10] Gao Y, Jin Y J, Li H D, et al. Volatile organic compounds and their roles in bacteriostasis in five conifer species[J]. Journal of Integrative Plant Biology, 2005, 47(4): 499−507. doi: 10.1111/j.1744-7909.2005.00081.x
    [11] Woo J, Lee C J. Sleep-enhancing effects of phytoncide via behavioral, electrophysiological, and molecular modeling approaches[J]. Experimental Neurobiology, 2020, 29(2): 120−129. doi: 10.5607/en20013
    [12] Woo J, Yang H, Yoon M, et al. 3-Carene, a phytoncide from pine tree has a sleep-enhancing effect by targeting the GABAA-benzodiazepine receptors[J]. Experimental Neurobiology, 2019, 28(5): 593−601. doi: 10.5607/en.2019.28.5.593
    [13] Antonelli M, Donelli D, Barbieri G, et al. Forest volatile organic compounds and their effects on human health: a state-of-the-art review[J/OL]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6506 [2020−12−26]. https://doi.org/10.3390/ijerph17186506.
    [14] Klemm W, Heusinkveld B G, Lenzholzer S, et al. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in the Netherlands[J]. Building and Environment, 2015, 83: 120−128. doi: 10.1016/j.buildenv.2014.05.013
    [15] Jeong M, Park S, Song G. Comparison of human thermal responses between the urban forest area and the central building district in Seoul, Korea[J]. Urban Forestry & Urban Greening, 2016, 15: 133−148.
    [16] 晏海, 王雪, 董丽. 华北树木群落夏季微气候特征及其对人体舒适度的影响[J]. 北京林业大学学报, 2012, 34(5):57−63.

    Yan H, Wang X, Dong L. Microclimatic characteristics and human comfort conditions of tree communities in northern China during summer[J]. Journal of Beijing Forestry University, 2012, 34(5): 57−63.
    [17] Chen F P, Liao W M. Analysis of the soundscape resources and its application in Yunjushan Mountain National Park[J]. Journal of Landscape Research, 2009, 10: 39−41. doi: 10.1179/lan.2009.10.1.39
    [18] 陈飞平, 王雨晴, 李华. 森林自然声景心理保健功能研究[J]. 林业经济, 2016, 38(9):95−99.

    Chen F P, Wang Y Q, Li H. The exploration to the function of the forest soundscape in health treatment[J]. Forestry Economics, 2016, 38(9): 95−99.
    [19] 郝泽周, 王成, 徐心慧, 等. 深圳城市森林声景观对人体心理及生理影响分析[J]. 西北林学院学报, 2019, 34(3):231−239. doi: 10.3969/j.issn.1001-7461.2019.03.37

    Hao Z Z, Wang C, Xu X H, et al. Effect of Shenzhen urban forest soundscape on psychological and physiological changes of human beings[J]. Journal of Northwest Forestry College, 2019, 34(3): 231−239. doi: 10.3969/j.issn.1001-7461.2019.03.37
    [20] 王艳英, 王成, 董建华, 等. 福州旗山典型森林群落保健功能综合评价[J]. 西北林学院学报, 2017, 32(4):63−68. doi: 10.3969/j.issn.1001-7461.2017.04.11

    Wang Y Y, Wang C, Dong J H, et al. Comprehensive evaluation of healthcare function of typical forest communities in Qishan Mountain in Fuzhou[J]. Journal of Northwest Forestry University, 2017, 32(4): 63−68. doi: 10.3969/j.issn.1001-7461.2017.04.11
    [21] 郭二果, 王成, 郄光发, 等. 城市森林生态保健功能表征因子之间的关系[J]. 生态学杂志, 2013, 32(11):2893−2903.

    Guo E G, Wang C, Qie G F, et al. Relationships between the factors reflecting ecological health function of urban forests[J]. Chinese Journal of Ecology, 2013, 32(11): 2893−2903.
    [22] 宋阳, 王成, 段文军, 等. 基于动物行为表现的四种森林群落环境的康养效果[J]. 生态学杂志, 2018, 37(12):3556−3565.

    Song Y, Wang C, Duan W J, et al. The therapeutic effects of four forest environments based on animal behavior[J]. Chinese Journal of Ecology, 2018, 37(12): 3556−3565.
    [23] 熊咏梅, 李智琦, 高梓超. 石门国家森林公园蝴蝶群落多样性研究[J]. 广东园林, 2019, 41(5):32−36. doi: 10.3969/j.issn.1671-2641.2019.05.010

    Xiong Y M, Li Z Q, Gao Z C. Diversity of butterflies community in Shimen National Forest Park[J]. Guangdong Landscape Architecture, 2019, 41(5): 32−36. doi: 10.3969/j.issn.1671-2641.2019.05.010
    [24] 侯碧清, 赖树雄. 石门国家级森林公园植物区系研究[J]. 中国城市林业, 2015, 13(6):32−35. doi: 10.3969/j.issn.1672-4925.2015.06.008

    Hou B Q, Lai S X. Qualitative analysis on flora in Shimen National Forest Park[J]. Journal of Chinese Urban Forestry, 2015, 13(6): 32−35. doi: 10.3969/j.issn.1672-4925.2015.06.008
    [25] 朱舒欣, 胡菲菲, 何双玉, 等. 石门国家森林公园不同林分秋季保健功能差异比较和综合评价[J]. 西北林学院学报, 2021, 36(2):240−249. doi: 10.3969/j.issn.1001-7461.2021.02.35

    Zhu S X, Hu F F, He S Y, et al. Comparison and comprehensive evaluation of health care function among different stands in Shimen National Forest Park in autumn[J]. Journal of Northwest Forestry University, 2021, 36(2): 240−249. doi: 10.3969/j.issn.1001-7461.2021.02.35
    [26] 张清杉, 贺延梅, 赵建民, 等. 森林公园小气候空气负离子保健浓度分级评价[J]. 西北林学院学报, 2006, 21(3):48−49. doi: 10.3969/j.issn.1001-7461.2006.03.012

    Zhang Q S, He Y M, Zhao J M, et al. Grading assessment of aeroanion concentration the microclimate of forest park[J]. Journal of Northwest Forestry University, 2006, 21(3): 48−49. doi: 10.3969/j.issn.1001-7461.2006.03.012
    [27] 韩明臣, 梁玉莲, 叶兵, 等. 北宫国家森林公园森林保健功能指数评价研究[J]. 广东农业科学, 2012, 39(24):185−188. doi: 10.3969/j.issn.1004-874X.2012.24.057

    Han M C, Liang Y L, Ye B, et al. Research on composite evaluation index of urban forest health effects of Beigong National Forest Park[J]. Guangdong Agricultural Science, 2012, 39(24): 185−188. doi: 10.3969/j.issn.1004-874X.2012.24.057
    [28] 赵久金, 李玉敏, 田华林, 等. 贵州省黔南州森林环境氧气含量分析[J]. 山东林业科技, 2012, 42(3):24−26. doi: 10.3969/j.issn.1002-2724.2012.03.008

    Zhao J J, Li Y M, Tian H L, et al. Analysis of oxygen content in forest environment in Qiannan Guizhou Province[J]. Shandong Forestry Science and Technology, 2012, 42(3): 24−26. doi: 10.3969/j.issn.1002-2724.2012.03.008
    [29] 陆鼎煌, 崔森, 李重和. 北京城市绿化夏季小气候条件对人体的适宜度//[C]中国农学会农业气象研究会, 中国林学会. 林业气象论文集. 北京: 气象出版社, 1984.

    Lu D H, Cui S, Li C H. The influence of Beijing urban greening and summer microelimatic conditions on human fitness//[C]Agricultural Meteorology Research Association of CAA, Chinese Society of Forestry. Proceedings of forestry and meteorology. Beijing: Meteorological Press, 1984.
    [30] 洪厚云. 医疗用氧的研究进展[J]. 世界最新医学信息文摘, 2015, 15(88):55−57.

    Hong H Y. Research progress of medical oxygen[J]. World Latest Medical Information (Electronic Version), 2015, 15(88): 55−57.
    [31] 吴楚材, 钟林生, 刘晓明. 马尾松纯林林分因子对空气负离子浓度影响的研究[J]. 中南林学院学报, 1998, 18(1):70−73.

    Wu C C, Zhong L S, Liu X M. The influence of stand factors on aero-anion concentration in masson’s pine pure forest[J]. Journal of Central South Forestry University, 1998, 18(1): 70−73.
    [32] 刘新, 吴林豪, 张浩, 等. 城市绿地植物群落空气负离子浓度及影响要素研究[J]. 复旦学报(自然科学版), 2011, 50(2):206−212.

    Liu X, Wu L H, Zhang H, et al. Study on the concentration of negative air ions and the influential factors in different urban plant communities[J]. Journal of Fudan University (Natural Science), 2011, 50(2): 206−212.
    [33] 刘欣欣, 华超, 张明如, 等. 千岛湖姥山林场不同森林群落空气负离子浓度的比较[J]. 浙江农林大学学报, 2012, 29(3):366−373. doi: 10.3969/j.issn.2095-0756.2012.03.007

    Liu X X, Hua C, Zhang M R, et al. Aero-anion concentration in different forest communities of Laoshan Forest Farm, Chun’an County[J]. Journal of Zhejiang A&F University, 2012, 29(3): 366−373. doi: 10.3969/j.issn.2095-0756.2012.03.007
    [34] 谭远军, 王恩, 张鹏翀, 等. 空气负离子时空变化及保健功能研究进展[J]. 北方园艺, 2013(9):208−211.

    Tan Y J, Wang E, Zhang P C, et al. Research progress of spatio-temporal changes and health effects of negative air ions[J]. Northern Horticulture, 2013(9): 208−211.
    [35] 李少宁, 韩淑伟, 商天余, 等. 空气负离子监测与评价的国内外研究进展[J]. 安徽农业科学, 2009, 37(8):3736−3738. doi: 10.3969/j.issn.0517-6611.2009.08.150

    Li S N, Han S W, Shang T Y, et al. Research progresson aero-anion’s monitoring and evaluation at home and abroad[J]. Journal of Anhui Agricultural Sciences, 2009, 37(8): 3736−3738. doi: 10.3969/j.issn.0517-6611.2009.08.150
    [36] 余海, 辛学兵, 裴顺祥, 等. 九龙山林缘地区空气负离子浓度变化特征及与气象因素关系[J]. 生态科学, 2018, 37(6):191−198.

    Yu H, Xin X B, Pei S X, et al. Characteristics of air anion change and its relationship with meteorological factors in forest margin area of Jiulong Mountain[J]. Ecological Science, 2018, 37(6): 191−198.
    [37] 韦朝领, 王敬涛, 蒋跃林, 等. 合肥市不同生态功能区空气负离子浓度分布特征及其与气象因子的关系[J]. 应用生态学报, 2006, 17(11):2158−2162. doi: 10.3321/j.issn:1001-9332.2006.11.032

    Wei C L, Wang J T, Jiang Y L, et al. Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City[J]. Chinese Journal Applied Ecology, 2006, 17(11): 2158−2162. doi: 10.3321/j.issn:1001-9332.2006.11.032
    [38] 王继梅, 冀志江, 隋同波, 等. 空气负离子与温湿度的关系[J]. 环境科学研究, 2004, 17(2):68−70. doi: 10.3321/j.issn:1001-6929.2004.02.018

    Wang J M, Ji Z J, Sui T B, et al. Influence of temperature and humidity on negative ion concentration[J]. Research of Environmental Sciences, 2004, 17(2): 68−70. doi: 10.3321/j.issn:1001-6929.2004.02.018
    [39] 王艳英, 王成, 董建文, 等. 福州旗山常绿阔叶混交林空气含氧量日变化特征[J]. 中国城市林业, 2014, 12(4):6−9. doi: 10.3969/j.issn.1672-4925.2014.04.002

    Wang Y Y, Wang C, Dong J W, et al. Diurnal oxygen concentration changes in mixed evergreen broad-leaved forest at Qishan, Fuzhou[J]. Journal of Chinese Urban Forestry, 2014, 12(4): 6−9. doi: 10.3969/j.issn.1672-4925.2014.04.002
    [40] 陈涛, 王伟, 拉巴. 拉萨市空气含氧量变化研究[J]. 高原山地气象研究, 2010, 30(2):65−67. doi: 10.3969/j.issn.1674-2184.2010.02.014

    Chen T, Wang W, Laba. Study on oxygen content change in Lhasa[J]. Plateauand Mountain Meteorology Research, 2010, 30(2): 65−67. doi: 10.3969/j.issn.1674-2184.2010.02.014
    [41] 古琳, 王成, 王艳英, 等. 惠山国家森林公园游憩林小气候与人体舒适度变化规律[J]. 林业科学, 2019, 55(6):150−159. doi: 10.11707/j.1001-7488.20190618

    Gu L, Wang C, Wang Y Y, et al. Patterns of temporal variation of microclimate and extent of human comfort in the recreation forests in Huishan National Forest Park[J]. Scientia Silvae Sinicae, 2019, 55(6): 150−159. doi: 10.11707/j.1001-7488.20190618
    [42] 杜万光, 王成, 王茜, 等. 北京香山公园主要植被类型的夏季环境效应评价[J]. 林业科学, 2018, 54(4):155−164. doi: 10.11707/j.1001-7488.20180418

    Du W G, Wang C, Wang Q, et al. Evaluation of summer environmental effects of the main vegetation types in Beijing Fragrant Hills Park[J]. Scientia Silvae Sinicae, 2018, 54(4): 155−164. doi: 10.11707/j.1001-7488.20180418
    [43] 张清, 李琦明, 崔西辰, 等. 不同温度条件下两组辣椒的同工酶分析[J]. 上海大学学报(自然科学版), 2004, 10(5):488−492.

    Zhang Q, Li Q M, Cui X C, et al. Analyses of isoenzymes in two group of peppers under different temperatures[J]. Journal of Shanghai University (Natural Science), 2004, 10(5): 488−492.
    [44] 王志辉, 张树宇, 陆思华, 等. 北京地区植物VOCs排放速率的测定[J]. 环境科学, 2003, 24(2):7−12. doi: 10.3321/j.issn:0250-3301.2003.02.002

    Wang Z H, Zhang S Y, Lu S H, et al. Screenings of 23 plant species in Beijing for volatile organic compound emissions[J]. Environmental Science, 2003, 24(2): 7−12. doi: 10.3321/j.issn:0250-3301.2003.02.002
    [45] 徐洁华, 文首文, 吴大鹏. 温度对薰衣草花精气成分的影响[J]. 生态学报, 2010, 30(3):645−651.

    Xu J H, Wen S W, Wu D P. Influence of temperature on pythoncidere of Lavandula angustifolia Mill. flower[J]. Acta Ecologica Sinica, 2010, 30(3): 645−651.
  • 加载中
图(7) / 表(10)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  116
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-07
  • 修回日期:  2020-12-23
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回