• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

不同处理方式对华北落叶松抚育剩余物分解的影响

王相震, 刘彦清, 周运红, 王利东, 司瑞雪, 陆景星, 贾忠奎

王相震, 刘彦清, 周运红, 王利东, 司瑞雪, 陆景星, 贾忠奎. 不同处理方式对华北落叶松抚育剩余物分解的影响[J]. 北京林业大学学报, 2021, 43(5): 15-23. DOI: 10.12171/j.1000-1522.20200345
引用本文: 王相震, 刘彦清, 周运红, 王利东, 司瑞雪, 陆景星, 贾忠奎. 不同处理方式对华北落叶松抚育剩余物分解的影响[J]. 北京林业大学学报, 2021, 43(5): 15-23. DOI: 10.12171/j.1000-1522.20200345
Wang Xiangzhen, Liu Yanqing, Zhou Yunhong, Wang Lidong, Si Ruixue, Lu Jingxing, Jia Zhongkui. Effects of different treatments on decomposition of Larix principis-rupprechtii tending residue[J]. Journal of Beijing Forestry University, 2021, 43(5): 15-23. DOI: 10.12171/j.1000-1522.20200345
Citation: Wang Xiangzhen, Liu Yanqing, Zhou Yunhong, Wang Lidong, Si Ruixue, Lu Jingxing, Jia Zhongkui. Effects of different treatments on decomposition of Larix principis-rupprechtii tending residue[J]. Journal of Beijing Forestry University, 2021, 43(5): 15-23. DOI: 10.12171/j.1000-1522.20200345

不同处理方式对华北落叶松抚育剩余物分解的影响

基金项目: 国家自然科学基金项目(31870387)
详细信息
    作者简介:

    王相震。主要研究方向:生态林、用材林培育理论及技术。Email:836384416@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学

    责任作者:

    贾忠奎,教授。主要研究方向:用材林培育、生态林与城市森林培育、林木种苗培育等理论与技术。Email:jiazk@163.com 地址:同上

  • 中图分类号: S718.43;S791.189

Effects of different treatments on decomposition of Larix principis-rupprechtii tending residue

  • 摘要:
      目的  为提高华北落叶松抚育剩余物的利用率,探索不同处理方式对抚育剩余物分解速率的影响,加快抚育剩余物分解速率,恢复华北落叶松人工林地力,使其保持长期较高的生产力。
      方法  以华北落叶松人工林抚育剩余物为研究对象,采用粉碎、尿素、EM菌和木醋液4种处理方法,进行4因素5水平的正交试验设计。通过对剩余物进行25种处理,研究不同处理方式随时间变化对华北落叶松抚育剩余物分解的影响。
      结果  分解率最高的9号处理(0.3 ~ 0.5 cm的颗粒直径,9 kg/m3的尿素溶液,稀释倍数为1 000的EM菌,稀释倍数为0的木醋液)是分解率最低的22号处理(大于1.0 cm的颗粒直径,3 kg/m3的尿素溶液,稀释倍数为0的EM菌,稀释倍数为1 000的木醋液)的2.04倍。4个因素对剩余物分解最有利的水平分别是:0.3 ~ 0.5 cm的颗粒直径,3 ~ 9 kg/m3的尿素溶液,稀释倍数为500的EM菌,稀释倍数为600 ~ 800倍的木醋液。从最优9号处理组合中可以看出,各个因素的水平不一定都在最有利的水平之内,推测其中可能存在综合效应的影响,但还需进行试验证明。
      结论  通过研究使用不同处理方式处理抚育剩余物,得出颗粒直径对剩余物分解率的影响最大,而4个因素共同作用对分解率的影响普遍大于单一的尿素溶液、EM菌和木醋液的处理。为加速人工林抚育剩余物分解,以保持林分较高的生产力提出参考建议。
    Abstract:
      Objective  This paper aims to improve the utilization rate of tending residues of Larix principis-rupprechtii, explore the influence of different treatment methods on the decomposition rate of tending residues, accelerate the decomposition rate of tending residues, restore the land fertility of Larix principis-rupprechtii plantations, and maintain long-term high productivity.
      Method  In this study, tending and thinning residue of Larix principis-rupprechtii plantation was used as research subject. And 4 treatment methods, including smashing residue, adding urea, EM and wood vinegar, were used to design a 4 factor and 5 level orthogonal experiment.
      Result  The results show that the decomposition rate of No.9 treatment was the highest, and levels of each factor were: particle diameter (0.3−0.5 cm), urea solution (9 kg/m3), dilution times of EM bacteria (1 000) and dilution times of wood vinegar (0 times). The decomposition rate of No. 9 was 2.04 times of the lowest decomposition rate of No. 22. The effects on decomposition of Larix principis-rupprechtii tending residue through 25 treatments were studied and the optimum level of the 4 factors which is conducive to the decomposition of residues was obtained: particle diameter (0.3−0.5 cm), urea solution (3−9 kg/m3), dilution times of EM bacteria (500) and dilution times of wood vinegar (600 to 800 times). It can be seen from the optimal processing combination of No.9 that the level of each factor is not necessarily in the best level, and we could speculate that there might be an interactive effect, but it still needs to be proved.
      Conclusion  Through the study of using different treatment methods to deal with tending residues, particle diameter was the most influential factor on the decomposition rate of the residue, and the interaction of the 4 factors is generally greater than that of unitary urea solution, EM or wood vinegar. In order to accelerate the decomposition of tending residues and maintain the high productivity of plantation, the reference methods were put forward.
  • 图  1   颗粒直径对剩余物分解速率的影响

    字母表示在各次取样测定结果中,不同处理的差异显著性,同次取样不同字母表示差异显著(P < 0.05)。下同。Letters indicate difference significance of different particle diameter treatments in the results of each sampling and determination, while different letters in the same sampling indicate significant differences (P < 0.05). The same below.

    Figure  1.   Effects of particle diameter on the decomposition rate of residue

    图  2   尿素质量和溶液体积比对剩余物分解速率的影响

    Figure  2.   Effects of urea solution on the decomposition rate of residue

    图  3   EM菌稀释倍数对剩余物分解速率的影响

    Figure  3.   Effects of dilution time of EM bacteria on the decomposition rate of residue

    图  4   木醋液稀释倍数对剩余物分解速率的影响

    Figure  4.   Effects of dilution time of wood vinegar on decomposition rate of residue

    表  1   正交试验设计L25(54)因素水平

    Table  1   Factor level of orthogonal experimental design L25 (54)

    水平编号
    Level No.
    A/cm
    B/(kg·m−3)C

    D
    10.1 ~ 0.3000
    20.3 ~ 0.53250400
    30.5 ~ 0.76500600
    40.7 ~ 1.09750800
    5 > 1.0121 0001 000
    注:A指的是颗粒直径,表示将抚育剩余物用粉碎机进行粉碎,并在80 ℃的烘箱内烘干后,按一定梯度过筛,称20.0 g与标签一同装于凋落物袋;B是指尿素质量和溶液体积比,表示将装好抚育剩余物的凋落物袋浸泡在不同尿素质量和溶液体积比配制的尿素溶液中,直到溶液被剩余物全部吸收;C是指EM菌稀释倍数,表示将凋落物袋浸泡在按照不同颗粒直径的等质量剩余物与EM菌液的不同体积比配制的EM菌溶液(用热水将100 g红糖溶解,冷却后加入EM菌)中,直到溶液被剩余物全部吸收;D是指木醋液稀释倍数,表示将凋落物袋浸泡在稀释不同倍数的木醋液中,直到溶液被剩余物全部吸收。下同。Notes: A refers to particle diameter, which means that the tending residues are crushed by a pulverizer, dried in an oven at 80 ℃, sieved according to a certain gradient, weighed 20.0 g and packed in the litter bag together with the label; B refers to the ratio of urea mass to solution volume, which means that the litter bags filled with tending residues are soaked in urea solutions prepared with different urea mass and solution volume ratios until the solution is completely absorbed by the residues; C refers to dilution time of EM bacteria, which means to soak litter bags in EM bacteria solution (dissolve 100 g brown sugar with hot water and add EM bacteria after cooling) prepared according to different volume ratios of equal mass residues and EM bacteria solution with different particle diameters until the solution is completely absorbed by the residues; D refers to dilution time of wood vinegar, which means soaking litter bags in wood vinegar diluted at different times until the solution is completely absorbed by the residue. The same below.
    下载: 导出CSV

    表  2   正交试验设计L25(54)交叉组合

    Table  2   Cross combinations of orthogonal experimental design L25 (54)

    试验编号
    Test No.
    处理方法 Treatment method
    ABCD
    1 1 1 1 1
    2 1 2 2 2
    3 1 3 3 3
    4 1 4 4 4
    5 1 5 5 5
    6 2 1 2 3
    7 2 2 3 4
    8 2 3 4 5
    9 2 4 5 1
    10 2 5 1 2
    11 3 1 3 5
    12 3 2 4 1
    13 3 3 5 2
    14 3 4 1 3
    15 3 5 2 4
    16 4 1 4 2
    17 4 2 5 3
    18 4 3 1 4
    19 4 4 2 5
    20 4 5 3 1
    21 5 1 5 4
    22 5 2 1 5
    23 5 3 2 1
    24 5 4 3 2
    25 5 5 4 3
    下载: 导出CSV

    表  3   每测定的主体间效应的检验

    Table  3   Test of the inter subjective effect of each determination

    因变量
    Dependent variable

    Source
    Ⅲ型平方和
    Type Ⅲ sum of squares
    F
    F value
    差异显著性
    Difference significance (Sig.)
    第1次分解率
    First decomposition rate
    (R2 = 0.921
    R2adj = 0.884)
    A 763.526 133.930 0
    B 16.443 2.884 0.032
    C 5.806 1.018 0.407
    D 19.401 3.403 0.015
    A × B × C × D 31.001 2.719 0.014
    第2次分解率
    Second decomposition rate
    (R2 = 0.859
    R2adj = 0.791)
    A 672.232 65.417 0
    B 30.212 2.940 0.029
    C 36.225 3.525 0.013
    D 22.390 2.179 0.085
    A × B × C × D 20.364 0.991 0.455
    第3次分解率
    Third decomposition rate
    (R2 = 0.879
    R2adj = 0.821)
    A 672.232 65.417 0
    B 30.212 2.940 0.029
    C 36.225 3.525 0.013
    D 22.390 2.179 0.085
    A × B × C × D 20.364 0.991 0.455
    第4次分解率
    Fourth decomposition rate
    (R2 = 0.906
    R2adj= 0.861)
    A 906.884 104.417 0
    B 32.024 3.687 0.010
    C 39.431 4.540 0.003
    D 11.895 1.370 0.258
    A × B × C × D 57.541 3.313 0.004
    第5次分解率
    Fifth decomposition rate
    (R2 = 0.907
    R2adj = 0.862)
    A 950.738 109.606 0
    B 18.965 2.186 0.084
    C 15.526 1.790 0.146
    D 27.466 3.166 0.021
    A × B × C × D 45.357 2.614 0.018
    下载: 导出CSV

    表  4   不同处理组合下的剩余物分解速率

    Table  4   Decomposition rates of residue under different treatments

    试验编号
    Test No.
    剩余物质量 Residue mass/g剩余物分解率
    Decomposition rate of residue/%
    名次
    Ranking
    2015年5月 May 20152015年12月 December 2015
    9 20 (15.58 ± 0.46) h (22.12 ± 2.28) a 1
    10 20 (15.64 ± 0.19) h (21.82 ± 0.93) a 2
    7 20 (15.68 ± 0.13) h (21.62 ± 0.67) a 3
    6 20 (15.71 ± 0.16) h (21.45 ± 0.82) a 4
    8 20 (15.75 ± 0.21) h (21.27 ± 1.06) a 5
    3 20 (16.03 ± 0.33) h (19.83 ± 1.64) a 6
    13 20 (16.53 ± 0.20) g (17.37 ± 0.98) b 7
    4 20 (16.55 ± 0.14) g (17.25 ± 0.71) b 8
    14 20 (16.71 ± 0.20) fg (16.43 ± 0.98) bc 9
    2 20 (16.74 ± 0.38) fg (16.32 ± 1.91) bc 10
    12 20 (16.87 ± 0.20) efg (15.65 ± 1.00) bcd 11
    1 20 (16.96 ± 0.51) defg (15.20 ± 2.57) bcde 12
    15 20 (17.02 ± 0.10) defg (14.92 ± 0.51) bcdef 13
    20 20 (17.05 ± 0.12) cdefg (14.73 ± 0.60) bcdef 14
    11 20 (17.11 ± 0.41) bcdef (14.43 ± 2.04) cdefg 15
    5 20 (17.33 ± 0.19) abcde (13.35 ± 0.94) defgh 16
    17 20 (17.45 ± 0.43) abcd (12.73 ± 2.13) efgh 17
    19 20 (17.51 ± 0.40) abcd (12.45 ± 2.01) efgh 18
    21 20 (17.59 ± 0.25) abc (12.05 ± 1.24) fgh 19
    18 20 (17.62 ± 0.30) ab (11.92 ± 1.52) gh 20
    16 20 (17.63 ± 0.56) ab (11.85 ± 2.81) gh 21
    24 20 (17.65 ± 0.10) ab (11.73 ± 0.50) gh 22
    23 20 (17.75 ± 0.17) a (11.23 ± 0.85) h 23
    25 20 (17.80 ± 0.17) a (10.98 ± 0.83) h 24
    22 20 (17.83 ± 0.28) a (10.85 ± 1.39) h 25
    注:数值为(均值 ± 标准差);同列不同字母代表差异性显著(P < 0.05)。Notes: values are mean ± SD; differences of varied letters in the same column are significant (P < 0.05).
    下载: 导出CSV
  • [1] 陈幸良, 巨茜, 林昆仑. 中国人工林发展现状、问题与对策[J]. 世界林业研究, 2014, 27(6):54−59.

    Chen X L, Ju X, Lin K L. Development status, issues and countermeasures of China’s plantation[J]. World Forestry Research, 2014, 27(6): 54−59.

    [2] 吴国欣, 滕维超, 梁惠萍. 人工林地力衰退研究综述[J]. 贵州林业科技, 2014, 42(1):55−60.

    Wu G X, Teng W C, Liang H P. A review of the research literature on the site productivity decline of artificial forest[J]. Guizhou Forestry Science and Technology, 2014, 42(1): 55−60.

    [3] 余波, 李守剑, 李贤伟, 等. 人工林地力衰退研究[J]. 四川林勘设计, 2005,27(2):6−12.

    Yu B, Li S J, Li X W, et al. Researches on the productivity decline of artificial forests site[J]. Sichuan Forestry Exploration and Design, 2005,27(2): 6−12.

    [4] 黄方, 吕世凡, 吕成群. 益生菌对巨尾桉人工林采伐剩余物生物量及养分归还的影响[J]. 西南农业学报, 2017, 30(5):1200−1204.

    Huang F, Lü S F, Lü C Q. Effect of inoculated probiotics on felling of biomass and nutrient returned of Eucalyptus grandis × Eucalyptus urophylla artificial forest[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(5): 1200−1204.

    [5] 柴红霞. 杉木林采伐对土壤养分的影响及采伐剩余物的养分贡献[D]. 长沙: 中南林业科技大学, 2008.

    Chai H X. Short-term effects of clear-cutting, prescribed burning and site preparation on soil properties of Chinese fir plantation, and contribution of harvest residues to soil nutrients[D]. Changsha: Central South University of Forestry and Technology, 2008.

    [6] 杨鲁. 采伐干扰对巨桉人工林土壤微生物、土壤酶活性与土壤养分的影响[D]. 雅安: 四川农业大学, 2008.

    Yang L. Influence on soil microorganism and soil enzyme activity and soil nutrient of cutting disturbance in Eucalyptus grandis plantation[D]. Yaan: Sichuan Agricultural University, 2008.

    [7] 刘世荣, 李春阳. 落叶松人工林养分循环过程与潜在地力衰退趋势的研究[J]. 东北林业大学学报, 1993, 21(2):19−24.

    Liu S R, Li C Y. Nutrient cycling and stability of soil fertility in larch plantation in the eastern part of northern China[J]. Journal of Northeast Forestry University, 1993, 21(2): 19−24.

    [8] 盛炜彤, 范少辉. 人工林长期生产力保持机制研究的背景、现状和趋势[J]. 林业科学研究, 2004, 17(1):106−115. doi: 10.3321/j.issn:1001-1498.2004.01.018

    Sheng W T, Fan S H. Study on the mechanism of maintaining long-term productivity of plantation: background, present condition and trends[J]. Forest Research, 2004, 17(1): 106−115. doi: 10.3321/j.issn:1001-1498.2004.01.018

    [9] 贾忠奎. 我国人工林长期生产力维持技术研究进展[J]. 世界林业研究, 2012, 25(1):49−54.

    Jia Z K. Research progress of maintenance technolgoy of long-term productivity of plantation in China[J]. World Forestry Research, 2012, 25(1): 49−54.

    [10] 陈立新. 落叶松人工林土壤质量变化规律与调控措施的研究[D]. 北京: 中国林业科学研究院, 2003.

    Chen L X. Studies on changing rule of soil quality, adjustment and control measures in Larix olgensis plantations[D]. Beijing: Chinese Academy of Forestry, 2003.

    [11] 傅仲豪. 采伐剩余物和施肥管理对杉木生长与土壤养分有效性影响[D]. 福州: 福建农林大学, 2019.

    Fu Z H. Effects of harvesting residues and fertilization managements on the growth of Chinese fir and soil nutrient availability[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.

    [12] 贾淑娴, 吴传敬, 刘小飞, 等. 采伐剩余物的处理方式对杉木幼林土壤磷组分及其有效性的影响[J]. 应用生态学报, 2019, 30(11):3662−3670.

    Jia S X, Wu C J, Liu X F, et al. Effects of harvest residue treatments on soil phosphorus fractions and availability in a young Chinese fir plantation[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3662−3670.

    [13] 吴晓春, 谢兆森. 添加木醋对木屑发酵腐熟的影响[J]. 安徽农业科学, 2009,49(2):457−458. doi: 10.3969/j.issn.0517-6611.2009.02.009

    Wu X C, Xie Z S. Effects of wood vinegars addition on fermentation and maturity of sawdust[J]. Journal of Anhui Agricultural Sciences, 2009,49(2): 457−458. doi: 10.3969/j.issn.0517-6611.2009.02.009

    [14] 杨飞, 王欣, 郭延朋, 等. 修枝对华北落叶松人工林分生长的初期影响[J]. 林业资源管理, 2012,34(3):85−89. doi: 10.3969/j.issn.1002-6622.2012.03.019

    Yang F, Wang X, Guo Y P, et al. Effects of pruning on stand growth of the artificial Larix principis-rupprechtii Mayr forest[J]. Forest Resources Management, 2012,34(3): 85−89. doi: 10.3969/j.issn.1002-6622.2012.03.019

    [15] 尹欢宇. 剩余物处理对华北落叶松人工林土壤质量和生长的影响[D]. 北京: 北京林业大学, 2016.

    Yin H Y. Effects of residue treatment on growth and soil quality of Larix principis-rupprechtii plantation[D]. Beijing: Beijing Forestry University, 2016.

    [16] 孙启越, 姚丹阳, 李秀丽, 等. 基于正交试验的华北落叶松采伐剩余物处理方式优选[J]. 福建农林大学学报(自然科学版), 2019, 48(5):633−639.

    Sun Q Y, Yao D Y, Li X L, et al. Optimizing the process of logging residue of Larix principis-rupprechtii based on orthogonal experiment[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(5): 633−639.

    [17] 黄锦学, 黄李梅, 林智超, 等. 中国森林凋落物分解速率影响因素分析[J]. 亚热带资源与环境学报, 2010, 5(3):56−63. doi: 10.3969/j.issn.1673-7105.2010.03.008

    Huang J X, Huang L M, Lin Z C, et al. Controlling factors of litter decomposition rate in China’s forests[J]. Journal of Subtropical Resources and Environment, 2010, 5(3): 56−63. doi: 10.3969/j.issn.1673-7105.2010.03.008

    [18] 陈清山, 何宗明, 范少辉, 等. 29年生杉木林采伐剩余物长期分解速率[J]. 福建林学院学报, 2006, 26(3):202−205. doi: 10.3969/j.issn.1001-389X.2006.03.003

    Chen Q S, He Z M, Fan S H, et al. Long-term decomposition rate of logging slash of a 29-year-old Chinese fir plantation[J]. Journal of Fujian College of Forestry, 2006, 26(3): 202−205. doi: 10.3969/j.issn.1001-389X.2006.03.003

    [19] 邓长春, 林晓庆, 李建平, 等. 我国采伐剩余物的清理和利用现状及对策[J]. 四川林业科技, 2016, 37(2):107−110.

    Deng C C, Lin X Q, Li J P, et al. The status and some suggestions about the cleaning and utilization of logging residues in China[J]. Journal of Sichuan Forestry Science and Technology, 2016, 37(2): 107−110.

    [20] 孙志虎. 长白落叶松人工用材林长期生产力维持的研究[D]. 哈尔滨: 东北林业大学, 2005.

    Sun Z H. On the long-term productivity maintenance of monoculture olga hay larch timber forest in northeastern China[D]. Harbin: Northeast Forestry University, 2005.

    [21] 王开云, 纪中元. 谈造林地采伐剩余物的影响[J]. 黑龙江科技信息, 2012,16(21):204.

    Wang K Y, Ji Z Y. Discussion on the influence of cutting residues in forestland[J]. Scientific and Technological of Heilongjiang, 2012,16(21): 204.

    [22]

    Williams B L. Nitrogen mineralization and organic matter decomposition in Scots pine humus[J]. Forestry, 1972, 45(45): 177−188.

    [23] 邱文成, 胡秀琴, 李艳红, 等. 3种微生物菌剂在凋落物堆腐中应用效果研究[J]. 林业实用技术, 2010,53(11):3−4.

    Qiu W C, Hu X Q, Li Y H, et al. Study on the application effect of three microbial agents in litter composting[J]. Practical Forestry Technology, 2010,53(11): 3−4.

    [24] 马淑敏, 王海霞, 辛学兵, 等. 分解促进剂对九龙山林下凋落叶分解的影响[J]. 福建农林大学学报(自然科学版), 2019, 48(3):330−336.

    Ma S M, Wang H X, Xin X B, et al. Effects of decomposition accelerator on litter decomposition in Jiulong Mountain of Beijing[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2019, 48(3): 330−336.

    [25] 郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4):93−100. doi: 10.11707/j.1001-7488.20060417

    Guo J F, Yang Y S, Chen G S, et al. A review on litter decomposition in forest ecosystem[J]. Scientia Silvae Sinicae, 2006, 42(4): 93−100. doi: 10.11707/j.1001-7488.20060417

    [26] 王惠. 外源添加物在园林绿化废弃物堆腐中的应用[D]. 北京: 北京林业大学, 2011.

    Wang H. Application of exogenous additives in landscaping waste composting[D]. Beijing: Beijing Forestry University, 2011.

    [27] 张强, 孙向阳, 任忠秀, 等. 调节C/N及添加菌剂与木醋液对园林绿化废弃物堆肥效果的影响[J]. 植物营养与肥料学报, 2012, 18(4):990−998. doi: 10.11674/zwyf.2012.11378

    Zhang Q, Sun X Y, Ren Z X, et al. Effects of regulating of C/N ratio and adding different concentrations of microbe fungus and wood vinegar on composting of landscaping waste[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 990−998. doi: 10.11674/zwyf.2012.11378

    [28] 王西娜, 谭军利, 顾昭, 等. 几种发酵菌剂在餐厨垃圾发酵过程中的效果比较[J]. 宁夏大学学报(自然科学版), 2012, 33(2):198−200.

    Wang X N, Tan J L, Gu Z, et al. Effects of several microorganism agents during the fermentation of kitchen waste[J]. Journal of Ningxia University (Natural Science Edition), 2012, 33(2): 198−200.

    [29] 徐玉坤. 不同添加剂对园林废弃物堆肥影响研究[D]. 北京: 北京林业大学, 2014.

    Xu Y K. Study of different agent effect on the green waste composting[D]. Beijing: Beijing Forestry University, 2014.

    [30] 包和林, 张艳荷, 侯丹, 等. 氮、硫沉降下凋落物分解失重规律[J]. 中南林业科技大学学报, 2009, 29(5):77−81. doi: 10.3969/j.issn.1673-923X.2009.05.023

    Bao H L, Zhang Y H, Hou D, et al. Response of litter decomposition mass loss rate to simulated nitrogen and sulfur deposition with rotation-orthogonal combination design[J]. Journal of Central South University of Forestry & Technology, 2009, 29(5): 77−81. doi: 10.3969/j.issn.1673-923X.2009.05.023

    [31] 邹德乙, 马军, 邹丹, 等. 不同微生物发酵剂及木醋液在草炭发酵中应用效果研究[J]. 腐植酸, 2005,27(5):11−15. doi: 10.3969/j.issn.1671-9212.2005.05.005

    Zou D Y, Ma J, Zou D, et al. Study on the effect of microbialferments and wood vinegar in peat fermentation[J]. Hum Acid, 2005,27(5): 11−15. doi: 10.3969/j.issn.1671-9212.2005.05.005

    [32] 邱尔发, 陈卓梅, 郑郁善, 等. 麻竹山地笋用林凋落物发生、分解及养分归还动态[J]. 应用生态学报, 2005, 16(5):811−814. doi: 10.3321/j.issn:1001-9332.2005.05.007

    Qiu E F, Chen Z M, Zheng Y S, et al. Dynamics of litterfall and its decomposition and nutrient return of shoot-used Dendrocalamus latiflorus in mountainous areas of Fujian Province[J]. Chinese Journal of Applied Ecology, 2005, 16(5): 811−814. doi: 10.3321/j.issn:1001-9332.2005.05.007

  • 期刊类型引用(6)

    1. 莫崇杏,董明亮,李荣生,余纽,郑显澄,杨锦昌. 米老排杂交子代苗期生长性状遗传变异及选择. 森林与环境学报. 2023(05): 555-560 . 百度学术
    2. Shuchun Li,Jiaqi Li,Yanyan Pan,Xiange Hu,Xuesong Nan,Dan Liu,Yue Li. Variation analyses of controlled pollinated families and parental combining ability of Pinus koraiensis. Journal of Forestry Research. 2021(03): 1005-1011 . 必应学术
    3. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 . 百度学术
    4. 秦光华,宋玉民,乔玉玲,于振旭,彭琳. 旱柳苗高年生长与气象因子的灰色关联度. 东北林业大学学报. 2019(05): 42-45+51 . 百度学术
    5. 李峰卿,陈焕伟,周志春,楚秀丽,徐肇友,肖纪军. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选. 植物资源与环境学报. 2018(02): 57-65 . 百度学术
    6. 张素芳,张磊,赵佳丽,张莉,张含国. 长白落叶松小RNA测序和其靶基因预测. 北京林业大学学报. 2016(12): 64-72 . 本站查看

    其他类型引用(6)

图(4)  /  表(4)
计量
  • 文章访问数:  1394
  • HTML全文浏览量:  426
  • PDF下载量:  76
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2020-11-26
  • 网络出版日期:  2021-04-12
  • 发布日期:  2021-05-26

目录

    /

    返回文章
    返回