高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

京津冀地区生态基础设施−生境质量−产业发展耦合协调性分析与预测

肖玲 姜群鸥 王美林 律可心

肖玲, 姜群鸥, 王美林, 律可心. 京津冀地区生态基础设施−生境质量−产业发展耦合协调性分析与预测[J]. 北京林业大学学报, 2021, 43(3): 96-105. doi: 10.12171/j.1000-1522.20200346
引用本文: 肖玲, 姜群鸥, 王美林, 律可心. 京津冀地区生态基础设施−生境质量−产业发展耦合协调性分析与预测[J]. 北京林业大学学报, 2021, 43(3): 96-105. doi: 10.12171/j.1000-1522.20200346
Xiao Ling, Jiang Qun’ou, Wang Meilin, Lü Kexin. Coupling coordination and prediction analysis of ecological infrastructure, habitat quality and industrial development in the Beijing-Tianjin-Hebei region of northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 96-105. doi: 10.12171/j.1000-1522.20200346
Citation: Xiao Ling, Jiang Qun’ou, Wang Meilin, Lü Kexin. Coupling coordination and prediction analysis of ecological infrastructure, habitat quality and industrial development in the Beijing-Tianjin-Hebei region of northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 96-105. doi: 10.12171/j.1000-1522.20200346

京津冀地区生态基础设施−生境质量−产业发展耦合协调性分析与预测

doi: 10.12171/j.1000-1522.20200346
基金项目: 国家科技重大专项项目(2017ZX07101004、2017ZX07108002),国家自然科学基金项目(41901234、51909052),河北省高等学校青年拔尖人才计划项目(BJ2018117)
详细信息
    作者简介:

    肖玲。主要研究方向:生态系统服务研究。Email:xiaoling@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    姜群鸥,副教授。主要研究方向:土地利用变化及效应研究。Email:jiangqo.dls@163.com 地址:同上

Coupling coordination and prediction analysis of ecological infrastructure, habitat quality and industrial development in the Beijing-Tianjin-Hebei region of northern China

  • 摘要:   目的  对生态环境与产业发展耦合协调关系进行研究,有助于规划者从生态学角度宏观把握京津冀协同发展趋势,为规划与管理提供科学依据。  方法  该研究基于MSPA和InVEST模型分析了京津冀地区2000—2017年生态基础设施、生境质量和产业发展变化特征,并采用耦合协调模型对该地区三者的耦合协调性进行综合分析,最后利用灰色预测模型预测京津冀不同区域未来五年耦合协调度。  结果  (1)京津冀地区生态基础设施水平整体偏低,连通性较差;生境质量空间差异显著,整体生境质量0.450,水平不高;(2)西北部生态涵养区的农林牧渔业发展稳定,津冀工业长期处于主导地位,东部滨海发展区交通运输、仓储和邮政业和京津金融业发展实力较强;(3)京津冀地区耦合协调度主要处于轻度失调到初级协调状态之间,空间差异明显。其中,南部功能拓展区耦合协调度最高,而西北部生态涵养区耦合协调度最低。(4)未来5年京津冀地区耦合协调度均将有所提升,但中部核心功能区仍将处于濒临失调状态,北京和东部滨海发展区仍将处于勉强协调状态,是未来需要优化的重点区域;天津耦合协调度将由勉强协调转变为初级协调,西北部生态涵养区耦合协调度将由濒临失调转变为初级协调,是具有协调发展潜力的区域;南部功能拓展区耦合协调类型将转变为中级协调,是发展速度最快的区域。  结论  该研究通过评估京津冀区域生态基础设施−生境质量−产业发展的耦合协调性,并分析预测具有协同发展潜力的重点区域,为未来京津冀协同发展提供依据,并为其他城市群范围内生态建设和产业发展评估提供重要参考。

     

  • 图  1  京津冀地区不同分区空间分布

    Figure  1.  Spatial distribution of different subregions in the Beijing-Tianjin-Hebei region

    图  2  京津冀地区2000—2017年生态基础设施空间分布

    Figure  2.  Spatial distribution of ecological infrastructure in the Beijing-Tianjin-Hebei region from 2000 to 2017

    图  3  京津冀地区2000—2017年生境质量变化空间分布

    Figure  3.  Spatial distribution of habitat quality changes in the Beijing-Tianjin-Hebei region from 2000 to 2017

    图  4  京津冀地区2000—2017年生境退化指数空间分布

    Figure  4.  Spatial distribution of habitat degradation index in the Beijing-Tianjin-Hebei region from 2000 to 2017

    图  5  2000—2017年京津冀地区各行业占比变化统计

    BJ:北京;TJ:天津;ZB:中部核心功能区;DB:东部滨海发展区;NB:南部功能拓展区;XB:西北部生态涵养区。下同。BJ, Beijing; TJ, Tianjin; ZB, central core functional area; DB, eastern coastal development area; NB, southern functional expansion area; XB, northwestern ecological conservation area. Same as below.

    Figure  5.  Statistics of changes in the proportions of various industries in the Beijing-Tianjin-Hebei region from 2000 to 2017

    图  6  京津冀地区生态基础设施−生境质量−产业发展耦合协调度

    Figure  6.  Coupling and coordination degree of ecological infrastructure-habitat quality-industrial development in the Beijing-Tianjin-Hebei region

    图  7  京津冀地区生态基础设施−生境质量−产业发展耦合协调发展预测

    Figure  7.  Prediction of coordinated development of ecological infrastructure, habitat quality and industrial development in the Beijing-Tianjin-Hebei region

    表  1  耦合协调度划分标准

    Table  1.   Classification standard for the coupling coordination degree

    耦合协调度
    Coupling coordination degree (D)
    耦合协调类型
    Coupling coordination type
    耦合协调度
    Coupling coordination degree (D)
    耦合协调类型
    Coupling coordination type
    $ 0\leqslant D < 0.1 $ 极度失调 Extreme imbalance $ 0.5\leqslant D\leqslant 0.6 $ 勉强协调 Barely coordinated
    $ 0.1\leqslant D < 0.2 $ 严重失调 Severe imbalance $ 0.6\leqslant D < 0.7 $ 初级协调 Primary coordination
    $ 0.2\leqslant D < 0.3 $ 中度失调 Moderate imbalance $ 0.7\leqslant D < 0.8 $ 中级协调 Intermediate coordination
    $ 0.3\leqslant D < 0.4 $ 轻度失调 Mild imbalance $ 0.8\leqslant D < 0.9 $ 良好协调 Good coordination
    $ 0.4\leqslant D < 0.5 $ 濒临失调 On the verge of imbalance $ 0.9\leqslant D < 1 $ 优质协调 High quality coordination
    下载: 导出CSV

    表  2  预测模型精度等级划分

    Table  2.   Grade division for the prediction model accuracy

    精度等级
    Accuracy class
    后验差比值
    Posterior difference ratio
    小误差频率
    Small error frequency
    精度等级
    Accuracy class
    后验差比值
    Posterior difference ratio
    小误差频率
    Small error frequency
    好 Great < 0.350 > 0.950 勉强 Reluctantly  < 0.650 > 0.700
    合格 Qualified < 0.500 > 0.800 不合格 Unqualified < 0.700 > 0.650
    下载: 导出CSV

    表  3  京津冀地区生态基础设施−生境质量−产业发展评价指标体系与权重

    Table  3.   Evaluation index system and its weights of ecological infrastructure-habitat quality-industry development in the Beijing-Tianjin-Hebei region

    准则层
    Criterion layer
    指标层
    Index layer
    权重
    Weight
    准则层
    Criterion layer
    指标层
    Index layer
    权重
    Weight
    生态基础设施
    Ecological
    infrastructure
    核心区面积比例
    Core area ratio
    0.069 8 产业发展
    Industrial
    development
    第二产业比例
    Secondary industry ratio
    0.002 0
    桥接区面积比例
    Bridge area ratio
    0.376 6 第三产业比例
    Third industry ratio
    0.002 8
    环道区面积比例
    Loop area ratio
    0.078 5 农林牧渔业增加值
    Added value of agriculture, forestry, animal
    husbandry and fishery
    0.050 7
    孔隙面积比例
    Perforation area ratio
    0.033 0 工业增加值
    Industrial output
    0.099 2
    岛状斑块面积比例
    Islet area ratio
    0.299 5 建筑业增加值
    Value added of construction
    0.104 0
    边缘区面积比例
    Bridge area ratio
    0.009 7 批发零售业增加值
    Added value of wholesale and retail industry
    0.111 5
    支线面积比例
    Branch area ratio
    0.132 9 交通运输仓储业增加值
    Added value of transportation and storage industry
    0.080 9
    生境质量
    Habitat quality
    生境质量水平
    Habitat quality level
    0.500 0 住宿餐饮业增加值
    Added value of accommodation and catering industry
    0.077 1
    生境退化水平
    Habitat degradation level
    0.500 0 金融业增加值
    Added value of financial industry
    0.185 6
    地区生产总值
    GDP
    0.113 5 房地产业增加值
    Added value of of real estate
    0.152 1
    第一产业比例
    Primary industry ratio
    0.020 6
    下载: 导出CSV
  • [1] 陆大道. 京津冀城市群功能定位及协同发展[J]. 地理科学进展, 2015, 34(3):265−270. doi: 10.11820/dlkxjz.2015.03.001

    Lu D D. Function orientation and coordinating development of subregions within the Jing-Jin-Ji urban agglomeration[J]. Progress in Geography, 2015, 34(3): 265−270. doi: 10.11820/dlkxjz.2015.03.001
    [2] 王淑佳, 任亮, 孔伟, 等. 京津冀区域生态环境−经济−新型城镇化协调发展研究[J]. 华东经济管理, 2018, 32(10):61−69.

    Wang S J, Ren L, Kong W, et al. A study on the coordinated development of ecological environment-economy-new urbanization in Beijing-Tianjin-Hebei Region[J]. East China Economic Management, 2018, 32(10): 61−69.
    [3] 毛汉英. 京津冀协同发展的机制创新与区域政策研究[J]. 地理科学进展, 2017, 36(1):2−14. doi: 10.18306/dlkxjz.2017.01.001

    Mao H Y. Innovation of mechanism and regional policy for promoting coordinated development of the Beijing-Tianjin-Hebei[J]. Progress in Geography, 2017, 36(1): 2−14. doi: 10.18306/dlkxjz.2017.01.001
    [4] 邓越, 蒋卫国, 王文杰, 等. 城市扩张导致京津冀区域生境质量下降[J]. 生态学报, 2018, 38(12):4516−4525.

    Deng Y, Jiang W G, Wang W J, et al. Urban expansion led to the degradation of habitat quality in the Beijing-Tianjin-Hebei Area[J]. Acta Ecologica Sinica, 2018, 38(12): 4516−4525.
    [5] 孙文博, 苗泽华, 孙文哲. 京津冀地区生态系统服务价值变化及其与经济增长的关系[J]. 生态经济, 2015, 31(8):59−62. doi: 10.3969/j.issn.1671-4407.2015.08.011

    Sun W B, Miao Z H, Sun W Z. Change in the value of ecosystem services of Beijing-Tianjin-Hebei Area and its relationship with economic growth[J]. Ecological Economy, 2015, 31(8): 59−62. doi: 10.3969/j.issn.1671-4407.2015.08.011
    [6] 李锋, 王如松, 赵丹. 基于生态系统服务的城市生态基础设施: 现状、问题与展望[J]. 生态学报, 2014, 34(1):190−200.

    Li F, Wang R S, Zhao D. Urban ecological infrastructure based on ecosystem services: status, problems and perspectives[J]. Acta Ecologica Sinica, 2014, 34(1): 190−200.
    [7] Weber T, Sloan A, Wolf J. Maryland’s green infrastructure assessment: development of a comprehensive approach to land conservation[J]. Landscape and Urban Planning, 2006, 77(1/2): 94−110. doi: 10.1016/j.landurbplan.2005.02.002
    [8] Lockhart J. Green infrastructure: the strategic role of trees, woodlands and forestry[J]. Arboricultural Journal, 2009, 32(1): 33−49. doi: 10.1080/03071375.2009.9747552
    [9] 韩林桅, 张淼, 石龙宇. 生态基础设施的定义、内涵及其服务能力研究进展[J]. 生态学报, 2019, 39(19):7311−7321.

    Han L W, Zhang M, Shi L Y. Definition, connotation and research progress on ecosystem services of ecological infrastructure[J]. Acta Ecologica Sinica, 2019, 39(19): 7311−7321.
    [10] 陈利顶, 孙然好, 刘海莲. 城市景观格局演变的生态环境效应研究进展[J]. 生态学报, 2013, 33(4):1042−1050. doi: 10.5846/stxb201205070659

    Chen L D, Sun R H, Liu H L. Eco-environmental effects of urban landscape pattern changes: progresses, problems, and perspectives[J]. Acta Ecologica Sinica, 2013, 33(4): 1042−1050. doi: 10.5846/stxb201205070659
    [11] Zhao C H, Jensen J, Zhan B. A comparison of urban growth and their influencing factors of two border cities: Laredo in the US and Nuevo Laredo in Mexico[J]. Applied Geography, 2017, 79: 223−234. doi: 10.1016/j.apgeog.2016.12.017
    [12] 刘耀彬, 李仁东, 宋学锋. 中国区域城市化与生态环境耦合的关联分析[J]. 地理学报, 2005(2):237−247. doi: 10.3321/j.issn:0375-5444.2005.02.007

    Liu Y B, Li R D, Song X F. Grey associative of regional urbanization and Eco-environment coupling in China[J]. Acta Geographica Sinica, 2005(2): 237−247. doi: 10.3321/j.issn:0375-5444.2005.02.007
    [13] Jin G, Chen K, Wang P, et al. Trade-offs in land-use competition and sustainable land development in the North China Plain[J]. Technological Forecasting and Social Change, 2019, 141: 36−46. doi: 10.1016/j.techfore.2019.01.004
    [14] Hanleya N, Moffatt I, Faichney R, et al. Measuring sustainability: a time series of alternative indicators for Scotland[J]. Ecological Economics, 1999, 28(1): 55−73. doi: 10.1016/S0921-8009(98)00027-5
    [15] 宋学锋, 刘耀彬. 基于SD的江苏省城市化与生态环境耦合发展情景分析[J]. 系统工程理论与实践, 2006(3):124−130. doi: 10.3321/j.issn:1000-6788.2006.03.019

    Song X F, Liu Y B. Scenarios simulation of urbanization and ecological environment coupling in Jiangsu Province by system dynamic model[J]. Systems Engineering-Theory & Practice, 2006(3): 124−130. doi: 10.3321/j.issn:1000-6788.2006.03.019
    [16] 周成, 冯学钢, 唐睿. 区域经济−生态环境−旅游产业耦合协调发展分析与预测: 以长江经济带沿线各省市为例[J]. 经济地理, 2016, 36(3):186−193.

    Zhou C, Feng X G, Tang R. Analysis and forecast of coupling coordination development among the regional Economy-Ecological Environment-Tourism Industry: a case study of provinces along the Yangtze Economic Zone[J]. Economic Geography, 2016, 36(3): 186−193.
    [17] 王琦, 汤放华. 洞庭湖区生态−经济−社会系统耦合协调发展的时空分异[J]. 经济地理, 2015, 35(12):161−167, 202.

    Wang Q, Tang F H. The evaluation of coulpling coordination development of ecology-economy-society system in Dongting Lake Area[J]. Economic Geography, 2015, 35(12): 161−167, 202.
    [18] Soille P, Vogt P. Morphological segmentation of binary patterns[J]. Pattern Recognition Letters, 2008, 30(4): 456−459. doi: 10.1016/j.patrec.2008.10.015
    [19] Wickham J D, Riitters K H, Wade T G, et al. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing[J]. Landscape and Urban Planning, 2009, 94(3): 186−195. doi: 10.1016/j.landurbplan.2009.10.003
    [20] Xiao L, Cui L, Jiang Q O, et al. Spatial structure of a potential ecological network in Nanping, China, based on ecosystem service functions[J]. Land, 2020, 9(10): 376. doi: 10.3390/land9100376
    [21] Sallustio L, de Toni A, Strollo A, et al. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy[J]. Journal of Environmental Management, 2017, 201: 129−137. doi: 10.1016/j.jenvman.2017.06.031
    [22] 王琼, 卢聪, 李法云, 等. 基于主成分分析和熵权法的河流生境质量评价方法: 以清河为例[J]. 生态科学, 2017, 36(4):185−193.

    Wang Q, Lu C, Li F Y, et al. River habitat quality assessment based on principal component analysis and entropy weight in Qinghe River[J]. Ecological Science, 2017, 36(4): 185−193.
    [23] 钟霞, 刘毅华. 广东省旅游−经济−生态环境耦合协调发展分析[J]. 热带地理, 2012, 32(5):568−574.

    Zhong X, Liu Y H. Coupled coordination degree of tourism-economy-ecological system in Guangdong Province[J]. Tropical Geography, 2012, 32(5): 568−574.
    [24] 廖重斌. 环境与经济协调发展的定量评判及其分类体系: 以珠江三角洲城市群为例[J]. 热带地理, 1999(2):3−5.

    Liao C B. Quantitative judgement and classification system for coordinated development of environment and economy: a case study of the city group in the Pearl River Delta[J]. Tropical Geography, 1999(2): 3−5.
    [25] 李正, 王军, 白中科, 等. 贵州省土地利用及其生态系统服务价值与灰色预测[J]. 地理科学进展, 2012, 31(5):577−583. doi: 10.11820/dlkxjz.2012.05.005

    Li Z, Wang J, Bai Z K, et al. Land use and ecosystem service values and their grey forecast in Guizhou Province[J]. Progress in Geography, 2012, 31(5): 577−583. doi: 10.11820/dlkxjz.2012.05.005
    [26] 王莎, 童磊, 贺玉德. 京津冀产业结构与生态环境交互耦合关系的定量测度[J]. 软科学, 2019, 33(3):75−79.

    Wang S, Tong L, He Y D. Quantitative measurement of the coupling relationship between industrial structure and ecological environment in Beijing, Tianjin and Hebei[J]. Soft Science, 2019, 33(3): 75−79.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  113
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 修回日期:  2021-02-04
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回