Seedling dynamics and environmental driving factors of coniferous and broadleaved mixed forest in Jiaohe, Jilin Province of northeastern China
-
摘要:
目的 本文以吉林蛟河不同发育阶段针阔混交林为研究对象,对比分析幼苗密度的核密度估计曲线年际变化规律,探讨土壤因子的边际变化和土壤因子的分布变化对幼苗密度分布动态的相对影响。 方法 在420 m × 520 m的中龄林样地和500 m × 840 m的成熟林样地中系统布设幼苗调查样方。利用分位数回归和反事实分解法检验环境因子在不同分位数水平上对幼苗密度的边际影响,进而明确幼苗密度在不同分位点上呈现不均衡变化的主导因素。 结果 幼苗密度的核密度估计曲线呈峰值向左偏移、长尾向右侧延伸的正偏态分布。在θ = 0.90的高分位点,中龄林样地中幼苗密度变化值为−5.9,成熟林样地幼苗密度变化值为−2.6。中龄林样地在θ = 0.75时幼苗密度变化值为5.8,成熟林样地在θ = 0.50和θ = 0.75时幼苗密度变化值均为2。在高分位点上幼苗密度的更大变化反映了右单尾概率分布的不均衡性。在不同估计分位点上系数效应和协变量效应对幼苗密度分布变化的相对作用大小不同。中龄林样地中系数效应在全部估计分位点上都具有很高的解释量;成熟林样地中在θ = 0.50分位点上,协变量效应对幼苗密度变化具有89%的解释量,在其他的估计分位点上系数效应的解释量更高。因此,土壤因子分布变化对幼苗密度分布变化影响的相对作用更大,而土壤因子边际变化则是导致幼苗密度不均衡变化的主要因素。土壤中速效氮、速效磷、速效钾分布变化对每个估计分位点上幼苗密度变化的解释量大多不足30%,而土壤含水量和土壤pH值对幼苗密度变化具有相对更大的影响。 结论 幼苗密度的年际变化在不同分位点上是不均衡的,在高分位点上的变化尤为明显。土壤因子的边际变化和土壤因子的分布变化共同决定了幼苗的存活动态。 Abstract:Objective In this paper, taking the coniferous and broadleaved mixed forest at different development stages in Jiaohe, Jilin Province of northeastern China as research object, the interannual variation of kernel density estimation curve of seedling density was compared and analyzed. The relative effects of marginal changes of soil factors and distribution changes of soil factors on the dynamics of seedling density distribution were discussed. Method Seedling investigation sample plots were systematically arranged in 420 m × 520 m half-matured forest (HF) sample plots and 500 m × 840 m mature forest (MF) sample plots. Quantile regression and counterfactual decomposition were used to test the marginal effects of environmental factors on seedling density at different quantile levels, and then to identify the leading factors resulting in the unequal change of seedling density. Result The kernel density estimation curve of seedling density showed a positive skewed distribution with peak value shifting to the left and long tail extending to the right. At the high quantile of θ = 0.90, the change value of seedling density was −5.9 in HF sample plots and −2.6 in MF sample plots. The change value of seedling density in HF sample plot was 5.8 when θ = 0.75, and that in MF sample plot was 2 when θ = 0.50 and θ = 0.75. The greater change of seedling density at high quantile reflects the inequality of probability distribution of the right single tail. The relative effects of coefficient effect and covariant effect on seedling density distribution were different in varied estimated quantiles. The coefficient effect in HF sample plots had a high explanation on all estimated quantiles; in MF sample plots, the covariant effect had 89% explanation for the change of seedling density at θ = 0.50 quantile. In other estimated quantiles, the explanation of coefficient effect was higher. Therefore, the relative effect of distribution of soil factors on the distribution of seedling density was greater, and the marginal change of soil factors was the main factor leading to unequal change of seedling density. Most of the changes in the distribution of available nitrogen, available phosphorus and available potassium in soil explained less than 30% of the changes in seedling density at each estimated quantile, while soil water content and soil pH had a relatively greater effect on the change of seedling density. Conclusion The interannual variation of seedling density is unequal in different quantiles, especially in the high quantile. The marginal change of soil factors and the distribution of soil factors determine the survival dynamics of seedlings. -
表 1 中龄林幼苗的物种组成动态
Table 1. Quantitative composition of seedling species in half-matured forest (HF)
树种
Tree species2012年苗数
Seedling number
in 20122013年苗数
Seedling number
in 20132012—2013年
新生苗数
Recruitment number
in 2012−20132012—2013年
死亡苗数
Dead seedling number
in 2012−20132012—2013年
死亡率
Mortality rate in
2012−2013/%2012年
重要值
Importance value
(IV) in 20122013年
重要值
IV in 2013水曲柳
Fraxinus mandschurica677 311 218 584 86.3 52.96 31.00 沙松
Abies holophylla311 45 10 276 88.7 17.87 4.72 色木槭
Acer mono118 446 409 81 68.6 13.78 38.22 白牛槭
Acer mandshuricum55 369 353 39 70.9 7.87 33.43 胡桃楸
Juglans mandshurica46 7 7 46 100.0 5.26 1.02 红松
Pinus koraiensis28 5 5 28 100.0 2.19 0.57 春榆
Ulmus davidiana var.
japonica27 32 9 4 14.8 2.28 3.60 簇毛槭
Acer barbinerve23 10 10 23 100.0 1.75 1.13 青杨
Populus cathayana23 36 22 9 39.1 1.24 1.60 紫椴
Tilia amurensis10 39 39 10 100.0 1.01 3.61 裂叶榆
Ulmus laciniata4 2 0 2 50.0 0.53 0.33 黄檗
Phellodendron amurense3 0 0 3 100.0 0.37 0.00 青楷槭
Acer tegmentosum3 23 23 3 100.0 0.37 2.51 稠李
Padus racemosa1 0 0 1 100.0 0.16 0.00 山杨
Populus davidiana1 0 0 1 100.0 0.16 0.00 鼠李
Rhamnus davurica1 0 0 1 100.0 0.16 0.00 糠椴
Tilia mandshurica0 1 1 0 0.0 0.00 0.16 千金榆
Carpinus cordata0 5 5 0 0.0 0.00 0.82 合计 Total 1 331 1 331 1 111 1 111 83.5 表 2 成熟林幼苗的物种组成动态
Table 2. Quantitative composition of seedling species in mature forest (MF)
树种
Tree species2012年苗数
Seedling number
in 20122013年苗数
Seedling number
in 20132012—2013年
新生苗
Recruitment number
in 2012−20132012—2013年
死亡苗数
Dead seedling number
in 2012−20132012—2013年
死亡率
Mortality rate in
2012−2013/%2012年
重要值
IV in 20122013年
重要值
IV in 2013水曲柳
Fraxinus mandschurica1403 537 219 1085 77.3 40.39 24.32 沙松
Abies holophylla1391 41 3 1353 97.3 29.25 2.11 色木槭
Acer mono538 1481 1402 459 85.3 22.40 50.23 白牛槭
Acer mandshuricum143 750 724 117 81.8 8.42 30.06 糠椴
Tilia mandshurica118 104 104 118 100.0 5.38 5.23 红松
Pinus koraiensis89 30 27 86 96.6 4.38 1.54 暴马丁香
Syringa reticulata264 0 0 264 100.0 3.96 0.00 紫椴
Tilia amurensis80 435 420 65 81.3 3.80 14.94 簇毛槭
Acer barbinerve131 45 30 116 88.5 3.73 2.28 裂叶榆
Ulmus laciniata29 2 0 27 93.1 1.71 0.15 胡桃楸
Juglans mandshurica27 8 5 24 88.9 1.69 0.59 千金榆
Carpinus cordata26 87 84 23 88.5 1.56 5.12 春榆
Ulmus davidiana var.
japonica24 47 27 4 16.7 1.36 2.78 青楷槭
Acer tegmentosum23 130 128 21 91.3 1.10 7.13 蒙古栎
Quercus mongolica10 3 2 9 90.0 0.71 0.22 柠筋槭
Acer triflorum6 20 15 1 16.7 0.43 1.35 毛榛
Corylus mandshurica3 0 0 3 100.0 0.09 0.00 黄檗
Phellodendron amurense1 0 0 1 100.0 0.07 0.00 合计 Total 4 306 3 720 3 190 3 776 87.7 表 3 不同分位点上幼苗密度分布变化的反事实分解
Table 3. Decomposing the changes in kernel density of number at each estimated quantiles
样地
Sample plot分位点
Quantile (θ)边际分布
Marginal distribution解释比例
Explained proportion单个协变量对变化量的解释比例
Proportion of overall changes explained by an individual covariate2012 2013 变化量
Change协变量效应
Covariate
effect系数效应
Coefficient
effect土壤含水量
Soil moisture
content土壤酸碱度
Soil pH碱解氮
Alkali hydrolyzed
nitrogen速效磷
Available
phosphorus速效钾
Available
potassium中龄林样地
HF sample plot0.10 4.0 4.7 0.7 0.10 0.90 0.06 0.03 0.01 0.25 0.25 7.3 7.4 0.1 0.04 0.96 0.67 0.44 0.25 0.50 11.5 15.0 3.5 0.03 0.97 0.30 0.02 0.75 18.0 23.8 5.8 0.13 0.86 0.10 0.08 0.90 37.2 31.3 −5.9 1.00 0.24 0.28 成熟林样地
MF sample plot0.10 3.0 4.0 1.0 0.04 0.96 0.33 0.73 0.30 0.04 0.25 7.0 7.2 0.2 0.07 0.93 0.34 0.98 0.57 0.49 0.04 0.50 12.0 14.0 2.0 0.89 0.11 0.31 0.75 22.0 24.0 2.0 0.04 0.96 0.27 0.48 0.98 0.68 0.07 0.90 42.2 39.6 −2.6 0.47 0.53 0.56 -
[1] 韩有志, 王政权. 森林更新与空间异质性[J]. 应用生态学报, 2002, 13(5):615−619. doi: 10.3321/j.issn:1001-9332.2002.05.024Han Y Z, Wang Z Q. Spatial heterogeneity and forest regeneration[J]. Chinese Journal of Applied Ecology, 2002, 13(5): 615−619. doi: 10.3321/j.issn:1001-9332.2002.05.024 [2] 潘春柳, 赖家业, 黎向东, 等. 单性木兰种子雨与天然更新的初步调查[J]. 生态学杂志, 2008, 27(12):2235−2239.Pan C L, Lai J Y, Li X D, et al. Seed rain and natural regeneration of Kmeria septentrionalis in Mulun of Guangxi[J]. Chinese Journal of Ecology, 2008, 27(12): 2235−2239. [3] Cairns S C. Introduction to population ecology[J]. Austral Ecology, 2006, 31(7): 907−908. doi: 10.1111/j.1442-9993.2006.01674.x [4] 彭闪江, 黄忠良, 彭少麟, 等. 植物天然更新过程中种子和幼苗死亡的影响因素[J]. 广西植物, 2004, 24(2):113−121. doi: 10.3969/j.issn.1000-3142.2004.02.004Peng S J, Huang Z L, Peng S L, et al. Factors influencing mortality of seed and seedling in plant nature regeneration process[J]. Guihaia, 2004, 24(2): 113−121. doi: 10.3969/j.issn.1000-3142.2004.02.004 [5] Poorter L. Are species adapted to their regeneration niche, adult niche, or both[J]. American Naturalist, 2007, 169(4): 433−442. doi: 10.1086/512045 [6] 张健, 李步杭, 白雪娇, 等. 长白山阔叶红松林乔木树种幼苗组成及其年际动态[J]. 生物多样性, 2009, 17(4):385−396. doi: 10.3724/SP.J.1003.2009.09102Zhang J, Li B H, Bai X J, et al. Composition and interannual dynamics of tree seedlings in broad-leaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountain[J]. Biodiversity Science, 2009, 17(4): 385−396. doi: 10.3724/SP.J.1003.2009.09102 [7] 姚杰, 闫琰, 张春雨, 等. 吉林蛟河针阔混交林乔木幼苗组成与月际动态[J]. 植物生态学报, 2015, 39(7):717−725. doi: 10.17521/cjpe.2015.0068Yao J, Yan Y, Zhang C Y, et al. Composition and monthly dynamics of tree seedlings in a coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, China[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 717−725. doi: 10.17521/cjpe.2015.0068 [8] 赵雪, 刘妍妍, 金光泽. 地形对阔叶红松林幼苗更新的影响[J]. 应用生态学报, 2013, 24(11):3035−3042.Zhao X, Liu Y Y, Jin G Z. Effects of topography on seedling regeneration in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3035−3042. [9] Lebrija-Trejos E, Wright S J, Hernández A, et al. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest[J]. Ecology, 2014, 95: 940−951. doi: 10.1890/13-0623.1 [10] Moran E V, Das A J, Keeley J E, et al. Negative impacts of summer heat on Sierra Nevada tree seedlings[J]. Ecosphere, 2019, 10(6): 1−22. [11] 陈永富. 森林天然更新障碍机制研究进展[J]. 世界林业研究, 2012, 25(2):41−45.Chen Y F. Research progress of natural regeneration barrier of forest[J]. World Forestry Research, 2012, 25(2): 41−45. [12] 康冰, 刘世荣, 蔡道雄, 等. 南亚热带不同植被恢复模式下土壤理化性质[J]. 应用生态学报, 2010, 21(10):2479−2486.Kang B, Liu S R, Cai D X, et al. Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2479−2486. [13] 苏松锦, 刘金福, 何中声, 等. 格氏栲天然林土壤养分空间异质性[J]. 生态学报, 2012, 32(18):5673−5682. doi: 10.5846/stxb201108041146Su S J, Liu J F, He Z S, et al. The spatial heterogeneity of soil nutrients in a mid-subtropical Castanopsis kawakamii natural forest[J]. Acta Ecologica Sinica, 2012, 32(18): 5673−5682. doi: 10.5846/stxb201108041146 [14] 刘帅, 廖嘉星, 肖翠, 等. 长白山次生针阔混交林乔木幼苗存活的影响因素分析[J]. 植物生态学报, 2016, 40(7):711−722. doi: 10.17521/cjpe.2015.0366Liu S, Liao J X, Xiao C, et al. Effects of biotic neighbors and habitat heterogeneity on tree seedling survival in a secondary mixed conifer and broad-leaved forest in Changbai Mountain[J]. Chinese Journal of Plant Ecology, 2016, 40(7): 711−722. doi: 10.17521/cjpe.2015.0366 [15] Wright S J, Yavitt J B, Wurzburger N, et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest[J]. Ecology, 2011, 92(8): 1616−1625. doi: 10.1890/10-1558.1 [16] 闫琰, 张新娜, 姚杰, 等. 吉林蛟河不同演替阶段针阔混交林乔木幼苗数量组成及其时间动态[J]. 植物生态学报, 2016, 40(2):127−139. doi: 10.17521/cjpe.2015.0365Yan Y, Zhang X N, Yao J, et al. Composition and temporal dynamics of tree seedlings at different successional stages of conifer and broad-leaved mixed forests in Jiaohe, Jilin Province, China[J]. Chinese Journal of Plant Ecology, 2016, 40(2): 127−139. doi: 10.17521/cjpe.2015.0365 [17] Koenker R, Bassett G. Regression quantiles[J]. Econometrica, 1978, 46: 33−50. doi: 10.2307/1913643 [18] Machado J A F, Mata J. Counterfactual decomposition of changes in wage distributions using quantile regression[J]. Journal of Applied Econometrics, 2005, 20: 445−465. doi: 10.1002/jae.788 [19] Mcmillen D. McSpatial: nonparametric spatial data analysis [Z/OL]. R package version 2.0. 2013 [2020−09−11]. http://CRANR-project.org/package=McSpatial. [20] 樊后保, 臧润国, 李德志. 蒙古栎种群天然更新的研究[J]. 生态学杂志, 1996, 15(3):15−20.Fan H B, Zang R G, Li D Z. Natural regeneration of Mongolian oak population[J]. Chinese Journal of Ecology, 1996, 15(3): 15−20. [21] Yan Y, Zhang C Y, Wang Y X, et al. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession[J]. Ecology and Evolution, 2015, 5: 4287−4299. doi: 10.1002/ece3.1688 [22] 尹华军, 程新颖, 赖挺, 等. 川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究[J]. 植物生态学报, 2011, 35(1):35−44. doi: 10.3724/SP.J.1258.2011.00035Yin H J, Cheng X Y, Lai T, et al. Seed rain, soil seed bank and seedling regeneration in a 65-year Picea asperata plantation in subalpine coniferous, western Sichuan, China[J]. Chinese Journal of Plant Ecology, 2011, 35(1): 35−44. doi: 10.3724/SP.J.1258.2011.00035 [23] 郝彦宾, 王艳芬, 崔骁勇. 干旱胁迫降低了内蒙古羊草草原的碳累积[J]. 植物生态学报, 2010, 34(8):898−906. doi: 10.3773/j.issn.1005-264x.2010.08.002Hao Y B, Wang Y F, Cui X Y. Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 898−906. doi: 10.3773/j.issn.1005-264x.2010.08.002 [24] Tao F L, Hayashi Y, Zhang Z, et al. Global warming, rice production, and water use in China: developing a probabilistic assessment[J]. Agricultural and Forest Meteorology, 2008, 148(1): 94−110. doi: 10.1016/j.agrformet.2007.09.012 [25] 卢丽萍, 程丛兰, 刘伟东, 等. 30年来我国农业气象灾害对农业生产的影响及其空间分布特征[J]. 生态环境学报, 2009, 18(4):1573−1578. doi: 10.3969/j.issn.1674-5906.2009.04.062Lu L P, Cheng C L, Liu W D, et al. Effect of the agricultural meteorological disasters on agricultural production and its spatial distribution characteristics during the last 30 years in China[J]. Ecology and Environmental Sciences, 2009, 18(4): 1573−1578. doi: 10.3969/j.issn.1674-5906.2009.04.062 [26] Morgan J M. Osmoregulation and water stress in higher plants[J]. Annual Review of Plant Physiology, 1984, 35(1): 299−319. doi: 10.1146/annurev.pp.35.060184.001503 [27] Hare P D, Cress W A, van Staden J. Dissecting the roles of osmolyte accumulation during stress[J]. Plant, Cell and Environment, 1998, 21(6): 535−553. doi: 10.1046/j.1365-3040.1998.00309.x [28] 官守鹏, 陈芳清, 吕坤, 等. 疏花水柏枝幼苗生物量与构件对模拟土壤地下水位变化的响应[J]. 植物科学学报, 2019, 37(4):485−494.Guan S P, Chen F Q, Lü K, et al. Responses of biomass and components of Myricaria laxiflora seedlings to simulated soil water level changes[J]. Plant Science Journal, 2019, 37(4): 485−494. [29] 李晗, 杨福孙, 李昌珍, 等. 不同土壤含水量下槟榔幼苗形态和生理特性[J]. 热带作物学报, 2020, 41(6):1132−1137. doi: 10.3969/j.issn.1000-2561.2020.06.009Li H, Yang F S, Li C Z, et al. Morphological and physiological characteristics of Areca catechu L. seedlings under different soil moisture contents[J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1132−1137. doi: 10.3969/j.issn.1000-2561.2020.06.009 [30] 王鑫, 余新晓, 贾国栋, 等. 不同土壤水分条件下侧柏幼苗的生理活动及氮素分配策略[J]. 水土保持学报, 2020, 34(3):311−317.Wang X, Yu X X, Jia G D, et al. Physiological activities and nitrogen allocation strategies of Platyccladus orientalis seedlings under different soil water conditions[J]. Journal of Soil and Water Conservation, 2020, 34(3): 311−317. [31] 周思婕, 王平, 张敏, 等. 酸胁迫对马尾松幼苗生长及根际铝形态的影响[J]. 应用与环境生物学报, 2019, 25(6):1292−1300.Zhou S J, Wang P, Zhang M, et al. Effects of acid stress on growth and aluminum speciation in the rhizosphere of Masson pine (Pinus massoniana L.) seedlings[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(6): 1292−1300. [32] Dyderski M, Gazda A, Hachułka M, et al. Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests[J]. Annals of Forest Science, 2018, 75(4): 91. doi: 10.1007/s13595-018-0775-x [33] 刘奎, 黄宝榴, 陈凯, 等. 望天树天然林幼苗更新及生长与环境因子的关系[J]. 湖南师范大学自然科学学报, 2018, 41(4):47−53.Liu K, Huang B L, Chen K, et al. Relationship between seedling regeneration, growth and environmental factors in Parashorea chinensis natural forest[J]. Journal of Natural Science of Hunan Normal University, 2018, 41(4): 47−53. [34] 吴富勤, 张新军, 申仕康, 等. 土壤养分与水分对猪血木幼苗生长及生理特性的影响[J]. 广东农业科学, 2015, 20:45−51. doi: 10.3969/j.issn.1004-874X.2015.06.009Wu F Q, Zhang X J, Shen S K, et al. Effect of soil nutrition and water content on the seedling growth and physiological characteristics of Euryodendron excelsum H. T. change[J]. Guangdong Agricultural Sciences, 2015, 20: 45−51. doi: 10.3969/j.issn.1004-874X.2015.06.009 [35] 任学敏, 杨改河, 秦晓威, 等. 巴山冷杉-牛皮桦混交林乔木更新及土壤化学性质对更新的影响[J]. 林业科学, 2012, 48(1):1−6. doi: 10.11707/j.1001-7488.20120101Ren X M, Yang G H, Qin X W, et al. Tree regeneration in an Abies fargesii-Betula utilis mixed forest and effects of the soil chemical properties on regeneration[J]. Scientia Silvae Sinicae, 2012, 48(1): 1−6. doi: 10.11707/j.1001-7488.20120101 [36] 黄婷, 张莹, 陈建忠, 等. 育苗密度对千年桐幼苗N、P利用和生物量积累的影响[J]. 西南林业大学学报, 2013, 33(5):17−23. doi: 10.3969/j.issn.2095-1914.2013.05.003Huang T, Zhang Y, Chen J Z, et al. Effect of seedling density on nitrogen and phosphorus utilization and biomass accumulation of Aleurites montana seedlings[J]. Journal of Southwest Forestry University, 2013, 33(5): 17−23. doi: 10.3969/j.issn.2095-1914.2013.05.003 -