Effects of release cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broadleaved trees in Xiaoxing’an Mountains of northeastern China
-
摘要:目的 揭示透光抚育对“栽针保阔”红松林中长期碳汇的影响规律,为恢复地带性顶极植被阔叶红松林提供依据。方法 采用相对生长方程与碳/氮分析测定法,同步测定小兴安岭不同透光抚育强度(对照(未采伐未栽针)、轻度透光抚育(伐除上层蓄积1/7)、中度透光抚育(伐除上层蓄积1/5)、强度透光抚育(伐除上层蓄积1/4))下的中期“栽针保阔”红松林(杨桦次生林冠下栽植红松35年,透光抚育30年)的生态系统碳储量(植被与土壤)、植被净初级生产力与年净固碳量,揭示透光抚育强度对“栽针保阔”红松林中长期碳汇作用的影响规律及机制。结果 (1)透光抚育30年后,各透光抚育强度使中期“栽针保阔”红松林的植被碳储量((81.15 ± 3.63) ~ (100.24 ± 1.10) t/hm2)显著降低了14.7% ~ 19.0%(P < 0.05),但各透光抚育强度之间却无显著差异性(源于上层阔叶树碳储量随透光抚育强度呈递减趋势(21.1% ~ 31.2%),冠下红松却呈递增趋势(39.0% ~ 107.4%))。(2)各透光抚育强度均使其土壤碳储量((108.32 ± 6.27) ~ (121.42 ± 11.75) t/hm2)与对照相近(−8.4% ~ 2.7%,P > 0.05),但轻度、中度和强度透光抚育却改变了土壤碳储量的空间分布格局(水平分布上土壤表层碳储量随透光抚育强度增大而递减;垂直分布上轻度和中度透光抚育使其由对照的上 > 中 ≈ 下转化为上 > 中 > 下或上 ≈ 中 > 下)。(3)轻度透光抚育使其生态系统碳储量((189.47 ± 5.16) ~ (218.44 ± 10.65) t/hm2)已得到恢复(−5.3%,P > 0.05),但中度和强度透光抚育仍使其较对照显著降低9.3%和13.3%(P < 0.05),且3者均使其生态系统碳储量分配比例略有改变(植被碳储量占比降低3.06% ~ 4.57%)。(4)轻度透光抚育使其植被年净初级生产力NPP((8.02 ± 0.79) ~ (9.51 ± 0.79) t/hm2)和年净固碳量VNCS((3.72 ± 0.37) ~ (4.42 ± 0.37) t/hm2)已得到恢复(−11.5%和−9.7%,P > 0.05),而中度和强度透光抚育却使其仍显著低于对照15.4% ~ 15.7%和14.0% ~ 15.8%(P < 0.05),但各透光抚育强度之间也无显著差异性(源于上层阔叶树种年净初级生产力和年净固碳量随透光抚育强度呈递减趋势(20.8% ~ 25.6%和19.3% ~ 24.5%),冠下红松年净初级生产力和年净固碳量却呈递增趋势(0.90 ~ 1.12 t/hm2和0.43 ~ 0.52 t/hm2))。结论 轻度透光抚育30年后小兴安岭“栽针保阔”红松林生态系统碳储量及年净固碳量已得到恢复,而中、强度透光抚育使两者显著降低9.1% ~ 14.3%和14.3% ~ 16.7%,故从维持森林碳汇角度考虑在次生林恢复地带性顶极植被阔叶红松林经营实践中采取低强度透光抚育方式比较适宜。Abstract:Objective This paper aims to reveal the influencing rule of liberation cutting intensity on the medium and long term carbon sink of Korean pine forests by planting conifer and reserving broadleaved trees (PCRBT), and to provide basis for the restoration of zonal climax vegetation broadleaved Korean pine forest.Method The carbon storage (vegetation and soil), net primary productivity (NPP) and net annual carbon sequestration (ANCS) of the mid-term (35 years) Korean pine forests by PCRBT under different liberation cutting (LC) intensities (control(C), low-intensity LC(L)-1/7, moderate-intensity LC(M)-1/5, and high-intensity LC(H)-1/4 (volume ratio)) were measured simultaneously by the relative growth equation and carbon/nitrogen analysis method in temperate Xiaoxing’an Mountains of northeastern China, to reveal the law and mechanism of the effect of liberation cutting on carbon sink of Korean pine forest.Result (1) The vegetation carbon storage ((81.15 ± 3.63) − (85.48 ± 2.30) t/ha) of the Korean pine forests by PCRBT was significantly lower than that of control ((100.24 ± 1.10) t/ha) by 14.7%−19.0% (P < 0.05) after liberation cutting 30 years, but the difference of vegetation carbon reserves was not significant among the low-, medium-, and high-intensity liberation cutting (because the carbon reserves of upper canopy broadleaf trees decreased with liberation cutting intensity (21.1%−31.2%), while the carbon reserves of Korean pine under canopy increased by 39.0%−107.4%). (2) The soil carbon storage ((108.32 ± 6.27) − (121.42 ± 11.75) t/ha) of the Korean pine forests by PCRBT was similar to that of control (−8.4%−2.7%, P > 0.05), however, the spatial distribution patterns of soil carbon storage were changed by the liberation cutting (on the horizontal distribution, the soil surface carbon storage decreased with increasing of liberation cutting intensity; on the vertical distribution, low-intensity and moderate-intensity liberation cutting made its vertical distribution changed from upper soil layer > middle soil layer ≈ lower soil layer in control forest to upper soil layer > middle soil layer > lower soil layer, or upper soil layer ≈ middle soil layer > lower soil layer). (3) The carbon storage of ecosystem ((189.47 ± 5.16) − (218.44 ± 10.65) t/ha) of the Korean pine forest by PCRBT had been recovered under low intensity LC (−5.3%, P > 0.05), but moderate-intensity and high-intensity LC still made them significantly lower than that of control by 9.3% and 13.3% (P < 0.05), and the carbon storage distribution ratio of the ecosystem was slightly changed by all the three intensity LC treatments (the carbon storage ratio of vegetation was reduced by 3.06% − 4.57%). (4) The NPP ((8.02 ± 0.79) − (9.51 ± 0.79) t/ha) and ANCS ((3.72 ± 0.37) − (4.42 ± 0.37) t/ha) of the Korean pine forest under low intensity liberation cutting treatment had been restored (−11.5% and −9.7%, P > 0.05), while moderate-intensity and high-intensity liberation cutting still made them significantly lower than that of control by 15.4%−15.7% and 14.0%−15.8% (P < 0.05), but there was no significant difference among the different liberation cutting intensity treatments (which because the net primary productivity and the annual net carbon sequestration of upper canopy broadleaf trees decreased by 20.8%−25.6% and 19.3%−24.5%, however, those of Korean pine under canopy increased by 0.90−1.12 t/ha and 0.43−0.52 t/ha, with the liberation cutting intensities increasing).Conclusion Low-intensity liberation cutting has made the ecosystem carbon storage and annual net carbon sequestration amount of the Korean pine forests by planting conifer and reserving broadleaved tree restored after 30 years, while moderate-intensity and high-intensity liberation cutting made them significantly reduce by 9.1%−14.3% and 14.3%−16.7% in the Xiaoxing’an Mountains. Therefore, from the perspective of maintaining forest carbon sink, it is more appropriate to adopt low intensity liberation cutting in the management practice of the secondary forest restoring zonal climax vegetation.
-
森林作为陆地生态系统的主体,储存着陆地地上碳库80%和陆地地下碳库40%以上的碳,在全球碳循环和减缓气候变化过程中具有不可替代的作用[1-2]。森林碳储量随植被恢复而增加,采取合理经营措施能够促进植被恢复、增加植物多样性进而提高生态系统碳汇功能[3]。地带性顶极植被的恢复同样可将更多的碳固定在森林生态系统之中,进而提高或维持森林碳汇功能以期达到减少碳排放的目标。
阔叶红松(Pinus koraiensis)林是我国东北温带地带性顶极植被,具有蓄积量高(一般为400 ~ 500 m3/hm2,高者可达700 ~ 800 m3/hm2)、生态效益显著,稳定性强等诸多优点[4-6]。但因过度开发及干扰破坏,原始阔叶红松林已退化为次生林和人工林(91.3和44.9 m3/hm2)(八次森林资源清查数据)[7-8],森林生产力和生态系统功能大幅度消减[9]。因此,如何恢复阔叶红松林已成为学界普遍关注的问题。20世纪80年代初期,陈大珂等[10]提出“栽针保阔”红松林恢复理论体系,该理论被认为是恢复阔叶红松林行之有效的森林经营方式。在这一理论指导下,东北林区在次生林林冠下营造红松形成的“栽针保阔”红松林已有近100万hm2[11],但因林分透光抚育缺失,致使林下红松生长受到抑制,乃至死亡。在此背景下,透光抚育作为促进阔叶红松林恢复与可持续利用的重要人工诱导管理措施倍受关注[12]。现有研究结果表明:透光抚育能够显著提高“栽针保阔”红松林内红松的树高和胸径生长量,且其生长随透光抚育强度增大而递增[13],能够提高“栽针保阔”红松林内红松的生物量和碳储量[11],且中度透光抚育更有利于维持林下物种多样性[14]等。但这些研究多是揭示了透光抚育强度对林内红松生长的影响,而有关透光抚育强度对中期“栽针保阔”红松林生态系统碳储量及其分配影响规律的认识目前仍很缺乏。
抚育间伐(类似于透光抚育)是培育森林的重要措施之一,在促进林木生长[15]和提升森林碳汇功能[16]等方面具有重要作用。目前国内外有关森林碳储量研究多集中在天然林,而有关抚育间伐对森林碳储量影响研究仍很有限[17],且主要集中在间伐对人工林植被或土壤碳储量单一方面的研究,研究结论也不一致。例如,抚育间伐既增加了杉木(Cunninghamia lanceolate)人工林的植被碳储量[18],又降低了花旗松(Pseudotsuga menziesii)林的植被碳储量[19],而对扭叶松(Pinus contorta var. latifolia)人工林的植被碳储量却无影响[20];抚育间伐对火炬松(Pinus taeda)人工林的土壤碳储量无影响[17, 21],但抚育间伐却增加了黑松(Pinus laricio)人工林[22]和华北落叶松(Larix principis-rupprechtii)人工林[23]的土壤碳储量。而有关抚育间伐对森林生态系统碳储量的影响研究则相对较少,结论也不一致,如轻度间伐对长白落叶松(Larix olgensis)人工林生态系统碳储量无影响[24],重度间伐显著降低了樟子松(Pinus sylvestris)人工林生态系统碳储量[25],间伐显著增加了杉木人工林生态系统碳储量[26],北美硬阔林和挪威云杉林生态系统碳储量随着间伐强度的增加而降低[27-28]。可见,这些研究多是揭示抚育间伐对人工纯林或单层林碳储量的影响规律,而对异龄复层混交林对采伐干扰是如何响应的目前尚不清楚。
本研究以我国东北温带小兴安岭中期“栽针保阔”红松林(天然杨桦次生林林下栽植红松35年形成的异龄复层针阔混交林,透光抚育试验进行30年)为研究对象,采用相对生长方程与碳/氮分析测定法,同步测定不同透光抚育强度(对照(未透光未栽植红松)、轻度透光抚育(伐除上层蓄积1/7)、中度透光抚育(伐除上层蓄积1/5)、强度透光抚育(伐除上层蓄积1/4))下杨桦红松林的生态系统碳储量(植被和土壤)、净初级生产力与年净固碳量,揭示透光抚育强度对中期“栽针保阔”红松林生态系统碳库及固碳能力的影响规律,以期为增强我国东北森林碳汇及加快阔叶红松林恢复进程提供科学依据。
1. 研究地概况与研究方法
1.1 研究地概况
研究地点位于黑龙江省伊春市带岭区大青川林场,地理位置处于46°50′ ~ 47°20′N、128°37′ ~ 129°46′E。海拔高度为500 ~ 800 m。该区属于温带大陆性湿润季风气候,年平均气温1.4 ℃,月平均最低气温−19.4 ℃。年均降水量661 mm,年降水量最大值836.5 mm,降水集中在7—8月,占全年雨量的66%,年无霜期115 d。地带性土壤为暗棕壤,隐域性土壤包括草甸土、沼泽土和白浆土等[29]。地带性植被是以红松为顶极种的温带针阔叶混交林,由于原始阔叶红松林退化,目前以天然次生林与人工林为主,次生林的森林类型主要包括山杨(Populus davidiana)林、白桦(Betula platyphylla)林及硬阔叶林等。带岭林业实验局早在20世纪80年代中期在大青川林场就开展了杨桦次生林冠下营造红松恢复红松林的试验,试验地面积为50 hm2,林冠下栽植红松(2年)密度为3 300株/hm2,并于1989年进行了不同强度的上层透光抚育(轻度(蓄积比1/7)、中度(蓄积比1/5)、强度(蓄积比1/4))。试验地的主要树种有白桦、山杨、水曲柳(Fraxinus mandshurica)、紫椴(Tilia amurensis)等。2018年进行本次调查时,林内已栽植红松35年,透光抚育试验已长达30年,已初步形成了异龄复层针阔混交林。
1.2 研究方法
1.2.1 样地设置
本研究于2018年春季在伊春市带岭林业局大青川林场349林班杨桦红松林内设置了透光抚育对中期“栽针保阔”红松林碳储量影响研究的固定标准地,试验设计包括4种处理:对照(未透光未栽植红松,C)、轻度透光抚育(蓄积比1/7,L)、中度择伐(蓄积比1/5,M)和强度择伐(蓄积比1/4,H);每个处理随机设置3个规格为20 m × 30 m的固定标准地(即3次重复),共计12块固定标准地。且各试验地均处于海拔高度相近的西南坡中坡位(立地条件相似);透光抚育时采伐上层杨桦林木径级较小(< 8 cm)及采伐蓄积不足1.0 m3/hm2,且采伐物均留在原林地。并对各标准地进行了每木调查(表1)与土壤理化性质测定(表2)。
表 1 试验地乔木层林分概况Table 1. Overview of arbor forest in test site处理
Treatment郁闭度
Canopy density/%树种
Tree species密度/(株·hm−2)
Density/(plant·ha−1)胸高断面积/(m2·hm−2)
Basal area/(m2·ha−1)平均胸径
Mean DBH/cm胸径范围
DBH range/cmC 0.80 白桦 Betula platyphylla 611 ± 123 18.6 ± 2.9 18.9 ± 0.8 2.1 ~ 32.0 山杨 Populus davidiana 325 ± 71 9.8 ± 2.7 18.7 ± 0.0 10.7 ~ 43.4 紫椴 Tilia amurensis 100 ± 29 1.9 ± 0.6 13.3 ± 1.6 5.5 ~ 40.0 黄菠萝 Phellodendron amurense 67 ± 16 0.6 ± 0.2 10.9 ± 4.1 4.5 ~ 9.2 水曲柳 Fraxinus mandshurica 94 ± 28 1.6 ± 0.5 10.5 ± 3.7 4.2 ~ 29.2 其他 Others 561 ± 122 11.7 ± 2.6 13.4 ± 3.3 3.3 ~ 32.4 总计Total 1 444 ± 229 33.1 ± 3.7 15.6 ± 1.0 2.1 ~ 43.4 L 0.75 红松 Pinus koraiensis 967 ± 49 3.3 ± 0.4 5.8 ± 0.5 2.0 ~ 12.6 白桦 Betula platyphylla 494 ± 96 14.2 ± 4.1 18.1 ± 0.5 7.5 ~ 41.0 山杨 Populus davidiana 244 ± 56 5.3 ± 1.2 16.6 ± 1.7 5.8 ~ 28.6 紫椴 Tilia amurensis 150 ± 24 2.3 ± 0.5 13.3 ± 3.8 2.7 ~ 26.4 水曲柳 Fraxinus mandshurica 44 ± 10 0.8 ± 0.5 14.3 ± 1.4 5.8 ~ 27.6 其他 Others 289 ± 34 4.0 ± 1.3 13.5 ± 5.1 6.1 ~ 32.5 总计Total 2 189 ± 86 30.0 ± 1.1 11.1 ± 0.3 2.0 ~ 41.0 M 0.70 红松 Pinus koraiensis 694 ± 56 4.6 ± 0.7 7.9 ± 0.2 2.8 ~ 16.9 白桦 Betula platyphylla 444 ± 139 12.8 ± 4.3 18.3 ± 0.5 8.0 ~ 30.7 山杨 Populus davidiana 317 ± 68 7.3 ± 1.9 16.0 ± 2.1 7.5 ~ 55.2 紫椴 Tilia amurensis 75 ± 21 1.0 ± 0.2 11.2 ± 3.1 7.2 ~ 20.1 黄菠萝 Phellodendron amurense 33 ± 6 0.2 ± 0.0 8.9 ± 2.7 4.6 ~ 11.6 其他 Others 483 ± 100 9.4 ± 1.5 14.4 ± 0.6 2.2 ~ 35.3 总计Total 1 650 ± 89 28.6 ± 0.6 13.0 ± 0.1 2.2 ~ 55.2 H 0.65 红松 Pinus koraiensis 650 ± 138 6.5 ± 1.0 9.9 ± 0.4 2.8 ~ 29.2 白桦 Betula platyphylla 467 ± 118 14.0 ± 4.4 18.6 ± 0.5 3.2 ~ 32.8 山杨 Populus davidiana 150 ± 35 4.3 ± 1.7 20.7 ± 3.2 10.9 ~ 31.4 紫椴 Tilia amurensis 50 ± 17 1.0 ± 06 18.2 ± 8.6 10.7 ~ 30.3 黄菠萝 Phellodendron amurense 75 ± 58 0.3 ± 0.2 4.0 ± 2.2 3.0 ~ 11.2 水曲柳 Fraxinus mandshurica 72 ± 17 1.1 ± 0.2 15.1 ± 8.5 3.9 ~ 26.6 其他 Others 200 ± 45 2.1 ± 0.6 9.8 ± 2.0 2.8 ~ 39.7 总计Total 1 639 ± 123 29.2 ± 0.44 13.2 ± 0.8 2.8 ~ 39.7 注: C. 对照;H. 强度透光抚育(1/4);M. 中度透光抚育(1/5);L. 轻度透光抚育(1/7)。表中数值为平均值 ± 标准差。下同。Notes: C, control; H, heavy-intensity liberation cutting (1/4); M, moderate-intensity liberation cutting (1/5); L, light-intensity liberation cutting (1/7). Data in the table are mean ± SD. The same below. 表 2 不同透光抚育强度下0 ~ 30 cm土壤理化性质Table 2. Soil physicochemical properties under different liberation cuttings (0−30 cm)指标
Index土壤深度
Soil depth/cm处理 Treatment C L M H 土壤密度 Soil density/(g·cm−3) 0 ~ 10 0.42 ± 0.03A 0.43 ± 0.05A 0.45 ± 0.02A 0.43 ± 0.01A 10 ~ 20 0.58 ± 0.04A 0.58 ± 0.12A 0.63 ± 0.06A 0.62 ± 0.05A 20 ~ 30 0.83 ± 0.02A 0.68 ± 0.21A 0.83 ± 0.03A 0.76 ± 0.03A 有机碳含量 Organic carbon content/(g·kg−1) 0 ~ 10 125.12 ± 10.2A 125.18 ± 17.01A 97.97 ± 7.52B 93.87 ± 7.72B 10 ~ 20 51.90 ± 2.33B 72.51 ± 15.51A 54.85 ± 10.27AB 56.70 ± 9.83AB 20 ~ 30 42.37 ± 10.17A 40.03 ± 2.24AB 36.34 ± 4.54B 42.20 ± 10.73A 含水率 Moisture content/% 0 ~ 10 0.89 ± 0.07A 0.79 ± 0.05AB 0.80 ± 0.12AB 0.69 ± 0.16B 10 ~ 20 0.63 ± 0.12A 0.61 ± 0.16A 0.56 ± 0.14A 0.55 ± 0.13A 20 ~ 30 0.46 ± 0.08A 0.46 ± 0.12A 0.57 ± 0.15A 0.40 ± 0.06A 注:不同大写字母表示不同处理间差异显著(P < 0.05)。下同。Notes: different capital letters represent significant differences among varied treatments (P < 0.05). The same below. 1.2.2 植被碳储量测定
首先对各个大小为20 m × 30 m标准样地中胸径大于2 cm的林木进行编号并进行每木检尺,利用东北林区现有的乔木树种生物量方程[30]计算出各乔木部位的生物量,根据调查得到的林分径级分布数据可以得到乔木层的生物量。利用碳/氮分析仪EA4000测定乔木层各部位的有机碳含量,将其生物量乘以各部位碳含量,可得到乔木层碳储量;在各标准样地的4个角和中心位置设立5个1 m × 1 m灌丛样方,随机选取10个1 m × 1 m的草丛样方,获取样方内灌木层与草本层地上与地下的全部生物量鲜质量,按比例取样后带回实验室,在温度为70 ℃的烘箱内烘干至恒质量,计算灌木、草本含水率,得到两者的生物量干质量。测定灌木层和草本层各部位的有机碳含量,乘以各自的生物量干质量,得到灌木层与草本层的碳储量;在秋季落叶前在各标准样地的4个角和中心位置分别设置5个30 cm × 30 cm小样方,将全部凋落物收集,装入封口袋进行编号,带回实验室,在70 ℃的温度下烘干到恒质量,得到凋落物生物量干质量。测定凋落物层各部位的有机碳含量,将其乘以生物量干质量,得到凋落物层碳储量;将以上得到的各层级的碳储量相加即可得到植被碳储量。
1.2.3 土壤碳储量测定
在每个标准样地中心设置3个土壤剖面,共计调查36个土壤剖面。确定土壤剖面后,用容积为100 cm3的土壤环刀每10 cm为一取样层,取出的土样用铝盒封装,带回实验室在烘箱烘干后,测定其土壤密度;同时另取出约500 g的土样放入样品袋,带回实验室自然风干,对风干后的土壤需要取出其中的根系和石子,在70 ℃的烘箱内烘干,研磨粉碎后的土样过2 mm土壤筛,得到土样,使用碳/氮分析仪EA4000测定土壤的有机碳含量,用下面的公式进行碳储量计算。某一土层i的有机碳密度(SOCi,kg/m2)[31]的计算公式为:
SOCi=Ci×Di×Ei×(1−Gi)/100 式中:Ci表示土壤有机碳含量(g/kg),Di表示土壤密度(g/cm3),Ei表示土层厚度(cm),Gi表示直径大于2 mm的石砾所占的体积百分比(%)。土壤剖面由k层组成,那么该剖面的碳密度(SOCt,kg/m2)[31]为:
SOCt=k∑i=1SOCi=k∑i=1Ci×Di×Ei×(1−Gi)/100 1.2.4 植被年净初级生产力和年净固碳量测定
草本层的净初级生产力就是当年生的全部生物量,灌木层净初级生产力为其近5年积累量的平均值,乔木层净初级生产力是将生长锥取得的树木年轮宽度,取近5年的平均值作为当年的乔木胸径增长量,代入生长方程得到乔木生物量,得到乔木层净初级生产力。现阶段的植被净初级生产力是将以上各层级的净初级生产力求和可得。将其各自得到的净初级生产力乘以对应的有机碳含量,然后求和得到现阶段的植被年净固碳量。
1.2.5 数据处理
使用Excel 2007和SPSS 19.0进行数据统计分析,采用单因素方差分析(one-way ANOVA)和最小显著差异法(LSD)进行差异性比较各透光抚育强度下的碳储量、植被净初级生产力和年净固碳量。
2. 结果与分析
2.1 透光抚育强度对“栽针保阔”红松林植被碳储量的影响
由表3可以得到,各透光抚育处理样地的植被碳储量分布在(81.15 ± 3.63) ~ (100.24 ± 1.10) t/hm2之间,其中,轻、中、强度透光抚育使其植被碳储量依次较对照样地显著降低了14.7%、17.6%和19.0%;中、强度透光抚育使其植被碳储量仅略低于轻度透光抚育3.4%和5.1%。因此,透光抚育30年后,中期“栽针保阔”红松林的植被碳储量仍显著低于对照杨桦林;但中期“栽针保阔”红松林各透光抚育强度之间植被碳储量已无显著差异性。
表 3 不同透光抚育强度下植被碳储量及分配比例Table 3. Carbon storages and allocation proportions under different liberation cuttings指标
Index层次
Layer处理 Treatment C L M H 碳储量/(t·hm−2)
Carbon storage/(t·ha−1)红松 Korean pine 0.00 ± 0.00 C 5.92 ± 0.29B 8.23 ± 1.85B 12.28 ± 2.06A 阔叶树种 Broadleaved tree species 96.04 ± 1.00A 75.82 ± 1.69AB 70.61 ± 3.72BC 66.06 ± 5.81C 乔木 Tree 96.04 ± 1.00A 81.73 ± 1.92A 78.85 ± 1.87A 78.34 ± 3.93A 灌木 Shrub 3.28 ± 0.30A 2.66 ± 0.64AB 2.67 ± 0.75AB 1.69 ± 0.39B 草本 Herb 0.09 ± 0.02A 0.06 ± 0.02A 0.07 ± 0.02A 0.07 ± 0.01A 凋落物 Litter 0.83 ± 0.08A 1.03 ± 0.11A 1.02 ± 0.14A 1.05 ± 0.12A 植被 Vegetation 100.24 ± 1.10A 85.48 ± 2.30B 82.56 ± 2.50B 81.15 ± 3.63B 分配比
Allocation proportion/%乔木 Tree 95.81 95.61 95.51 96.54 灌木 Shrub 3.27 3.11 3.23 2.08 草本 Herb 0.09 0.07 0.08 0.09 凋落物 Litter 0.83 1.20 1.24 1.29 注:植被包括乔木层、灌木层、草本层和凋落物层。Notes: vegetation includes tree, shrub, herb and litter. 轻、中、强度透光抚育使其乔木层的碳储量较对照依次降低了14.9%、17.9%和18.4%,但3种透光抚育强度之间及其与对照间差异性均不显著;而轻、中、强度透光抚育却使其阔叶树种的碳储量较对照依次降低了21.1%(P > 0.05)、26.5%和31.2%(P < 0.05),呈现出随透光抚育强度增大而递减的变化规律性;同时,3者较对照又增加了红松的碳储量5.92 ~ 12.28 t/hm2,且中、强度透光抚育较轻度透光抚育提高了39.0%(P > 0.05)和107.4%(P < 0.05),呈现出随透光抚育强度增大而递增的变化规律性。此外,轻、中度透光抚育使其灌木层的碳储量较对照降低了18.9%和18.6%,而强度透光抚育则使其显著降低了48.5%;各强度透光抚育使其草本层碳储量均略低于对照(22.2% ~ 33.3%);各强度透光抚育使其凋落物层的碳储量均略高于对照(22.9% ~ 26.5%)。因此,透光抚育30年后,中期“栽针保阔”红松林的乔木层、灌木层与草本层的碳储量均有不同程度的降低,但凋落物层的碳储量却有所提高。
2.2 透光抚育强度对“栽针保阔”红松林土壤碳储量的影响
由表4可以得到,各透光抚育处理样地的土壤碳储量分布在(108.32 ± 6.27) ~ (121.42 ± 11.75) t/hm2之间,其中,轻度透光抚育使其略高于对照(2.7%),中度透光抚育使其略低于对照(−2.1%),而强度透光抚育使其较对照降低幅度相对较大(−8.4%);在3种透光抚育强度处理中,中、强度透光抚育使其较轻度透光抚育降低了4.7%和10.8%,呈现出随透光抚育强度增大而递减的变化趋势,但总体上三者之间以及三者与对照之间土壤碳储量均无显著差异性。
表 4 不同透光抚育强度下土壤有机碳储量及其分布特征 t/hm2Table 4. Soil organic carbon storage and its vertical distribution under different liberation cuttingst/ha 土层深度
Soil depth/cm处理 Treatment C L M H 0 ~ 10 52.59 ± 4.59Aa 50.79 ± 5.34Aa 45.21 ± 4.41 Aa 43.87 ± 4.75Aa 10 ~ 20 35.27 ± 4.68Ab 41.32 ± 4.07Ab 41.04 ± 3.45Aa 34.31 ± 4.39Ab 20 ~ 30 30.34 ± 2.33Ab 29.31 ± 4.52Ac 29.43 ± 4.30Ab 30.15 ± 4.34Ab 0 ~ 30 118.20 ± 10.19A 121.42 ± 11.75A 115.68 ± 8.52A 108.32 ± 6.27A 注:不同小写字母代表处理内各土层差异显著(P < 0.05)。Note: different lowercase letters indicate significant differences in soil layers within the treatment (P < 0.05). 但透光抚育强度改变了其土壤碳储量的空间分布格局。在水平分布上,各处理样地中0 ~ 10 cm土壤层的碳储量分布在43.87 ~ 52.59 t/hm2,其中,轻、中、强度透光抚育使其较对照依次降低了3.4%、14.0%和16.6%,呈现出随透光抚育强度增大而递减的变化趋势;10 ~ 20 cm土壤层的碳储量分布在34.31 ~ 41.32 t/hm2,轻、中度透光抚育使其较对照提高了17.2%和16.4%,而强度透光抚育与对照相近(−2.7%);20 ~ 30 cm土壤层的碳储量分布在29.31 ~ 30.34 t/hm2,各强度透光抚育样地均与对照相近(−3.4%和−0.6%)。由此可见,中、强度透光抚育较大幅度降低了其上部土壤层的碳储量,而轻、中度透光抚育较大幅度提高了其中部土壤层的碳储量。
在垂直分布上,各透光抚育处理样地的土壤碳储量均呈现出随土壤深度增加而递减的分布规律性。但各处理样地土壤碳储量的垂直分布格局有所不同。强度透光抚育样地与对照样地相一致,0 ~ 10 cm与10 ~ 30 cm土壤层之间存在显著差异性,可分2层;而轻度透光抚育样地各土层之间均存在显著差异性,可分3层;中度透光抚育样地0 ~ 20 cm与20 ~ 30 cm土壤层之间存在显著差异性,可分2层。因此,强度透光抚育对其土壤碳储量的垂直分布并无影响,而轻、中度透光抚育却改变了其垂直分布格局。
2.3 透光抚育强度对“栽针保阔”红松林生态系统碳储量的影响
由表5可以得到,各透光抚育处理样地的生态系统碳储量分布在(189.47 ± 5.16) ~ (218.44 ± 10.65) t/hm2,其中,轻度透光抚育仅使其略低于对照(−5.3%),但中、强度透光抚育却使其显著低于对照9.2%和13.3%;同时,中、强度透光抚育使其低于轻度透光抚育但差异性已不显著(4.2%和8.4%)。此外,3种透光抚育强度处理均使植被碳储量占比略有降低及土壤碳储量占比略有升高(3.06% ~ 4.57%)。因此,透光抚育30年后,小兴安岭中期“栽针保阔”红松林生态系统碳储量在轻度透光抚育处理下已经得到恢复,而在中、强度透光抚育处理下却尚未得到恢复,但后两者仅略低于轻度透光抚育;且透光抚育对生态系统碳储量分配比例略有影响。
表 5 不同透光抚育强度下生态系统碳储量及其分布特征Table 5. Ecosystem organic carbon storage and its vertical distribution under different liberation cuttings指标
Index层次
Layer处理 Treatment C L M H 碳储量/(t·hm−2)
Carbon storage/(t·ha−1)植被 Vegetation 100.24 ± 1.10A 85.48 ± 2.30B 82.56 ± 2.50B 81.15 ± 3.63B 土壤 Soil 118.2 ± 11.19A 121.42 ± 11.75A 115.68 ± 8.52A 108.32 ± 6.27A 生态系统 Ecosystem 218.44 ± 10.65A 206.90 ± 12.58AB 198.24 ± 10.96B 189.47 ± 5.16B 分配比
Allocation proportion/%植被 Vegetation 45.89 41.32 41.65 42.83 土壤 Soil 54.11 58.68 58.35 57.17 2.4 透光抚育强度对“栽针保阔”红松林植被净初级生产力和年净固碳量的影响
由表6可以得到,各透光抚育处理样地的NPP和VNCS分布在(8.02 ± 0.79) ~ (9.51 ± 0.79)t/hm2和(3.72 ± 0.37) ~ (4.42 ± 0.37)t/hm2,其中,轻度透光抚育使其NPP和VNCS略低于对照但差异性已不显著(−11.5%和−9.7%),而中、强度透光抚育却使其NPP和VNCS显著低于对照15.4% ~ 15.7%和14.0% ~ 15.8%;但3种透光抚育强度之间的NPP和VNCS却无显著差异性,中、强度透光抚育仅使其NPP和VNCS略低于轻度透光抚育(−4.4% ~ −4.8%和−4.8% ~ −6.8%)。因此,透光抚育30年后,小兴安岭中期“栽针保阔”红松林的固碳能力在轻度透光抚育下已经得到恢复,而在中度与强度透光抚育下尚未得到恢复。
表 6 不同透光抚育强度下植被净初级生产力与年净固碳量Table 6. Net primary productivity and vegetation net annual carbon sequestration under different liberation cuttings指标
Index层次
Layer处理 Treatment C L M H 净初级生产力/(t·hm−2·a−1)
Net primary productivity (NPP)/
(t·ha−1·year−1)红松 Korean pine 0.00 ± 0.00B 0.90 ± 0.09A 0.92 ± 0.13A 1.12 ± 0.25A 阔叶树种 Broadleaved tree species 7.88 ± 0.82A 6.24 ± 0.44B 5.86 ± 0.26B 6.01 ± 0.61B 乔木 Tree 7.88 ± 0.82A 7.14 ± 0.46A 6.78 ± 0.25A 7.13 ± 0.82A 灌木 Shrub 1.43 ± 0.15A 1.13 ± 0.27AB 1.12 ± 0.31AB 0.73 ± 0.17B 草本 Herb 0.20 ± 0.04A 0.15 ± 0.03A 0.15 ± 0.04A 0.16 ± 0.03A 植被 Vegetation 9.51 ± 0.79A 8.42 ± 0.66AB 8.05 ± 0.17B 8.02 ± 0.79B 年净固碳量/(t·hm−2·a−1)
Annual net carbon sequestration (NCS)/
(t·ha−1·year−1)红松 Korean pine 0.00 ± 0.00B 0.43 ± 0.05A 0.43 ± 0.06A 0.52 ± 0.12A 阔叶树种 Broadleaved tree species 3.67 ± 0.33A 2.96 ± 0.25B 2.77 ± 0.22B 2.79 ± 0.29B 乔木 Tree 3.67 ± 0.33A 3.39 ± 0.28A 3.20 ± 0.09A 3.31 ± 0.38A 灌木 Shrub 0.66 ± 0.59A 0.53 ± 0.13AB 0.53 ± 0.15AB 0.34 ± 0.08B 草本 Herb 0.09 ± 0.02A 0.07 ± 0.01A 0.07 ± 0.02A 0.07 ± 0.01A 植被 Vegetation 4.42 ± 0.37A 3.99 ± 0.37AB 3.80 ± 0.73B 3.72 ± 0.37B 透光抚育强度对其各植被组成层次碳储量的影响规律也有所不同。轻、中、强度透光抚育使其乔木层的NPP和VNCS仅略低于对照9.4% ~ 14.0%和7.6% ~ 12.8%,但三者显著降低了阔叶树种的NPP和VNCS(20.8% ~ 25.6%和19.3% ~ 24.5%),同时,又增加了红松的NPP和VNCS(0.90 ~ 1.12 t/hm2和0.43 ~ 0.52 t/hm2),进而对其乔木层的NPP和NCS给予了部分补偿;轻、中度透光抚育使其灌木层的NPP和VNCS较对照降低了21.0%和19.7%或21.7%和19.7%(P > 0.05),而强度透光抚育却使其显著降低了49.0%和48.5%;三者也较大幅度地降低了其草本层的NPP和VNCS(20.0% ~ 25.0%和22.2%,P > 0.05)。因此,透光抚育30年后,小兴安岭中期“栽针保阔”红松林各透光抚育处理样地中乔木层、灌木层及草本层的固碳能力均有不同程度的降低,进而引起其植被整体固碳能力尚未得到彻底恢复。
3. 结论与讨论
3.1 不同透光抚育强度对植被碳储量的影响
本研究得到小兴安岭中期“栽针保阔”红松林透光抚育30年后,各透光抚育强度均使其植被碳储量仍显著低于对照杨桦林,但各透光抚育强度处理之间其植被碳储量却已无显著差异性。这与现有结论透光抚育显著降低长白山中期蒙古栎红松林植被碳储量,且轻、中、强度透光抚育降低幅度相近[11]相一致,这也说明透光抚育强度对中期“栽针保阔”红松林植被碳储量的影响并不受区域及林分类型所制约。此外,其植被碳储量(81.15 ~ 100.24 t/hm2)略高于帽儿山实验林场测得的林龄50年左右的天然次生林植被碳储量(44.82 ~ 82.06 t/hm2)[32],但远低于长白山露水河林业局测得的原始阔叶红松林植被碳储量(152.87 t/hm2)[33]。这说明了小兴安岭中期“栽针保阔”红松林透光抚育30年后,其植被碳储量并不低于天然次生林,但因林内栽植了顶极种红松使其具有了更大的提升空间。
其原因在于森林植被碳储量主要取决于占其主体地位的乔木层的碳储量(95.5% ~ 96.5%),且透光抚育能够调节上层阔叶树种与林冠下红松的消长关系[11],进而对植被碳储量产生不同的影响,随着透光抚育强度的增大,上层阔叶树种的碳储量(66.06 ~ 96.04 t/hm2)呈递减趋势(21.1% ~ 31.2%),而冠下红松的碳储量(5.92 ~ 12.28 t/hm2)却呈递增趋势(表3),故势必导致各透光抚育强度处理之间植被碳储量的差异性逐渐趋于减小。但由于冠下红松目前仍处于幼龄林阶段(35年),其生长潜力尚未得到充分的发挥(红松属于中后期速生树种[34]),并不足以弥补上层透光抚育所引起的植被碳损失。但由于抚育间伐后植被固碳能力增强[35],植被恢复能够增加植物多样性和植被层碳储量[3],随着红松中后期快速生长和阔叶树种的更新演替,群落中生命周期长及个体大的树种不断增多(红松及其主要伴生阔叶树种),使其在固碳方面更加具有优势。相信在未来几十年内,“栽针保阔”红松林植被碳储量不但会得到完全恢复,甚至会有较大幅度的提高。
3.2 不同透光抚育强度对土壤碳储量的影响
本研究得到透光抚育30年后,轻、中、强度透光抚育对小兴安岭中期“栽针保阔”红松林土壤碳储量已无显著影响,这与透光抚育对长白山中期“栽针保阔”红松林土壤碳储量影响研究中的轻度无显著影响[36]基本一致,但与其中度透光抚育使其显著提高及强度透光抚育与皆伐使其显著降低并不同。其原因在于两者所采取的透光抚育强度不同,本研究中的透光抚育强度最高为25%,仅相当于后者的轻度透光抚育。但与加拿大北方混交林在抚育间伐9年后对土壤碳库无显著影响[37]相一致。可能原因是土壤碳损失主要集中在土壤表层[38],森林地表碳储量的减少被深层土壤有机碳的积累所补偿[39],使得土壤碳库并无显著性变化。其土壤碳储量(108.32 ~ 121.42 t/hm2)与在帽儿山实验林场测得的50年生天然次生林土壤碳储量(64.73 ~ 179.25 t/hm2)[32]相一致,但低于长白山露水河林业局测得的原始阔叶红松林土壤碳储量(155.30 t/hm2)[33]。这说明透光抚育30年后小兴安岭中期“栽针保阔”红松林土壤碳储量并没有降低,并且随着红松的中后期的快速生长,土壤碳储量还会得到更大的提升。
此外,本研究还得到透光抚育强度改变了土壤碳储量的空间分布格局(其土壤表层碳储量随透光抚育强度增大而递减;轻、中度透光抚育改变了其垂直分布格局(由对照的上 > 中 ≈ 下转化为上 > 中 > 下或上 ≈ 中 > 下))。前者的原因在于随透光抚育强度增大,土壤表层温度呈递增趋势(15.93 ~ 17.22 ℃),加大表层土壤呼吸碳损失,加之阔叶树种凋落物输入量随之而递减,导致土壤表层碳储量递减;后者的原因在于上层阔叶树种为浅根系(根系主要分布在0 ~ 20 cm)和红松为深根系(其幼树根系主要分布在10 ~ 20 cm土壤层),红松细根死亡及根系分泌物的释放引起了10 ~ 20 cm层的碳储量升高(16.4% ~ 17.2%),进而轻、中度透光抚育使其垂直分布格局由对照的上 > 中 ≈ 下转化为上 > 中 > 下或上 ≈ 中 > 下;而强度透光抚育使0 ~ 20 cm土壤层的生长季平均温度较对照升高1.08 ℃,可能加大了0 ~ 20 cm土壤呼吸碳损失,故使其土壤层碳储量分布格局与对照相近。这与植物根系的分布直接影响土壤有机碳的垂直分布[40],土壤温度是影响白桦天然次生林土壤呼吸速率的关键因子[41]的研究结论一致。
3.3 不同透光抚育强度对生态系统碳储量的影响
透光抚育30年后,轻度透光抚育使其生态系统碳储量得到恢复,而中、强度透光抚育却使其显著降低;且三者均使其生态系统碳储量分配比例略有改变。前者与抚育间伐显著降低北美硬阔叶林生态系统碳储量且随抚育间伐强度增大而递减趋势[27]的现有结论并不一致,不同之处在于我国温带小兴安岭中期“栽针保阔”红松林生态系统碳储量并未随上层透光抚育强度的增大而递减。其原因在于各强度透光抚育30年后并未使其土壤碳储量发生显著变化,仅是其植被碳储量显著降低,但中度透光抚育和强度透光抚育使其植被碳储量降低幅度相近,这源于冠下红松生长随透光抚育强度的增大而加快,红松碳储量的补偿能力随之也增大(冠下红松ANCS 0.43 ~ 0.52 t/hm2)(表6)。后者各透光抚育强度下生态系统碳储量分配比(植被41.32 ~ 42.83%和土壤57.17 ~ 58.68%)与张广才岭天然白桦林生态系统碳储量中的植被碳储量占比35.9% ~ 43.6%与土壤碳储量占比56.4% ~ 64.1%[42]相一致。其原因在于采伐导致阔叶树种碳储量的损失,但也使得保留木和冠下红松的碳储量得到提高,故各透光抚育强度下植被碳储量虽显著降低(14.7% ~ 19.0%),但其降低幅度相近,进而导致其植被碳储量分配比例仅略有改变(降低3.06% ~ 4.57%)。
小兴安岭中期“栽针保阔”红松林透光抚育30年后,其生态系统碳储量(189.47 ~ 218.44 t/hm2)与帽儿山实验林场测得的50年生天然次生林生态系统碳储量(143.18 ~ 261.31 t/hm2)[32]相一致,但远低于在长白山露水河林业局测得的原始阔叶红松林生态系统碳储量(326.78 t/hm2)[33]。故各强度透光抚育处理30年后中期“栽针保阔”红松林生态系统碳储量虽尚未得到完全恢复(轻度已恢复及中、强度还有所降低),但仍维持在正常的天然次生林生态系统碳储量水平,并且随着红松即将进入中后期快速生长阶段,“栽针保阔”红松林的生态系统碳储量必将会得到更大的提高。
3.4 植被年净初级生产力和年净固碳量
透光抚育30年后,轻度透光抚育使其植被年净初级生产力NPP和年净固碳量ANCS已得到恢复,而中、强度透光抚育使两者显著降低;但各透光抚育强度之间NPP和ANCS却无显著差异性。其原因在于乔木层NPP和ANCS占其植被的主体地位(82.9% ~ 88.9%和83.0% ~ 89.0%),透光抚育30年后,阔叶树种NPP和ANCS随透光抚育强度呈递减趋势(20.8% ~ 25.6%和19.3% ~ 24.5%),但由于“栽针保阔”红松林增加了红松NPP和ANCS(0.90 ~ 1.12 t/hm2和0.43 ~ 0.52 t/hm2),进而使其乔木层NPP和ANCS得到了一定程度的补偿,使得轻度透光抚育后其NPP和ANCS仅略低于对照(−11.5%和−9.7%,P > 0.05),而中、强度透光抚育后其NPP和ANCS因上层阔叶树固碳损失相对较大仍显著低于对照(15.4% ~ 15.7%和14.0% ~ 15.8%,P < 0.05),但总体上降低幅度并不大(14.3% ~ 16.7%),加之红松即将进入中后期快速生长阶段,可以预计未来几十年乔木层NPP和ANCS不但会得到完全恢复,甚至会有较大幅度的提高。
小兴安岭中期“栽针保阔”红松林透光抚育30年后,其NPP和ANCS(8.02 ~ 8.42 t/(hm2·a)和3.72 ~ 3.99 t/(hm2·a))与现有研究结论中国东北植被NPP(6 ~ 14 t/(hm2·a))[43-45]相一致;其ANCS与全球植被ANCS(4.1 t/(hm2·a))[46]也相近(−2.7% ~ −9.3%),但仅略低于中国陆地植被ANCS(4.9 t/(hm2·a))[47]18.6% ~ 24.1%。故各强度透光抚育处理30年后中期“栽针保阔”红松林NPP和ANCS虽尚未得到完全恢复(轻度已恢复及中、强度还有所降低),但仍能维持中等固碳水平,且随着冠下红松逐步进入中后期的快速生长阶段,相信其固碳能力也将会得到更大的提升。因此,从维持森林碳汇角度考虑在后续次生林恢复地带性顶极植被阔叶红松林经营实践中采取低强度(蓄积比1/7)透光抚育方式比较适宜。
-
表 1 试验地乔木层林分概况
Table 1 Overview of arbor forest in test site
处理
Treatment郁闭度
Canopy density/%树种
Tree species密度/(株·hm−2)
Density/(plant·ha−1)胸高断面积/(m2·hm−2)
Basal area/(m2·ha−1)平均胸径
Mean DBH/cm胸径范围
DBH range/cmC 0.80 白桦 Betula platyphylla 611 ± 123 18.6 ± 2.9 18.9 ± 0.8 2.1 ~ 32.0 山杨 Populus davidiana 325 ± 71 9.8 ± 2.7 18.7 ± 0.0 10.7 ~ 43.4 紫椴 Tilia amurensis 100 ± 29 1.9 ± 0.6 13.3 ± 1.6 5.5 ~ 40.0 黄菠萝 Phellodendron amurense 67 ± 16 0.6 ± 0.2 10.9 ± 4.1 4.5 ~ 9.2 水曲柳 Fraxinus mandshurica 94 ± 28 1.6 ± 0.5 10.5 ± 3.7 4.2 ~ 29.2 其他 Others 561 ± 122 11.7 ± 2.6 13.4 ± 3.3 3.3 ~ 32.4 总计Total 1 444 ± 229 33.1 ± 3.7 15.6 ± 1.0 2.1 ~ 43.4 L 0.75 红松 Pinus koraiensis 967 ± 49 3.3 ± 0.4 5.8 ± 0.5 2.0 ~ 12.6 白桦 Betula platyphylla 494 ± 96 14.2 ± 4.1 18.1 ± 0.5 7.5 ~ 41.0 山杨 Populus davidiana 244 ± 56 5.3 ± 1.2 16.6 ± 1.7 5.8 ~ 28.6 紫椴 Tilia amurensis 150 ± 24 2.3 ± 0.5 13.3 ± 3.8 2.7 ~ 26.4 水曲柳 Fraxinus mandshurica 44 ± 10 0.8 ± 0.5 14.3 ± 1.4 5.8 ~ 27.6 其他 Others 289 ± 34 4.0 ± 1.3 13.5 ± 5.1 6.1 ~ 32.5 总计Total 2 189 ± 86 30.0 ± 1.1 11.1 ± 0.3 2.0 ~ 41.0 M 0.70 红松 Pinus koraiensis 694 ± 56 4.6 ± 0.7 7.9 ± 0.2 2.8 ~ 16.9 白桦 Betula platyphylla 444 ± 139 12.8 ± 4.3 18.3 ± 0.5 8.0 ~ 30.7 山杨 Populus davidiana 317 ± 68 7.3 ± 1.9 16.0 ± 2.1 7.5 ~ 55.2 紫椴 Tilia amurensis 75 ± 21 1.0 ± 0.2 11.2 ± 3.1 7.2 ~ 20.1 黄菠萝 Phellodendron amurense 33 ± 6 0.2 ± 0.0 8.9 ± 2.7 4.6 ~ 11.6 其他 Others 483 ± 100 9.4 ± 1.5 14.4 ± 0.6 2.2 ~ 35.3 总计Total 1 650 ± 89 28.6 ± 0.6 13.0 ± 0.1 2.2 ~ 55.2 H 0.65 红松 Pinus koraiensis 650 ± 138 6.5 ± 1.0 9.9 ± 0.4 2.8 ~ 29.2 白桦 Betula platyphylla 467 ± 118 14.0 ± 4.4 18.6 ± 0.5 3.2 ~ 32.8 山杨 Populus davidiana 150 ± 35 4.3 ± 1.7 20.7 ± 3.2 10.9 ~ 31.4 紫椴 Tilia amurensis 50 ± 17 1.0 ± 06 18.2 ± 8.6 10.7 ~ 30.3 黄菠萝 Phellodendron amurense 75 ± 58 0.3 ± 0.2 4.0 ± 2.2 3.0 ~ 11.2 水曲柳 Fraxinus mandshurica 72 ± 17 1.1 ± 0.2 15.1 ± 8.5 3.9 ~ 26.6 其他 Others 200 ± 45 2.1 ± 0.6 9.8 ± 2.0 2.8 ~ 39.7 总计Total 1 639 ± 123 29.2 ± 0.44 13.2 ± 0.8 2.8 ~ 39.7 注: C. 对照;H. 强度透光抚育(1/4);M. 中度透光抚育(1/5);L. 轻度透光抚育(1/7)。表中数值为平均值 ± 标准差。下同。Notes: C, control; H, heavy-intensity liberation cutting (1/4); M, moderate-intensity liberation cutting (1/5); L, light-intensity liberation cutting (1/7). Data in the table are mean ± SD. The same below. 表 2 不同透光抚育强度下0 ~ 30 cm土壤理化性质
Table 2 Soil physicochemical properties under different liberation cuttings (0−30 cm)
指标
Index土壤深度
Soil depth/cm处理 Treatment C L M H 土壤密度 Soil density/(g·cm−3) 0 ~ 10 0.42 ± 0.03A 0.43 ± 0.05A 0.45 ± 0.02A 0.43 ± 0.01A 10 ~ 20 0.58 ± 0.04A 0.58 ± 0.12A 0.63 ± 0.06A 0.62 ± 0.05A 20 ~ 30 0.83 ± 0.02A 0.68 ± 0.21A 0.83 ± 0.03A 0.76 ± 0.03A 有机碳含量 Organic carbon content/(g·kg−1) 0 ~ 10 125.12 ± 10.2A 125.18 ± 17.01A 97.97 ± 7.52B 93.87 ± 7.72B 10 ~ 20 51.90 ± 2.33B 72.51 ± 15.51A 54.85 ± 10.27AB 56.70 ± 9.83AB 20 ~ 30 42.37 ± 10.17A 40.03 ± 2.24AB 36.34 ± 4.54B 42.20 ± 10.73A 含水率 Moisture content/% 0 ~ 10 0.89 ± 0.07A 0.79 ± 0.05AB 0.80 ± 0.12AB 0.69 ± 0.16B 10 ~ 20 0.63 ± 0.12A 0.61 ± 0.16A 0.56 ± 0.14A 0.55 ± 0.13A 20 ~ 30 0.46 ± 0.08A 0.46 ± 0.12A 0.57 ± 0.15A 0.40 ± 0.06A 注:不同大写字母表示不同处理间差异显著(P < 0.05)。下同。Notes: different capital letters represent significant differences among varied treatments (P < 0.05). The same below. 表 3 不同透光抚育强度下植被碳储量及分配比例
Table 3 Carbon storages and allocation proportions under different liberation cuttings
指标
Index层次
Layer处理 Treatment C L M H 碳储量/(t·hm−2)
Carbon storage/(t·ha−1)红松 Korean pine 0.00 ± 0.00 C 5.92 ± 0.29B 8.23 ± 1.85B 12.28 ± 2.06A 阔叶树种 Broadleaved tree species 96.04 ± 1.00A 75.82 ± 1.69AB 70.61 ± 3.72BC 66.06 ± 5.81C 乔木 Tree 96.04 ± 1.00A 81.73 ± 1.92A 78.85 ± 1.87A 78.34 ± 3.93A 灌木 Shrub 3.28 ± 0.30A 2.66 ± 0.64AB 2.67 ± 0.75AB 1.69 ± 0.39B 草本 Herb 0.09 ± 0.02A 0.06 ± 0.02A 0.07 ± 0.02A 0.07 ± 0.01A 凋落物 Litter 0.83 ± 0.08A 1.03 ± 0.11A 1.02 ± 0.14A 1.05 ± 0.12A 植被 Vegetation 100.24 ± 1.10A 85.48 ± 2.30B 82.56 ± 2.50B 81.15 ± 3.63B 分配比
Allocation proportion/%乔木 Tree 95.81 95.61 95.51 96.54 灌木 Shrub 3.27 3.11 3.23 2.08 草本 Herb 0.09 0.07 0.08 0.09 凋落物 Litter 0.83 1.20 1.24 1.29 注:植被包括乔木层、灌木层、草本层和凋落物层。Notes: vegetation includes tree, shrub, herb and litter. 表 4 不同透光抚育强度下土壤有机碳储量及其分布特征 t/hm2
Table 4 Soil organic carbon storage and its vertical distribution under different liberation cuttings
t/ha 土层深度
Soil depth/cm处理 Treatment C L M H 0 ~ 10 52.59 ± 4.59Aa 50.79 ± 5.34Aa 45.21 ± 4.41 Aa 43.87 ± 4.75Aa 10 ~ 20 35.27 ± 4.68Ab 41.32 ± 4.07Ab 41.04 ± 3.45Aa 34.31 ± 4.39Ab 20 ~ 30 30.34 ± 2.33Ab 29.31 ± 4.52Ac 29.43 ± 4.30Ab 30.15 ± 4.34Ab 0 ~ 30 118.20 ± 10.19A 121.42 ± 11.75A 115.68 ± 8.52A 108.32 ± 6.27A 注:不同小写字母代表处理内各土层差异显著(P < 0.05)。Note: different lowercase letters indicate significant differences in soil layers within the treatment (P < 0.05). 表 5 不同透光抚育强度下生态系统碳储量及其分布特征
Table 5 Ecosystem organic carbon storage and its vertical distribution under different liberation cuttings
指标
Index层次
Layer处理 Treatment C L M H 碳储量/(t·hm−2)
Carbon storage/(t·ha−1)植被 Vegetation 100.24 ± 1.10A 85.48 ± 2.30B 82.56 ± 2.50B 81.15 ± 3.63B 土壤 Soil 118.2 ± 11.19A 121.42 ± 11.75A 115.68 ± 8.52A 108.32 ± 6.27A 生态系统 Ecosystem 218.44 ± 10.65A 206.90 ± 12.58AB 198.24 ± 10.96B 189.47 ± 5.16B 分配比
Allocation proportion/%植被 Vegetation 45.89 41.32 41.65 42.83 土壤 Soil 54.11 58.68 58.35 57.17 表 6 不同透光抚育强度下植被净初级生产力与年净固碳量
Table 6 Net primary productivity and vegetation net annual carbon sequestration under different liberation cuttings
指标
Index层次
Layer处理 Treatment C L M H 净初级生产力/(t·hm−2·a−1)
Net primary productivity (NPP)/
(t·ha−1·year−1)红松 Korean pine 0.00 ± 0.00B 0.90 ± 0.09A 0.92 ± 0.13A 1.12 ± 0.25A 阔叶树种 Broadleaved tree species 7.88 ± 0.82A 6.24 ± 0.44B 5.86 ± 0.26B 6.01 ± 0.61B 乔木 Tree 7.88 ± 0.82A 7.14 ± 0.46A 6.78 ± 0.25A 7.13 ± 0.82A 灌木 Shrub 1.43 ± 0.15A 1.13 ± 0.27AB 1.12 ± 0.31AB 0.73 ± 0.17B 草本 Herb 0.20 ± 0.04A 0.15 ± 0.03A 0.15 ± 0.04A 0.16 ± 0.03A 植被 Vegetation 9.51 ± 0.79A 8.42 ± 0.66AB 8.05 ± 0.17B 8.02 ± 0.79B 年净固碳量/(t·hm−2·a−1)
Annual net carbon sequestration (NCS)/
(t·ha−1·year−1)红松 Korean pine 0.00 ± 0.00B 0.43 ± 0.05A 0.43 ± 0.06A 0.52 ± 0.12A 阔叶树种 Broadleaved tree species 3.67 ± 0.33A 2.96 ± 0.25B 2.77 ± 0.22B 2.79 ± 0.29B 乔木 Tree 3.67 ± 0.33A 3.39 ± 0.28A 3.20 ± 0.09A 3.31 ± 0.38A 灌木 Shrub 0.66 ± 0.59A 0.53 ± 0.13AB 0.53 ± 0.15AB 0.34 ± 0.08B 草本 Herb 0.09 ± 0.02A 0.07 ± 0.01A 0.07 ± 0.02A 0.07 ± 0.01A 植被 Vegetation 4.42 ± 0.37A 3.99 ± 0.37AB 3.80 ± 0.73B 3.72 ± 0.37B -
[1] Six J, Callewaert P, Lenders S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 2002, 66(6): 1981−1987. doi: 10.2136/sssaj2002.1981
[2] Alemu B. The role of forest and soil carbon sequestrations on climate change mitigation[J]. Research Journal of Agriculture and Environmental Management, 2014, 3(10): 492−505.
[3] 王振鹏, 陈金磊, 李尚益, 等. 湘中丘陵区不同恢复阶段森林生态系统的碳储量特征[J]. 林业科学, 2020, 56(5):22−31. Wang Z P, Chen J P, Li S Y, et al. Characteristics of forest ecosystem carbon stocks at different vegetation restoration stages in hilly area of central Hunan Province, China[J]. Scientia Silvae Sinicae, 2020, 56(5): 22−31.
[4] 葛剑平, 李景文, 郭海燕. 天然红松树木生长特征与林分结构的研究[J]. 东北林业大学学报, 1992, 20(2):9−16. Ge J P, Li J W, Guo H Y. Growth character of the tree and stand constitution in old growth Korean pine forest[J]. Journal of Northeast Forestry University, 1992, 20(2): 9−16.
[5] 郝占庆, 陶大立, 赵士洞. 长白山北坡阔叶红松林及其次生白桦林高等植物物种多样性比较[J]. 应用生态学报, 1994, 5(1):16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013 Hao Z Q, Tao D L, Zhao S D. Diversity of higher plants in broadleaved Korean pine and secondary birch forests on northern slope of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 1994, 5(1): 16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013
[6] 李俊清, 王业蘧. 天然林内红松种群数量变化的波动性[J]. 生态学杂志, 1986, 5(5):1−5. Li J Q, Wang Y J. Wave features of population changes of Pinus koraiensis in natural forest[J]. Journal of Ecology, 1986, 5(5): 1−5.
[7] 于大炮, 周莉, 代力民. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5):1426−1434. Yu D P, Zhou L, Dai L M. Exploring the history of the management theory and technology of broad leaved Korean pine forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434.
[8] 王业蘧. 阔叶红松林[M]. 哈尔滨: 东北林业大学出版社, 1995. Wang Y Q. Broadleaved Korean pine forest [M]. Harbin: Northeast Forestry University Press, 1995.
[9] 丁壮. 东北林业大学帽儿山实验林场原始红松林的破坏与恢复的雏议[J]. 植物研究, 2013, 33(3):379−384. doi: 10.7525/j.issn.1673-5102.2013.03.020 Ding Z. Preliminary discussion on the destruction and restoration of primary Korean pine forest in Maoershan Experimental Forest Farm of Northeast Forestry University[J]. Bulletin of Botanical Research, 2013, 33(3): 379−384. doi: 10.7525/j.issn.1673-5102.2013.03.020
[10] 陈大珂, 周晓峰, 丁宝永, 等. 黑龙江省天然次生林研究(Ⅰ): 栽针保阔的经营途径[J]. 东北林业大学学报, 1984, 12(4):1−12. Chen D K, Zhou X F, Ding B Y, et al. Research on natural secondary forest in Heilongjiang Province: the management approach of planting conifers and conservating deciduous trees[J]. Journal of Northeast Forestry University, 1984, 12(4): 1−12.
[11] 牟长城, 庄宸, 韩阳瑞, 等. 透光抚育对长白山“栽针保阔”红松林植被碳储量影响[J]. 植物研究, 2014, 34(4):529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017 Mu C C, Zhuang C, Han Y R, et al. Effect of liberation cutting on the vegetation carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Changbai Mountains of China[J]. Bulletin of Botanical Research, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017
[12] 韩丽冬, 牟长城, 张军辉. 透光抚育对长白山阔叶红松林冠下红松光合作用的影响[J]. 东北林业大学学报, 2016, 44(4):38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008 Han L D, Mu C C, Zhang J H. Effect of crown thinning on photosynthesis of understory Korean pine of broadleaved Korean pine mixed forests in Changbai Mountain[J]. Journal of Northeast Forestry University, 2016, 44(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008
[13] 韩阳瑞, 牟长城, 张晓亮, 等. 透光抚育对“栽针保阔”红松林中红松生长过程的影响[J]. 安徽农业科学, 2014, 42(8):2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057 Han Y R, Mu C C, Zhang X L, et al. The influence of light transmittance felling on Pinus koraiensis growth process in the “Preserving Deciduous While Planting Coniferous” Korean pine[J]. Journal of Anhui Agricultural Sciences, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057
[14] 鲍国涛. 透光抚育对“栽针保阔”红松林幼苗更新和林下植被多样性的影响[J]. 辽宁林业科技, 2020, 303(5):30−32, 80. Bao G T. The influence of light transmittance felling on seedling regeneration and undergrowth vegetation diversity in the “Preserving Deciduous While Planting Coniferous” Korean pine[J]. Liaoning Forestry Science and Technology, 2020, 303(5): 30−32, 80.
[15] Dwyer J M, Fensham R, Buckley Y M. Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem[J]. Journal of Applied Ecology, 2010, 47(3): 681−691. doi: 10.1111/j.1365-2664.2010.01775.x
[16] Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J]. Forest Ecology and Management, 2010, 259(8): 1363−1375.
[17] Gomes V M, Jeferson D, Acordi Z J, et al. Reforestation with loblolly pine can restore the initial soil carbon stock relative to a subtropical natural forest after 30 years[J]. European Journal of Forest Research, 2018, 137(5): 593−604. doi: 10.1007/s10342-018-1127-y
[18] Zhang X, Wu Z, Xu Z, et al. Estimated biomass carbon in thinned Cunninghamia lanceolate plantations at different stand-ages[J]. Journal of Forestry Research, 2020, 32: 1−13.
[19] Sullivan T P, Sullivan D S, Lindgren P M F, et al. Twenty-five years after stand thinning and repeated fertilization in Lodgepole pine forest: implications for tree growth, stand structure, and carbon sequestration[J/OL]. Forests, 2020, 11(3): 337 [2020−12−19]. https://doi.org/10.3390/f11030337.
[20] Williams N G, Powers M D. Carbon storage implications of active management in mature Pseudotsuga menziesii forests of western Oregon[J]. Forest Ecology and Management, 2019, 432: 761−775. doi: 10.1016/j.foreco.2018.10.002
[21] Mosier S, Paustian K, Davies C, et al. Soil organic matter pools under management intensification of loblolly pine plantations[J]. Forest Ecology and Management, 2019, 447: 60−66. doi: 10.1016/j.foreco.2019.05.056
[22] Settineri G, Mallamaci C, Mitrovic M, et al. Effects of different thinning intensities on soil carbon storage in Pinus laricio forest of Apennine South Italy[J]. European Journal of Forest Research, 2018, 137: 131−141. doi: 10.1007/s10342-017-1077-9
[23] Ma J, Kang F, Cheng X, et al. Moderate thinning increases soil nitrogen in a Larix principis-rupprechtii (Pinaceae) plantations[J]. Geoderma, 2018, 329: 118−128. doi: 10.1016/j.geoderma.2018.05.021
[24] 孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12):1−13. Sun Z H, Wang X Q, Chen X W. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(12): 1−13.
[25] Ruiz-Peinado R, Bravo-Oviedo A, Montero G, et al. ‘Carbon stocks in a Scots pine afforestation under different thinning intensities management’[J]. Mitigation & Adaptation Strategies for Global Change, 2016, 21(7): 1059−1072.
[26] Bai Y F, Shen Y Y, Jin Y D, et al. Selective thinning and initial planting density management promote biomass and carbon storage in a chronosequence of evergreen conifer plantations in Southeast China[J/OL]. Global Ecology and Conservation, 2020, 24: e01216 [2020−12−19]. https://doi.org/10.1016/j.gecco.2020.e01216.
[27] Powers M, Kolka R, Palik B, et al. Long-term management impacts on carbon storage in lake states forests[J]. Forest Ecology and Management, 2011, 262(3): 424−431. doi: 10.1016/j.foreco.2011.04.008
[28] Nilsen P, Strand L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years[J]. Forest Ecology and Management, 2008, 256(3): 201−208. doi: 10.1016/j.foreco.2008.04.001
[29] 张迪祥. 伊春市带岭地区自然地理条件对植物群落分布的影响[J]. 植物科学学报, 1983, 1(2):229−236. Zhang D X. The influence of natural geographical condition of Dailing Area in Yichun City to the distribution of plant community[J]. Plant Science Journal, 1983, 1(2): 229−236.
[30] Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074
[31] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11):2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012 Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012
[32] 闫平. 帽山林场4类天然次生林碳储量研究[J]. 林业资源管理, 2006(4):61−65. doi: 10.3969/j.issn.1002-6622.2006.04.013 Yan P. Study on carbon storage in four types of natural secondary forests of Maor Mountain Forest Farm[J]. Forest Resources Management, 2006(4): 61−65. doi: 10.3969/j.issn.1002-6622.2006.04.013
[33] 齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响[J]. 生态学报, 2013, 33(10):3065−3073. doi: 10.5846/stxb201203060303 Qi L, Yu D P, Zhou W M, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains[J]. Acta Ecologica Sinica, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303
[34] 李景文. 红松混交林生态与经营[M]. 哈尔滨: 东北林业大学出版社, 1997. Li J W. Ecology and management of Korean pine mixed forest[M]. Harbin: Northeast Forestry University Press, 1997.
[35] Lin J C, Chiu C M, Lin Y J, et al. Thinning effects on biomass and carbon stock for Young Taiwania plantations[J/OL]. Scientific Reports, 2018, 8(1): 3070 [2020−11−19]. https://www.nature.com/articles/s41598-018-21510-x.
[36] 张晓亮, 牟长城, 张小单, 等. 透光抚育对长白山“栽针保阔”红松林土壤碳储量影响[J]. 北京林业大学学报, 2015, 37(10):22−30. Zhang X L, Mu C C, Zhang X D, et al. Effect of liberation cutting on the soil carbon storage of a Korean pine forest restored by planting conifers and reserving broadleaved trees in Changbai Mountains of China[J]. Journal of Beijing Forestry University, 2015, 37(10): 22−30.
[37] Strukelj M, Brais S, Pare D. Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands[J]. European Journal of Forest Research, 2015, 134(5): 737−754. doi: 10.1007/s10342-015-0880-4
[38] Nave L E, Vance E D, Swanston C W, et al. Harvest impacts on soil carbon storage in temperate forests[J]. Forest Ecology and Management, 2010, 259(5): 857−866. doi: 10.1016/j.foreco.2009.12.009
[39] Achat D L, Fortin M, Landmann G, et al. Forest soil carbon is threatened by intensive biomass harvesting[J/OL]. Scientific Reports, 2015, 5: 15991 [2020−11−14]. https://www.nature.com/articles/srep15991.
[40] Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and it’s relation to climate and vegetation[J]. Ecological Applications, 2002, 10(2): 423−436.
[41] 韩营营, 黄唯, 孙涛, 等. 不同林龄白桦天然次生林土壤碳通量和有机碳储量[J]. 生态学报, 2015, 35(5):1460−1469. Han Y Y, Huang W, Sun T, et al. Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing’an Mountain, China[J]. Acta Ecologica Sinica, 2015, 35(5): 1460−1469.
[42] 郑瞳, 牟长城, 张毅, 等. 立地类型对张广才岭天然白桦林生态系统碳储量的影响[J]. 生态学报, 2016, 36(19):6284−6294. Zheng T, Mu C C, Zhang Y, et al. Effects of site condition on ecosystem carbon storage in a natural Betula platyphylla forest in the Zhangguangcai Mountains[J]. Acta Ecologica Sinica, 2016, 36(19): 6284−6294.
[43] 毛德华, 王宗明, 罗玲, 等. 1982—2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应[J]. 应用生态学报, 2012, 23(6):1511−1519. Mao D H, Wang Z M, Luo L, et al. Dynamic changes of vegetation net primary productivity in permafrost zone of Northeast China in 1982−2009 in response to global change[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1511−1519.
[44] 张宪洲. 我国自然植被净第一性生产力的估算与分布[J]. 自然资源, 1993(1):15−21. Zhang X Z. Estimation and distribution of net primary productivity of natural vegetation in China[J]. Journal of Natural Resources, 1993(1): 15−21.
[45] 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1):11−19. Zhou G S, Zhang X S. Study on NPP of natural vegetation in China under global climate change[J]. Acta Phytoecologica Sinica, 1996, 20(1): 11−19.
[46] 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4):379−389. doi: 10.11821/xb200104001 Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001
[47] 何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6):1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029 He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029
-
期刊类型引用(5)
1. 林海,高大中,张童,崔国发. 基于卷积神经网络的无人机遥感影像水鸟自动识别. 动物学杂志. 2024(03): 450-459 . 百度学术
2. 齐建东,郑尚姿,陈子仪,马鐘添. 基于ConvNeXt的北京地区红外相机野生动物图像识别改进模型构建. 林业科学. 2024(08): 33-45 . 百度学术
3. 贾一鸣,张长春,胡春鹤,张军国. 基于少样本学习的森林火灾烟雾检测方法. 北京林业大学学报. 2023(09): 137-146 . 本站查看
4. 齐建东,马鐘添,张德怀,田赟. 基于BS-ResNeXt-50的密云地区野生动物图像识别. 林业科学. 2023(08): 112-122 . 百度学术
5. 戎战磊,高雅月,陈生云,张同作. 祁连山国家公园青海片区雪豹栖息地适宜性评价. 兽类学报. 2022(05): 553-562 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 950
- HTML全文浏览量: 304
- PDF下载量: 91
- 被引次数: 7