高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响

王亚辉 牟长城 杨智慧 刘珽 李轩男

王亚辉, 牟长城, 杨智慧, 刘珽, 李轩男. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200361
引用本文: 王亚辉, 牟长城, 杨智慧, 刘珽, 李轩男. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200361
Wang Yahui, Mu Changcheng, Yang Zhihui, Liu Ting, Li Xuannan. Effects of liberation cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Xiaoxing’an Mountains of China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200361
Citation: Wang Yahui, Mu Changcheng, Yang Zhihui, Liu Ting, Li Xuannan. Effects of liberation cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Xiaoxing’an Mountains of China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200361

透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响

doi: 10.12171/j.1000-1522.20200361
基金项目: “十三五”国家重点研发计划项目(2017YFC0504102)
详细信息
    作者简介:

    王亚辉。主要研究方向:恢复生态学。Email:1065704007@qq.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    责任作者:

    牟长城,教授,博士生导师。主要研究方向:恢复生态学。Email:muccjs@163.com 地址:同上

Effects of liberation cutting intensity on the carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Xiaoxing’an Mountains of China

  • 摘要:   目的  揭示透光抚育对“栽针保阔”红松林中长期碳汇的影响规律,为恢复地带性顶极植被阔叶红松林提供依据。  方法  采用相对生长方程与碳/氮分析测定法,同步测定小兴安岭不同透光抚育强度(对照(未采伐未栽针)、轻度透光抚育(伐除上层蓄积1/7)、中度透光抚育(伐除上层蓄积1/5)、强度透光抚育(伐除上层蓄积1/4))下的中期“栽针保阔”红松林(杨桦次生林冠下栽植红松35年,透光抚育30年)的生态系统碳储量(植被与土壤)、植被净初级生产力与年净固碳量,揭示透光抚育强度对“栽针保阔”红松林中长期碳汇作用的影响规律及机制。  结果  (1)透光抚育30年后,各透光抚育强度使中期“栽针保阔”红松林的植被碳储量(81.15 ± 3.63 ~ 100.24 ± 1.10 t/hm2)显著降低了14.7% ~ 19.0%(P < 0.05),但各透光抚育强度之间却无显著差异性(源于上层阔叶树碳储量随透光抚育强度呈递减趋势(21.1% ~ 31.2%),冠下红松却呈递增趋势(39.0% ~ 107.4%))。(2)各透光抚育强度均使其土壤碳储量(108.32 ± 6.27 ~ 121.42 ± 11.75 t/hm2)与对照相近(−8.4% ~ 2.7%,P > 0.05),但轻度、中度和强度透光抚育却改变了土壤碳储量的空间分布格局(水平分布上土壤表层碳储量随透光抚育强度增大而递减;垂直分布上轻度和中度透光抚育使其由对照的上 > 中 ≈ 下转化为上 > 中 > 下或上 ≈ 中 > 下)。(3)轻度透光抚育使其生态系统碳储量(189.47 ± 5.16 ~ 218.44 ± 10.65 t/hm2)已得到恢复(−5.3%,P > 0.05),但中度和强度透光抚育仍使其较对照显著降低9.3%和13.3%(P < 0.05),且3者均使其生态系统碳储量分配比例略有改变(植被碳储量占比降低3.06% ~ 4.57%)。(4)轻度透光抚育使其植被年净初级生产力NPP(8.02 ± 0.79 ~ 9.51 ± 0.79 t/hm2)和年净固碳量VNCS(3.72 ± 0.37 ~ 4.42 ± 0.37 t/hm2)已得到恢复(−11.5%和−9.7%,P > 0.05),而中度和强度透光抚育却使其仍显著低于对照15.4% ~ 15.7%和14.0% ~ 15.8%(P < 0.05),但各透光抚育强度之间也无显著差异性(源于上层阔叶树种年净初级生产力和年净固碳量随透光抚育强度呈递减趋势(20.8% ~ 25.6%和19.3% ~ 24.5%),冠下红松年净初级生产力和年净固碳量却呈递增趋势(0.90 ~ 1.12 t/hm2和0.43 ~ 0.52 t/hm2))。  结论  轻度透光抚育30年后小兴安岭“栽针保阔”红松林生态系统碳储量及年净固碳量已得到恢复,而中、强度透光抚育使两者显著降低9.1% ~ 14.3%和14.3% ~ 16.7%,故从维持森林碳汇角度考虑在次生林恢复地带性顶极植被阔叶红松林经营实践中采取低强度透光抚育方式比较适宜。

     

  • 表  1  试验地乔木层林分概况

    Table  1.   Overview of arbor forest in test site

    处理
    Treatment
    郁闭度
    canopy density/%
    树种
    Tree species
    密度/(株·hm−2
    Density/(stem·ha−1)
    胸高断面积/(m2·hm−2
    Basal area/(m2·ha−1)
    平均胸径/cm
    Mean DBH/cm
    胸径范围/cm
    DBH range/cm
    C 0.80 白桦 Betula platyphylla 611 ± 123 18.6 ± 2.9 18.9 ± 0.8 2.1 ~ 32
    山杨 Populus davidiana 325 ± 71 9.8 ± 2.7 18.7 ± 0.0 10.7 ~ 43.4
    紫椴 Tilia amurensis 100 ± 29 1.9 ± 0.6 13.3 ± 1.6 5.5 ~ 40
    黄菠萝 Phellodendron amurense Rupr 67 ± 16 0.6 ± 0.2 10.9 ± 4.1 4.5 ~ 9.2
    水曲柳 Fraxinus mandshurica 94 ± 28 1.6 ± 0.5 10.5 ± 3.7 4.2 ~ 29.2
    其他 Others 561 ± 122 11.7 ± 2.6 13.4 ± 3.3 3.3 ~ 32.4
    总计Total 1 444 ± 229 33.1 ± 3.7 15.6 ± 1.0 2.1 ~ 43.4
    L 0.75 红松 Pinus koraiensis 967 ± 49 3.3 ± 0.4 5.8 ± 0.5 2 ~ 12.6
    白桦 Betula platyphylla 494 ± 96 14.2 ± 4.1 18.1 ± 0.5 7.5 ~ 41
    山杨 Populus davidiana 244 ± 56 5.3 ± 1.2 16.6 ± 1.7 5.8 ~ 28.6
    紫椴 Tilia amurensis 150 ± 24 2.3 ± 0.5 13.3 ± 3.8 2.7 ~ 26.4
    水曲柳 Fraxinus mandshurica 44 ± 10 0.8 ± 0.5 14.3 ± 1.4 5.8 ~ 27.6
    其他 Others 289 ± 34 4.0 ± 1.3 13.5 ± 5.1 6.1 ~ 32.5
    总计Total 2 189 ± 86 30.0 ± 1.1 11.1 ± 0.3 2.0 ~ 41.0
    M 0.70 红松 Pinus koraiensis 694 ± 56 4.6 ± 0.7 7.9 ± 0.2 2.8 ~ 16.9
    白桦 Betula platyphylla 444 ± 139 12.8 ± 4.3 18.3 ± 0.5 8 ~ 30.7
    山杨 Populus davidiana 317 ± 68 7.3 ± 1.9 16.0 ± 2.1 7.5 ~ 55.2
    紫椴 Tilia amurensis 75 ± 21 1.0 ± 0.2 11.2 ± 3.1 7.2 ~ 20.1
    黄菠萝 Phellodendron amurense Rupr 33.3 ± 6 0.2 ± 0.0 8.9 ± 2.7 4.6 ~ 11.6
    其他 Others 483 ± 100 9.4 ± 1.5 14.4 ± 0.6 2.2 ~ 35.3
    总计Total 1 650 ± 89 28.6 ± 0.6 13.0 ± 0.1 2.2 ~ 55.2
    H 0.65 红松 Pinus koraiensis 650 ± 138 6.5 ± 1.0 9.9 ± 0.4 2.8 ~ 29.2
    白桦 Betula platyphylla 467 ± 118 14.0 ± 4.4 18.6 ± 0.5 3.2 ~ 32.8
    山杨 Populus davidiana 150 ± 35 4.3 ± 1.7 20.7 ± 3.2 10.9 ~ 31.4
    紫椴 Tilia amurensis 50 ± 17 1.0 ± 06 18.2 ± 8.6 10.7 ~ 30.3
    黄菠萝 Phellodendron amurense 75 ± 58 0.3 ± 0.2 4.0 ± 2.2 3 ~ 11.2
    水曲柳 Fraxinus mandshurica 72.2 ± 17 1.1 ± 0.2 15.1 ± 8.5 3.9 ~ 26.6
    其他 Others 200 ± 45 2.1 ± 0.6 9.8 ± 2.0 2.8 ~ 39.7
    总计Total 1 639 ± 123 29.2 ± 0.44 13.2 ± 0.8 2.8 ~ 39.7
    注: C. 对照;H. 强度透光抚育(1/4);M. 中度透光抚育(1/5);L. 轻度透光抚育(1/7)。表中数值为平均值 ± 标准差。下同。Notes: C, control; H, heavy-intensity liberation cutting (1/4); M, moderate-intensity liberation cutting (1/5); L, light-intensity liberation cutting (1/7). Data in the table are mean ± SD. The same below.
    下载: 导出CSV

    表  2  不同透光抚育强度下0 ~ 30 cm土壤理化性质

    Table  2.   Soil physicochemical properties under different liberation cuttings (0-30 cm)

    指标
    Item
    土壤深度
    Soil depth/cm
    处理 Treatment
    CLMH
    土壤密度 Soil density/(g·cm−3) 0 ~ 10 0.42 ± 0.03A 0.43 ± 0.05A 0.45 ± 0.02A 0.43 ± 0.01A
    10 ~ 20 0.58 ± 0.04A 0.58 ± 0.12A 0.63 ± 0.06A 0.62 ± 0.05A
    20 ~ 30 0.83 ± 0.02A 0.68 ± 0.21A 0.83 ± 0.03A 0.76 ± 0.03A
    有机碳含量 Organic carbon content/(g·kg−1) 0 ~ 10 125.12 ± 10.2A 125.18 ± 17.01A 97.97 ± 7.52B 93.87 ± 7.72B
    10 ~ 20 51.90 ± 2.33B 72.51 ± 15.51A 54.85 ± 10.27AB 56.70 ± 9.83AB
    20 ~ 30 42.37 ± 10.17A 40.03 ± 2.24AB 36.34 ± 4.54B 42.20 ± 10.73A
    含水率 Moisture content/% 0 ~ 10 0.89 ± 0.07A 0.79 ± 0.05AB 0.80 ± 0.12AB 0.69 ± 0.16B
    10 ~ 20 0.63 ± 0.12A 0.61 ± 0.16A 0.56 ± 0.14A 0.55 ± 0.13A
    20 ~ 30 0.46 ± 0.08A 0.46 ± 0.12A 0.57 ± 0.15A 0.40 ± 0.06A
    注:不同大写字母表示不同处理间差异显著(P < 0.05)。下同。Notes: different capital letters represent significant differences among different treatments (P < 0.05). The same below.
    下载: 导出CSV

    表  3  不同透光抚育强度下植被碳储量及分配比例

    Table  3.   Carbon storages and allocation proportions under different liberation cuttings

    指标
    Item
    层次
    Layer
    处理 Treatment
    CLMH
    碳储量/(t·hm−2
    Carbon storage/(t·ha−1)
    红松 Korean pine 0.00 ± 0.00 C 5.92 ± 0.29B 8.23 ± 1.85B 12.28 ± 2.06A
    阔叶树种 Broad-leaf tree species 96.04 ± 1.00A 75.82 ± 1.69AB 70.61 ± 3.72BC 66.06 ± 5.81C
    乔木 Tree 96.04 ± 1.00A 81.73 ± 1.92A 78.85 ± 1.87A 78.34 ± 3.93A
    灌木 Shurb 3.28 ± 0.30A 2.66 ± 0.64AB 2.67 ± 0.75AB 1.69 ± 0.39B
    草本 Herb 0.09 ± 0.02A 0.06 ± 0.02A 0.07 ± 0.02A 0.07 ± 0.01A
    分配比
    Allocation proportion/%
    凋落物 Litter 0.83 ± 0.08A 1.03 ± 0.11A 1.02 ± 0.14A 1.05 ± 0.12A
    植被 Vegetation 100.24 ± 1.10A 85.48 ± 2.30B 82.56 ± 2.50B 81.15 ± 3.63B
    乔木 Tree 95.81 95.61 95.51 96.54
    灌木 Shrub 3.27 3.11 3.23 2.08
    草本 Herb 0.09 0.07 0.08 0.09
    凋落物 Litter 0.83 1.20 1.24 1.29
    注:植被包括乔木层、灌木层、草本层和凋落物层。Notes: Vegetation includes tree, shrub, herb and litter.
    下载: 导出CSV

    表  4  不同透光抚育强度下土壤有机碳储量及其分布特征 t/hm2

    Table  4.   Soil organic carbon storage and its vertical distribution under different liberation cuttings t/ha

    土层深度
    Soil depth/cm
    处理 Treatment
    CLMH
    0 ~ 1052.59 ± 4.59Aa50.79 ± 5.34Aa45.21 ± 4.41 Aa43.87 ± 4.75Aa
    10 ~ 2035.27 ± 4.68Ab41.32 ± 4.07Ab41.04 ± 3.45Aa34.31 ± 4.39Ab
    20 ~ 3030.34 ± 2.33Ab29.31 ± 4.52Ac29.43 ± 4.30Ab30.15 ± 4.34Ab
    0 ~ 30118.20 ± 10.19A121.42 ± 11.75A115.68 ± 8.52A108.32 ± 6.27A
    注:不同小写字母代表处理内各土层差异显著(P < 0.05)。Notes: Different lowercase letters indicate significant differences in soil layers within the treatment (P < 0.05).
    下载: 导出CSV

    表  5  不同透光抚育强度下生态系统碳储量及其分布特征

    Table  5.   Ecosystem organic carbon storage and its vertical distribution under different liberation cuttings

    指标
    Item
    层次
    Layer
    处理 Treatment
    CLMH
    碳储量/(t·hm−2
    Carbon storage/(t·ha−1)
    植被 Vegetation 100.24 ± 1.10A 85.48 ± 2.30B 82.56 ± 2.50B 81.15 ± 3.63B
    土壤 Soil 118.2 ± 11.19A 121.42 ± 11.75A 115.68 ± 8.52A 108.32 ± 6.27A
    系统 Ecosystem 218.44 ± 10.65A 206.90 ± 12.58AB 198.24 ± 10.96B 189.47 ± 5.16B
    分配比
    Allocation proportion/%
    植被 Vegetation 45.89 41.32 41.65 42.83
    土壤 Soil 54.11 58.68 58.35 57.17
    下载: 导出CSV

    表  6  不同透光抚育强度下植被净初级生产力与年净固碳量

    Table  6.   Net primary productivity and vegetation net annual carbon sequestration under different liberation cuttings

    指标
    Item
    层次
    Layer
    处理 Treatment
    CLMH
    净初级生产力/(t·hm−2·a−1
    NPP/(t·ha−1·year−1)
    红松 Korean pine 0.00 ± 0.00B 0.90 ± 0.09A 0.92 ± 0.13A 1.12 ± 0.25A
    阔叶树种 Broad-leaf tree species 7.88 ± 0.82A 6.24 ± 0.44B 5.86 ± 0.26B 6.01 ± 0.61B
    乔木 Tree 7.88 ± 0.82A 7.14 ± 0.46A 6.78 ± 0.25A 7.13 ± 0.82A
    灌木 Shrub 1.43 ± 0.15A 1.13 ± 0.27AB 1.12 ± 0.31AB 0.73 ± 0.17B
    草本 Herb 0.20 ± 0.04A 0.15 ± 0.03A 0.15 ± 0.04A 0.16 ± 0.03A
    植被 Vegetation 9.51 ± 0.79A 8.42 ± 0.66AB 8.05 ± 0.17B 8.02 ± 0.79B
    年净固碳量/(t·hm−2·a−1
    NCS/(t·ha−1·year−1)
    红松 Korean pine 0.00 ± 0.00B 0.43 ± 0.05A 0.43 ± 0.06A 0.52 ± 0.12A
    阔叶树种 BI 3.67 ± 0.33A 2.96 ± 0.25B 2.77 ± 0.22B 2.79 ± 0.29B
    乔木 Tree 3.67 ± 0.33A 3.39 ± 0.28A 3.20 ± 0.09A 3.31 ± 0.38A
    灌木 Shurb 0.66 ± 0.59A 0.53 ± 0.13AB 0.53 ± 0.15AB 0.34 ± 0.08B
    草本 Herb 0.09 ± 0.02A 0.07 ± 0.01A 0.07 ± 0.02A 0.07 ± 0.01A
    植被 Vegetation 4.42 ± 0.37A 3.99 ± 0.37AB 3.80 ± 0.73B 3.72 ± 0.37B
    下载: 导出CSV
  • [1] Six J, Callewaert P, Lenders S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 2002, 66(6): 1981−1987. doi: 10.2136/sssaj2002.1981
    [2] Alemu B. The role of forest and soil carbon sequestrations on climate change mitigation[J]. Research Journal of Agriculture and Environmental Management, 2014, 3(10): 492−505.
    [3] 王振鹏, 陈金磊, 李尚益, 等. 湘中丘陵区不同恢复阶段森林生态系统的碳储量特征[J]. 林业科学, 2020, 56(5):22−31.

    Wang Z P, Chen J P, Li S Y, et al. Characteristics of forest ecosystem carbon stocks at different vegetation restoration stages in hilly area of central Hunan Province, China[J]. Scientia Silvae Sinicae, 2020, 56(5): 22−31.
    [4] 葛剑平, 李景文, 郭海燕. 天然红松树木生长特征与林分结构的研究[J]. 东北林业大学学报, 1992, 20(2):9−16.

    Ge J P, Li J W, Guo H Y. Growth character of the tree and stand constitution in old growth Korean pine forest[J]. Journal of Northeast Forestry University, 1992, 20(2): 9−16.
    [5] 郝占庆, 陶大立, 赵士洞. 长白山北坡阔叶红松林及其次生白桦林高等植物物种多样性比较[J]. 应用生态学报, 1994, 5(1):16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013

    Hao Z Q, Tao D L, Zhao S D. Diversity of higher plants in broad leaved Korean pine and secondary birch forests on northern slope of Changbai mountain.[J]. Chinese Journal of Applied Ecology, 1994, 5(1): 16−23. doi: 10.3321/j.issn:1001-9332.1994.01.013
    [6] 李俊清, 王业蘧. 天然林内红松种群数量变化的波动性[J]. 生态学杂志, 1986, 5(5):1−5.

    Li J Q, Wang Y J. Wave Features of Population Changes of Pinus koraiensis in Natural Forest[J]. Journal of Ecology, 1986, 5(5): 1−5.
    [7] 于大炮, 周莉, 代力民. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5):1426−1434.

    Yu D P, Zhou L, Dai L M. Exploring the history of the management theory and technology of broad leaved Korean pine forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434.
    [8] 王业蘧. 阔叶红松林[M]. 哈尔滨: 东北林业大学出版社, 1995.

    Wang Y Q. Broadleaved Korean Pine Forest. Harbin: Northeast Forestry University Press, 1995.
    [9] 丁壮. 东北林业大学帽儿山实验林场原始红松林的破坏与恢复的雏议[J]. 植物研究, 2013, 33(3):379−384. doi: 10.7525/j.issn.1673-5102.2013.03.020

    Ding Z. Preliminary discussion on the destruction and restoration of primary Korean pine forest in Maoershan experimental forest farm of Northeast Forestry University[J]. Bulletin of Botanical Research, 2013, 33(3): 379−384. doi: 10.7525/j.issn.1673-5102.2013.03.020
    [10] 陈大珂, 周晓峰, 丁宝永, 等. 黑龙江省天然次生林研究(Ⅰ): 栽针保阔的经营途径[J]. 东北林业大学学报, 1984, 12(4):1−12.

    Chen D K, Zhou X F, Ding B Y, et al. Research on natural secondary forest in HeiLongJiang Province--the management approach of planting conifers and conservating deciduous trees[J]. Journal of Northeast Forestry University, 1984, 12(4): 1−12.
    [11] 牟长城, 庄宸, 韩阳瑞, 等. 透光抚育对长白山"栽针保阔"红松林植被碳储量影响[J]. 植物研究, 2014, 34(4):529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017

    Mu C C, Zhuang C, Han Y R, et al. Effect of liberation cutting on the vegetation carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Changbai Mountains of China[J]. Bulletin of Botanical Research, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017
    [12] 韩丽冬, 牟长城, 张军辉. 透光抚育对长白山阔叶红松林冠下红松光合作用的影响[J]. 东北林业大学学报, 2016, 44(4):38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008

    Han L D, Mu C C, Zhang J H. Effect of crown thinning on photosynthesis of understory Korean pine of broadleaved Korean pine mixed forests in Changbai Mountain[J]. Journal of Northeast Forestry University, 2016, 44(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008
    [13] 韩阳瑞, 牟长城, 张晓亮, 等. 透光抚育对"栽针保阔"红松林中红松生长过程的影响[J]. 安徽农业科学, 2014, 42(8):2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057

    Han Y R, Mu C C, Zhang X L, et al. The influence of light transmittance felling on Pinus koraiensis growth process in the “Preserving Deciduous While Planting Coniferous” Korean pine[J]. Journal of Anhui Agricultural Sciences, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057
    [14] 鲍国涛. 透光抚育对“栽针保阔”红松林幼苗更新和林下植被多样性的影响[J]. 辽宁林业科技, 2020, 303(5):30−32, 80.

    Bao G T. The influence of light transmittance felling on seedling regeneration and undergrowth vegetation diversity in the “Preserving Deciduous While Planting Coniferous” Korean pine[J]. Liaoning Forestry Science and Technology, 2020, 303(5): 30−32, 80.
    [15] Dwyer J M, Fensham R, Buckley Y M. Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem[J]. Journal of Applied Ecology, 2010, 47(3): 681−691. doi: 10.1111/j.1365-2664.2010.01775.x
    [16] Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: Net effects of harvesting frequency, post-harvest retention, and wood products[C]. 94th ESA Annual Convention 2009, 2009.
    [17] Gomes V M, Jeferson D, Acordi Z J, et al. Reforestation with loblolly pine can restore the initial soil carbon stock relative to a subtropical natural forest after 30years[J]. European Journal of Forest Research, 2018, 137(5): 593−604. doi: 10.1007/s10342-018-1127-y
    [18] Zhang X, Wu Z, Xu Z, et al. Estimated biomass carbon in thinned Cunninghamia lanceolate plantations at different stand-ages[J]. Journal of Forestry Research, 2020: 1−13.
    [19] Sullivan T P, Sullivan D S, Lindgren P M F, et al. Twenty-five years after stand thinning and repeated fertilization in Lodgepole pine forest: implications for tree growth, stand structure, and carbon sequestration[J]. Forests, 2020, 11(3): 337. doi: 10.3390/f11030337
    [20] Williams N G, Powers M D. Carbon storage implications of active management in mature Pseudotsuga menziesii forests of western Oregon[J]. Forest Ecology and Management, 2019, 432: 761−775. doi: 10.1016/j.foreco.2018.10.002
    [21] Mosier S, Paustian K, Davies C, et al. Soil organic matter pools under management intensification of loblolly pine plantations[J]. Forest Ecology and Management, 2019, 447: 60−66. doi: 10.1016/j.foreco.2019.05.056
    [22] Settineri G, Mallamaci C, Mitrovic M, et al. Effects of different thinning intensities on soil carbon storage in Pinus laricio forest of Apennine South Italy[J]. European Journal of Forest Research, 2018, 137: 131−141. doi: 10.1007/s10342-017-1077-9
    [23] Ma J, Kang F, Cheng X, et al. Moderate thinning increases soil nitrogen in a Larix principis-rupprechtii (Pinaceae) plantations[J]. Geoderma, 2018, 329: 118−128. doi: 10.1016/j.geoderma.2018.05.021
    [24] 孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12):1−13.

    Sun Z H, Wang X Q, Chen X W. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(12): 1−13.
    [25] Ruiz-Peinado R, Bravo-Oviedo A, Montero G, et al. ‘Carbon stocks in a Scots pine afforestation under different thinning intensities management’[J]. Mitigation & Adaptation Strategies for Global Change, 2016, 21(7): 1059−1072.
    [26] Bai Y F, Shen Y Y, Jin Y D, et al. Selective thinning and initial planting density management promote biomass and carbon storage in a chronosequence of evergreen conifer plantations in Southeast China[J]. Global Ecology and Conservation, 2020, 24: e01216. doi: 10.1016/j.gecco.2020.e01216
    [27] Powers M, Kolka R, Palik B, et al. Long-term management impacts on carbon storage in Lake States forests[J]. Forest Ecology and Management, 2011, 262(3): 424−431. doi: 10.1016/j.foreco.2011.04.008
    [28] Nilsen P, Strand L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years[J]. Forest Ecology and Management, 2008, 256(3): 201−208. doi: 10.1016/j.foreco.2008.04.001
    [29] 张迪祥. 伊春市带岭地区自然地理条件对植物群落分布的影响[J]. 植物科学学报, 1983, 1(2):229−236.

    Zhang D X. The influence of natural geographical condition of Dailing area in Yichun city to the distribution of plant community[J]. Plant Science Journal, 1983, 1(2): 229−236.
    [30] Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol Manage, 2006, 222(1-3): 9−16. doi: 10.1016/j.foreco.2005.10.074
    [31] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11):2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012

    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecololoca Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012
    [32] 闫平. 帽山林场4类天然次生林碳储量研究[J]. 林业资源管理, 2006(4):61−65. doi: 10.3969/j.issn.1002-6622.2006.04.013

    Yan P. Study on carbon storage in four types of natural secondary forests of Maor Mountain forest farm[J]. Forest Resources Management, 2006(4): 61−65. doi: 10.3969/j.issn.1002-6622.2006.04.013
    [33] 齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响[J]. 生态学报, 2013, 33(10):3065−3073. doi: 10.5846/stxb201203060303

    Qi L, YU D P, ZHOU W, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains[J]. Acta Ecologica Sinica, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303
    [34] 李景文. 红松混交林生态与经营[M]. 哈尔滨: 东北林业大学出版社, 1997.

    Li J W. Ecology and management of Korean Pine mixed forest[M]. Harbin: Northeast Forestry University Press, 1997.
    [35] Lin J C, Chiu C M, Lin Y J, et al. Thinning effects on biomass and carbon stock for Young Taiwania plantations[J]. Scientific Reports, 2018, 8(1): 3070. doi: 10.1038/s41598-018-21510-x
    [36] 张晓亮, 牟长城, 张小单, 等. 透光抚育对长白山“栽针保阔”红松林土壤碳储量影响[J]. 北京林业大学学报, 2015, 37(10):22−30.

    Zhang X L, Mu C C, Zhang X D, et al. Effect of liberation cutting on the soil carbon storage of a Korean pine forest restored by planting conifers and reserving broad-leaved trees in Changbai Mountains of China[J]. Journal of Beijing Forestry University, 2015, 37(10): 22−30.
    [37] Strukelj M, Brais S, Pare D. Nine-year changes in carbon dynamics following different intensities of harvesting in boreal aspen stands[J]. European Journal of Forest Research, 2015, 134(5): 737−754. doi: 10.1007/s10342-015-0880-4
    [38] Nave L E, Vance E D, Swanston C W, et al. Harvest impacts on soil carbon storage in temperate forests[J]. Forest Ecology and Management, 2010, 259(5): 857−866. doi: 10.1016/j.foreco.2009.12.009
    [39] Achat D L, Fortin M, Landmann G, et al. Forest soil carbon is threatened by intensive biomass harvesting[J]. Scientific Reports, 2015, 5: 15991. doi: 10.1038/srep15991
    [40] Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and it’ s relation to climate and vegetation[J]. Ecological Applications, 2002, 10(2): 423−436.
    [41] 韩营营, 黄唯, 孙涛, 等. 不同林龄白桦天然次生林土壤碳通量和有机碳储量[J]. 生态学报, 2015, 35(5):1460−1469.

    Han Y Y, Huang W, Sun T, et al. Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing’an Mountain, China[J]. Acta Ecologica Sinica, 2015, 35(5): 1460−1469.
    [42] 郑瞳, 牟长城, 张毅, 等. 立地类型对张广才岭天然白桦林生态系统碳储量的影响[J]. 生态学报, 2016, 36(19):6284−6594.

    Zheng T, Mu C C, Zhang Y, et al. Effects of site condition on ecosystem carbon storage in a natural Betula platyphylla forest in the Zhangguangcai Mountains[J]. Acta Ecololoca Sinica, 2016, 36(19): 6284−6594.
    [43] 毛德华, 王宗明, 罗玲, 等. 1982-2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应[J]. 应用生态学报, 2012, 23(6):1511−1519.

    Mao D H, Wang Z M, Luo L, et al. Dynamic changes of vegetation net primary productivity in permafrost zone of Northeast China in 1982-2009 in response to global change[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1511−1519.
    [44] 张宪洲. 我国自然植被净第一性生产力的估算与分布[J]. 自然资源, 1993(1):15−21.

    Zhang X Z. Estimation and distribution of net primary productivity of natural vegetation in China[J]. Journal of Natural Resources, 1993(1): 15−21.
    [45] 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1):11−19.

    Zhou G S, Zhang X S. Study on NPP of natural vegetation in China under global climate change[J]. Acta Phytoecologica Si-nica, 1996, 20(1): 11−19.
    [46] 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4):379−389. doi: 10.11821/xb200104001

    Li Y P, Ji J J. Simulations of Carbon Exchange Between Global Terrestrial Ecosystem and the Atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001
    [47] 何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6):1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029

    He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127. doi: 10.3321/j.issn:1001-9332.2005.06.029
  • 加载中
表(6)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  68
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-21
  • 修回日期:  2021-05-05

目录

    /

    返回文章
    返回