高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油松和侧柏林地表可燃物负荷量及影响因素

于海晨 王薇 杜建华 刘赵东 陈敏斯 王博 刘晓东

于海晨, 王薇, 杜建华, 刘赵东, 陈敏斯, 王博, 刘晓东. 油松和侧柏林地表可燃物负荷量及影响因素[J]. 北京林业大学学报, 2021, 43(6): 33-40. doi: 10.12171/j.1000-1522.20200364
引用本文: 于海晨, 王薇, 杜建华, 刘赵东, 陈敏斯, 王博, 刘晓东. 油松和侧柏林地表可燃物负荷量及影响因素[J]. 北京林业大学学报, 2021, 43(6): 33-40. doi: 10.12171/j.1000-1522.20200364
Yu Haichen, Wang Wei, Du Jianhua, Liu Zhaodong, Chen Minsi, Wang Bo, Liu Xiaodong. Land surface fuel load and influencing factors of Pinus tabuliformis and Platycladus orientalis plantations[J]. Journal of Beijing Forestry University, 2021, 43(6): 33-40. doi: 10.12171/j.1000-1522.20200364
Citation: Yu Haichen, Wang Wei, Du Jianhua, Liu Zhaodong, Chen Minsi, Wang Bo, Liu Xiaodong. Land surface fuel load and influencing factors of Pinus tabuliformis and Platycladus orientalis plantations[J]. Journal of Beijing Forestry University, 2021, 43(6): 33-40. doi: 10.12171/j.1000-1522.20200364

油松和侧柏林地表可燃物负荷量及影响因素

doi: 10.12171/j.1000-1522.20200364
基金项目: 国家自然科学基金项目(31770696)
详细信息
    作者简介:

    于海晨。主要研究方向:森林防火。Email:957890370@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学生态与自然保护学院

    责任作者:

    刘晓东,教授。主要研究方向:森林防火。Email:xd_liu@bjfu.edu.cn 地址:同上

  • 中图分类号: S762.1

Land surface fuel load and influencing factors of Pinus tabuliformis and Platycladus orientalis plantations

  • 摘要:   目的  研究北京地区典型针叶林地表可燃物负荷量及其影响因素,构建可燃物负荷量模型,为可燃物的科学管理提供依据。  方法  结合林分因子(胸径、树高、郁闭度、冠幅、第1活枝高)和地形因子(海拔、坡度),在北京市7个区选择具有代表性的油松林和侧柏林,每种林型各设置42块样地,调查和测定了2种针叶林的可燃物负荷量(上层枯叶、下层枯叶、灌木、草本、1 h 时滞枯枝、10 h 时滞枯枝),采用冗余分析(RDA)研究地表可燃物负荷量与林分因子和地形因子的关系,利用多元线性回归建立总可燃物负荷量模型。  结果  (1)油松林总可燃物平均负荷量为14.31 t/hm2,侧柏林总可燃物平均负荷量为9.78 t/hm2,下层枯叶负荷量占2种针叶林地表总可燃物负荷量的比重最大。(2)RDA分析表明,油松林上层枯叶、灌木可燃物负荷量与胸径呈正相关,下层枯叶负荷量与郁闭度、坡度呈正相关。侧柏林上层枯叶、下层枯叶负荷量与树高、冠幅呈正相关,与海拔呈负相关。灌木可燃物负荷量与树高、郁闭度呈正相关,与海拔呈负相关。2种针叶林总可燃物、1 h 时滞枯枝、10 h 时滞枯枝负荷量均与胸径呈正相关,草本可燃物负荷量与海拔呈正相关。(3)模型表明,胸径、树高、冠幅能较好推算出油松林总可燃物负荷量,第1活枝高、冠幅、坡度能较好的推算出侧柏林总可燃物负荷量。  结论  油松林有发展成较大森林火灾的可能性,根据地表可燃物负荷量,应当着重对林下枯落物可燃物进行管理,及时清理林下可燃物,降低潜在森林火灾风险。不同林型可燃物负荷量与林分因子以及地形因子之间的关系不同,在进行可燃物管理时,应因地制宜,选择合理适宜的措施。

     

  • 图  1  研究区概况图

    Figure  1.  Overview of the study area

    图  2  油松林与侧柏林下各类地表可燃物负荷量

    不同小写字母表示不同可燃物类型间差异显著(P <0.05)。UDL为上层枯叶;LDL为下层枯叶;H为草本;S为灌木;1 h DB为1 h 时滞枯枝;10 h DB为10 h 时滞枯枝;TC为总可燃物。 Different lowercase letters indicate significant differences between different types of combustibles (P <0.05). UDL, upper dead leaf; LDL, lower dead leaf; H, herb; S, shrub; 1 h DB, 1 h time-lag dead branch; 10 h DB, 10 h time-lag dead branch; TC, total combustible.

    Figure  2.  Loading of various land surface fuels under Pinus tabuliformis and Platycladus orientalis plantations

    图  3  油松林可燃物负荷量影响因子

    Y1为油松林总可燃物负荷量;Y2为油松林上层枯叶可燃物负荷量;Y3为油松林下层枯叶可燃物负荷量;Y4为油松林灌木可燃物负荷量;Y5为油松林草本可燃物负荷量;Y6为油松林1 h 时滞枯枝负荷量;Y7为油松林10 h 时滞枯枝负荷量。CD为郁闭度;MH为平均树高;SL为坡度;ALT为海拔;LBH为第1活枝高;CW为冠幅。下同 。Y1, total fuel load of Pinus tabuliformis forest; Y2, fuel load of upper dead leaves of Pinus tabuliformis forest; Y3, fuel load of lower dead leaves of Pinus tabuliformis forest; Y4, fuel load of shrubs of Pinus tabuliformis forest; Y5, fuel load of herbs of Pinus tabuliformis forest; Y6, fuel load of 1 h time-lag dead branches of Pinus tabuliformis forest; Y7, fuel load of 10 h time-lag dead branches of Pinus tabuliformis forest. CD, canopy density; MH, mean tree height; SL, slope degree; ALT, altitude; LBH, height of the first living branch; CW, crown width. The same below.

    Figure  3.  Influencing factors of fuel load of Pinus tabuliformis forest

    图  4  侧柏林可燃物负荷量影响因子

    Y1为侧柏林总可燃物负荷量;Y2为侧柏林上层枯叶可燃物负荷量;Y3为侧柏林下层枯叶可燃物负荷量;Y4为侧柏林灌木可燃物负荷量;Y5为侧柏林草本可燃物负荷量;Y6为侧柏林1 h 时滞枯枝负荷量;Y7为侧柏林10 h 时滞枯枝负荷量。Y1, total fuel load of Platycladus orientalis forest; Y2, fuel load of upper dead leaves of Platycladus orientalis forest; Y3, fuel load of lower dead leaves of Platycladus orientalis forest; Y4, fuel load of shrubs of Platycladus orientalis forest; Y5, fuel load of herbs of Platycladus orientalis forest; Y6, fuel load of 1 h time-lag dead branches of Platycladus orientalis forest; Y7, fuel load of 10 h time-lag dead branches of Platycladus orientalis forest.

    Figure  4.  Influencing factors of fuel load of Platycladus orientalis forest

    图  5  油松林和侧柏林地表可燃物负荷量实测值与预测值关系

    Figure  5.  Relationship between measured and predicted fuel load of Pinus tabuliformis and Platycladus orientalis plantations

    表  1  油松林和侧柏林地表总可燃物负荷量估测模型

    Table  1.   Estimation models of total fuel load of Pinus tabuliformis and Platycladus orientalis plantations

    树种 Tree species估测模型 Estimation modelR2P
    油松 Pinus tabuliformis Y1 = 4.3 + 4.8X1 − 2.94X2 − 1.2X4 + 0.47X22 − 0.5X1X2 0.642 0 0.007
    侧柏 Platycladus orientalis Y2 = −14.4 + 7.8X3 + 1.6X4 + X32 − 0.02X62 0.655 1 0.006
    注:X1为平均胸径(cm);X2为平均树高(m);X3为第1活枝高(m);X4为冠幅(cm);X5为海拔(m);X6为坡度(°);X7为郁闭度(%)。Y1为油松林总可燃物负荷量(t/hm2),Y2为侧柏林总可燃物负荷量(t/hm2)。Notes: X1, average DBH (cm); X2, average tree height (m); X3, height of the first living branch (m); X4, crown width (cm); X5, altitude (m); X6, slope degree (°); X7, canopy density (%); Y1, total fuel load of Pinus tabuliformis (t/ha); Y2, total fuel load of Platycladus orientalis (t/ha).
    下载: 导出CSV
  • [1] Forrestel A B, Ramage B S, Moody T, et al. Disease, fuels and potential fire behavior: impacts of sudden oak death in two coastal California forest types[J]. Forest Ecology and Management, 2015, 348: 23−30. doi: 10.1016/j.foreco.2015.03.024
    [2] 刘晓东, 王博. 森林燃烧主要排放物研究进展[J]. 北京林业大学学报, 2017, 39(12):118−124.

    Liu X D, Wang B. Review on the main emission products released by forest combustion[J]. Journal of Beijing Forestry University, 2017, 39(12): 118−124.
    [3] 韩梅, 温鹏, 许惠敏, 等. 北京市十三陵林场油松林地表火行为模拟[J]. 北京林业大学学报, 2018, 40(10):95−101.

    Han M, Wen P, Xu H M, et al. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95−101.
    [4] 王明玉, 周荣伍, 赵凤君, 等. 北京西山森林潜在火行为及防火林带有效宽度分布研究[J]. 火灾科学, 2008, 17(4):209−215. doi: 10.3969/j.issn.1004-5309.2008.04.002

    Wang M Y, Zhou R W, Zhao F J, et al. Potential fire behavior and distribution of effective width of shaded fuel break in Xishan of Beijing[J]. Fire Safety Science, 2008, 17(4): 209−215. doi: 10.3969/j.issn.1004-5309.2008.04.002
    [5] 满子源, 孙龙, 胡海清, 等. 南方8种森林地表死可燃物在平地无风时的燃烧蔓延速率与预测模型[J]. 林业科学, 2019, 55(7):197−204. doi: 10.11707/j.1001-7488.20190722

    Man Z Y, Sun L, Hu H Q, et al. Prediction model of the spread sate of eight typical surface dead fuel in southern China under windless and flat land[J]. Scientia Silvae Sinicae, 2019, 55(7): 197−204. doi: 10.11707/j.1001-7488.20190722
    [6] 梁瀛, 李吉玫, 赵凤君, 等. 天山中部天山云杉林地表可燃物载量及其影响因素[J]. 林业科学, 2017, 12(53):153−160.

    Liang Y, Li J M, Zhao F J, et al. Surface fuel loads of Tianshan spruce forests in the central Tianshan Mountains and the impact factors[J]. Scientia Silvae Sinicae, 2017, 12(53): 153−160.
    [7] Franke J, Barradas A C S, Borges M A, et al. Fuel load mapping in the brazilian cerrado in support of integrated fire management[J]. Remote Sensing of Environment, 2018, 217: 221−232. doi: 10.1016/j.rse.2018.08.018
    [8] Collins B M, Lydersen J M, Fry D L, et al. Variability in vegetation and surface fuels across mixed-conifer-dominated landscapes with over 40 years of natural fire[J]. Forest Ecology and Management, 2016, 381: 74−83. doi: 10.1016/j.foreco.2016.09.010
    [9] 王叁, 牛树奎, 李德, 等. 云南松林可燃物的垂直分布及影响因子[J]. 应用生态学报, 2013, 24(2):331−337.

    Wang S, Niu S K, Li D, et al. Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(2): 331−337.
    [10] 金琳, 刘晓东, 任本才, 等. 十三陵林场低山林区针叶林地表可燃物负荷量及其影响因子[J]. 林业资源管理, 2012, 9(2):41−46. doi: 10.3969/j.issn.1002-6622.2012.02.009

    Jin L, Liu X D, Ren B C, et al. Surface fuel loads in the low mountain coniferous forest of Ming Tombs Forest Farm and relevant affecting factors[J]. Forest Resources Management, 2012, 9(2): 41−46. doi: 10.3969/j.issn.1002-6622.2012.02.009
    [11] Rothermel R C, Charles W P. Fire in wildland management: predicting changes in chaparral flammability[J]. Journal of Forestry, 1973, 71(10): 640−643.
    [12] Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322−330. doi: 10.2307/1932179
    [13] Sunjoo L, Kim S Y, Byungdoo L, et al. A dynamic growth model for predicting forest fire fuel loads for Pinus koraiensis stands in South Korea[J]. Journal of The Korean Society of Hazard Mitigation, 2019, 19(3): 121−130. doi: 10.9798/KOSHAM.2019.19.3.121
    [14] Francisco J, Romero R, Rafael M, et al. Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 157−167. doi: 10.1016/j.jag.2018.01.003
    [15] 邸学颖, 王宏良, 姚村人, 等. 大兴安岭森林地表可燃物生物量与林分因子关系的研究[J]. 森林防火, 1994(2):16−18.

    Di X Y, Wang H L, Yao C R, et al. Research of relationship of surface fuel biomass to stand factors in Daxing’anling forests[J]. Forest Fire Prevention, 1994(2): 16−18.
    [16] 胡海清. 利用林分特征因子预测森林地被可燃物载量的研究[J]. 林业科学, 2005, 41(5):96−100. doi: 10.3321/j.issn:1001-7488.2005.05.016

    Hu H Q. Predicting forest surface fuel load by using forest stand factors[J]. Scientia Silvae Sinica, 2005, 41(5): 96−100. doi: 10.3321/j.issn:1001-7488.2005.05.016
    [17] 单延龙, 舒立福, 李长江. 森林可燃物参数与林分特征关系[J]. 自然灾害学报, 2004, 13(6):70−75. doi: 10.3969/j.issn.1004-4574.2004.06.012

    Shan Y L, Shu L F, Li C J. A relation between forest combustible parameters and stand characteristics[J]. Journal of Natural Disasters, 2004, 13(6): 70−75. doi: 10.3969/j.issn.1004-4574.2004.06.012
    [18] 陈宏伟, 常禹, 胡远满. 大兴安岭呼中林区森林死可燃物载量及其影响因子[J]. 生态学杂志, 2008, 27(1):50−55.

    Chen H W, Chang Y, Hu Y M. Load of forest surface dead fuel in Huzhong area of Daxing’anling Mountains and relevant affecting factors[J]. Journal of Ecology, 2008, 27(1): 50−55.
    [19] 艾也博, 寸应得, 范雅倩, 等. 北京松山油松林地表可燃物负荷量的影响因素[J]. 生态学杂志, 2018, 37(9):2559−2565.

    Ai Y B, Cun Y D, Fan Y Q, et al. Factors affecting surface fuel load of Pinus tabuliformis forest in Songshan, Beijing[J]. Chinese Journal of Ecology, 2018, 37(9): 2559−2565.
    [20] 陶长森, 牛树奎, 陈锋, 等. 北京山区主要针叶林潜在火行为及冠层危险指数研究[J]. 北京林业大学学报, 2018, 40(9):55−62.

    Tao C S, Niu S K, Chen F, et al. Potential fire behavior and canopy hazard index of main coniferous forests in Beijing mountain area[J]. Journal of Beijing Forestry University, 2018, 40(9): 55−62.
    [21] 南洋. 北京地区森林火灾发生规律及变化趋势研究[D]. 北京: 北京林业大学, 2018.

    Nan Y. Study on occurrence and trend of forest fire in Beijing Area[D]. Beijing: Beijing Forestry University, 2018.
    [22] 陈昌笃, 林文棋. 北京的珍贵自然遗产: 植物多样性[J]. 生态学报, 2006, 26(4):969−979. doi: 10.3321/j.issn:1000-0933.2006.04.001

    Chen C D, Lin W Q. Precious natural heritage of Beijing: plant diversity[J]. Acta Ecologica Sinica, 2006, 26(4): 969−979. doi: 10.3321/j.issn:1000-0933.2006.04.001
    [23] Burrows N D, Mccaw W L. Fuel characteristics and bush fire control in Banksia low woodlands in western Australia[J]. Environmental Management, 1990, 31(3): 229−236.
    [24] Reich R M, Lundquist J E, Bravo V A. Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA[J]. International Journal of Wildland Fire, 2014, 13: 119−129.
    [25] 田野, 牛树奎, 陈锋, 等. 火干扰后的油松林地表死可燃物负荷及影响因子[J]. 福建农林大学学报(自然科学版), 2018, 47(6):691−697.

    Tian Y, Niu S K, Chen F, et al. Surface dead fuel load and relevant influencing factors of Pinus tabuliformis forest after fire disturbance[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(6): 691−697.
    [26] Li Y, Bao W K, Frans B, et al. Drivers of tree carbon storage in subtropical forests[J]. Science of the Total Environment, 2019, 654: 684−693. doi: 10.1016/j.scitotenv.2018.11.024
    [27] 孙龙, 鲁佳宇, 魏书精, 等. 森林可燃物载量估测方法研究进展[J]. 森林工程, 2013, 29(2):26−31, 37. doi: 10.3969/j.issn.1001-005X.2013.02.005

    Sun L, Lu J Y, Wei S J, et al. Research progress of forest fuel load estimation methods[J]. Forest Engineering, 2013, 29(2): 26−31, 37. doi: 10.3969/j.issn.1001-005X.2013.02.005
    [28] 高超, 林红蕾, 胡海清, 等. 我国林火发生预测模型研究进展[J]. 应用生态学报, 2020, 31(9):3227−3240.

    Gao C, Lin H L, Hu H Q, et al. A review of models of forest fire occurrence prediction in China[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3227−3240.
    [29] 邹玉学, 岳迎春, 叶涛, 等. 吉林地区非线性大气加权平均温度模型[J]. 导航定位学报, 2020, 8(4):74−79. doi: 10.3969/j.issn.2095-4999.2020.04.013

    Zou Y X, Yue Y C, Ye T, et al. Nonlinear weighted mean atmospheric temperature mode in Jilin region[J]. Journal of Navigation and Positioning, 2020, 8(4): 74−79. doi: 10.3969/j.issn.2095-4999.2020.04.013
    [30] 王秋华, 俞新水, 李世友, 等. 森林可燃物的动态特征研究综述[J]. 林业调查规划, 2012, 37(5):40−43. doi: 10.3969/j.issn.1671-3168.2012.05.010

    Wang Q H, Yu X S, Li S Y, et al. Study on dynamic characteristics of forest fuel[J]. Forest Inventory and Planning, 2012, 37(5): 40−43. doi: 10.3969/j.issn.1671-3168.2012.05.010
    [31] 田晓瑞, 舒立福, 阎海平. 北京地区森林燃烧性研究[J]. 森林防火, 2004, 80(1):23−24. doi: 10.3969/j.issn.1002-2511.2004.01.011

    Tian X R, Shu L F, Yan H P. Study on combustibility of forests in Beijing area[J]. Forest Fire Prevention, 2004, 80(1): 23−24. doi: 10.3969/j.issn.1002-2511.2004.01.011
    [32] 闫泳霖. 五台林区4种林分类型地表可燃物负荷量及其影响因子研究[D]. 太谷: 山西农业大学, 2016.

    Yan Y L. Study on the surface fuel load and its influence factors about types of stands in WuTai Forest Region[D]. Taigu: Shanxi Agricultural University, 2016.
    [33] 胡志东. 森林防火[M]. 北京: 中国林业出版社, 2003.

    Hu Z D. Forest fire prevention[M]. Beijing: China Forestry Publishing House, 2003.
    [34] 周涧青, 刘晓东, 郭怀文. 大兴安岭南部主要林分地表可燃物负荷量及其影响因子研究[J]. 西北农林科技大学学报(自然科学版), 2014, 42(6):131−137.

    Zhou J Q, Liu X D, Guo H W. Surface fuel loading and relevant influencing factors of main forest types in southern Daxing’anling[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(6): 131−137.
    [35] 郭利峰, 牛树奎, 阚振国. 北京八达岭人工油松林地表枯死可燃物负荷量研究[J]. 林业资源管理, 2007(5):53−58. doi: 10.3969/j.issn.1002-6622.2007.05.013

    Guo L F, Niu S K, Kan Z G. Study on dead surface fuel loading of Pinus tabuliformis forest of Badaling Forest Center in Beijing[J]. Forest Resources Management, 2007(5): 53−58. doi: 10.3969/j.issn.1002-6622.2007.05.013
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  145
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 修回日期:  2021-01-12
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回