高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青海云杉半同胞家系子代测定与亲本评价

陈雅丽 吕东 赵明 赵祜 赵兴鹏 李伟 张宏斌

陈雅丽, 吕东, 赵明, 赵祜, 赵兴鹏, 李伟, 张宏斌. 青海云杉半同胞家系子代测定与亲本评价[J]. 北京林业大学学报, 2021, 43(4): 17-24. doi: 10.12171/j.1000-1522.20200370
引用本文: 陈雅丽, 吕东, 赵明, 赵祜, 赵兴鹏, 李伟, 张宏斌. 青海云杉半同胞家系子代测定与亲本评价[J]. 北京林业大学学报, 2021, 43(4): 17-24. doi: 10.12171/j.1000-1522.20200370
Chen Yali, Lü Dong, Zhao Ming, Zhao Hu, Zhao Xingpeng, Li Wei, Zhang Hongbin. Half-sib progeny test and evaluation of parents of Picea crassifolia[J]. Journal of Beijing Forestry University, 2021, 43(4): 17-24. doi: 10.12171/j.1000-1522.20200370
Citation: Chen Yali, Lü Dong, Zhao Ming, Zhao Hu, Zhao Xingpeng, Li Wei, Zhang Hongbin. Half-sib progeny test and evaluation of parents of Picea crassifolia[J]. Journal of Beijing Forestry University, 2021, 43(4): 17-24. doi: 10.12171/j.1000-1522.20200370

青海云杉半同胞家系子代测定与亲本评价

doi: 10.12171/j.1000-1522.20200370
基金项目: 国家自然科学基金项目(31860221、31770713),甘肃省自然科学基金项目(18JR3RG424)
详细信息
    作者简介:

    陈雅丽。主要研究方向:针叶树遗传改良。Email:chenyali8876@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    李伟,博士,教授。主要研究方向:针叶树遗传改良。Email:bjfuliwei@bjfu.edu.cn  地址:同上

    张宏斌,正高级工程师。主要研究方向:林木遗传育种。Email:jiuwubaba@163.com  地址:734000甘肃省张掖市甘州区东环路3号甘肃省祁连山水源涵养林研究院

  • 中图分类号: S722.5

Half-sib progeny test and evaluation of parents of Picea crassifolia

  • 摘要:   目的  通过对青海云杉半同胞家系生长性状遗传变异规律的研究,筛选出优良家系,为青海云杉高世代遗传改良奠定基础。  方法  以100个青海云杉半同胞家系为研究对象,调查其15年生和20年生时子代的树高、当年高生长量、地径和冠幅等4个生长指标,对其进行方差分析、遗传参数和亲本一般配合力的估算,在亲本多性状综合评价基础上,筛选优良家系。  结果  15年生和20年生时各家系半同胞子代在4个生长指标上均存在极显著差异;不同树龄子代各性状的家系遗传力变化范围在0.554 ~ 0.855之间,家系各生长指标的表型变异系数在8.33% ~ 19.49%之间;树高、地径、当年高生长量和冠幅的一般配合力(20年生)范围分别是−39.22 ~ 47.56、−1.19 ~ 1.05、−5.91 ~ 6.34和−21.49 ~ 25.40;相关性分析表明青海云杉各生长性状之间均达到了极显著的正相关水平(0.308 ~ 0.817);利用生长性状数据对15和20年生的半同胞家系进行综合评价,筛选出7个优良家系,入选家系20年生时树高、当年高生长量、地径和冠幅平均值分别为209.40、20.71、6.33和141.87 cm,平均遗传增益分别达到14.12%、2.07%、8.01%和10.42%。  结论  青海云杉家系间具有丰富的遗传变异,筛选出了49号、51号、60号、64号、108号、123号、132号等7个生长性状优良的家系,筛选的优良家系可为高世代种子园提供高质量的建园材料。

     

  • 表  1  100个青海云杉半同胞家系各生长性状均值与表型变异系数

    Table  1.   Phenotypic variation coefficients and mean values of growth traits in 100 P. crassifolia half-siblings

    林龄/a
    Forest age/year
    性状
    Trait
    均值
    Mean value/cm
    变异幅度
    Variation range/cm
    表型变异系数
    Phenotypic variation coefficient (PCV)/%
    15 树高 Tree height (H15) 142.74 105.50 ~ 189.78 12.70
    当年高生长量 Height increment in that very year (I15) 10.59 6.94 ~ 15.83 19.49
    地径 Ground diameter (GD15) 2.76 1.94 ~ 3.64 12.22
    冠幅 Crown width (CW15) 86.35 70.53 ~ 108.25 9.38
    20 H20 174.33 135.11 ~ 221.89 10.89
    I20 19.93 14.02 ~ 26.28 11.63
    GD20 5.59 4.40 ~ 6.64 8.33
    CW20 122.85 101.36 ~ 148.25 8.82
    下载: 导出CSV

    表  2  100个青海云杉半同胞家系各性状方差分析与家系遗传力

    Table  2.   Variance analysis and family heritability of traits in 100 P. crassifolia half-sib families

    林龄/a
    Forest age/year
    性状
    Trait
    家系间均方
    Mean square among families (MSF)
    家系内均方
    Mean square within family (MSE)
    F家系遗传力
    Family heritability (hF 2)
    15 H15 5 916.030 855.46 6.916** 0.855
    I15 76.765 13.01 5.901** 0.831
    GD15 2.051 0.55 3.702** 0.730
    CW15 1 181.169 353.23 3.344** 0.701
    20 H20 6 482.296 1015.61 6.383** 0.843
    I20 96.793 43.19 2.241** 0.554
    GD20 3.900 1.23 3.177** 0.685
    CW20 2111.210 471.42 4.478** 0.777
    注:F表示家系间与家系内均方的比值,*表示差异显著(P < 0.05),**表示差异极显著(P < 0.01)。下同。Notes: F indicates the ratio of mean square between families and within family; * indicates a statistically significant correlation at P < 0.05 level; ** indicates a statistically significant correlation at P < 0.01 level. The same below.
    下载: 导出CSV

    表  3  100个青海云杉半同胞家系各生长性状的一般配合力

    Table  3.   General combining ability of growth traits in 100 P. crassifolia half-sib families

    家系号
    Family
    ID
    H15I15GD15CW15H20I20GD20CW20 家系号
    Family
    ID
    H15I15GD15CW15H20I20GD20CW20
    2 13.09 −1.04 0.03 5.29 15.67 −1.05 0.69 11.35 79 −34.46 −3.32 −0.82 −15.82 −35.89 −2.10 −1.19 −21.49
    3 4.37 −0.82 0.02 2.87 1.28 −1.35 −0.42 −7.13 80 −12.85 5.07 0.09 1.82 −6.28 1.57 −0.07 0.35
    4 −12.46 −1.21 −0.14 −0.55 −12.11 2.32 −0.45 2.51 82 16.65 −0.32 0.35 3.23 9.45 −1.50 0.22 10.90
    5 −24.80 −0.82 −0.07 −5.02 −25.00 3.93 0.09 −11.54 83 11.20 1.29 0.01 −1.24 14.00 1.03 0.54 5.87
    6 8.54 −1.04 −0.25 7.34 2.72 −2.38 0.17 18.76 85 −1.91 2.02 0.07 0.48 10.17 5.57 0.29 0.51
    9 −10.02 −0.59 −0.22 −7.60 −18.89 −3.28 −0.40 −10.04 87 19.70 3.24 0.13 9.40 23.95 0.82 0.34 12.07
    14 5.26 −0.98 −0.27 1.09 0.45 −0.90 0.16 −1.49 88 12.82 0.52 0.24 5.54 19.17 3.68 0.21 14.37
    15 −10.80 −0.71 −0.51 −6.82 −19.11 −4.53 −0.78 −6.02 89 −17.41 2.96 −0.12 −8.52 −17.50 0.28 0.22 −8.46
    17 11.76 −1.09 −0.20 7.59 9.06 −1.79 0.27 6.62 90 −26.68 −1.93 0.01 −12.49 −26.78 0.72 −0.33 −10.60
    18 5.82 0.57 −0.09 3.87 −2.78 −2.22 −0.10 −3.13 91 −4.30 3.79 0.12 1.09 1.56 1.22 0.56 −0.60
    19 −13.46 −1.09 0.23 −4.46 −11.55 1.22 −0.16 −15.85 92 24.98 0.57 −0.14 −0.77 23.50 −0.17 0.04 0.60
    20 −11.13 −0.93 −0.23 −5.43 −11.50 −0.20 −0.62 −12.46 93 20.48 0.46 0.50 3.79 22.84 −1.76 0.85 6.12
    21 −13.35 −2.87 −0.08 −5.38 −15.33 −0.75 −0.23 −7.15 94 7.48 2.96 0.64 1.20 11.95 1.17 0.39 4.96
    22 −14.91 −0.37 −0.15 −7.82 −13.33 1.05 −0.16 −12.63 95 10.48 3.35 0.49 5.01 16.11 0.12 1.05 7.48
    23 −12.46 0.29 0.03 0.18 −12.89 2.53 −0.12 −6.65 96 5.59 −0.82 0.15 −0.88 12.50 1.03 0.06 2.60
    25 −22.96 −2.71 −0.70 −12.66 −16.83 −0.30 −0.07 −10.65 97 3.48 −1.48 0.06 −3.02 0.06 −1.96 −0.21 −8.40
    26 −4.18 −0.93 0.08 −4.27 −4.28 −1.63 −0.03 −10.68 98 18.26 −0.48 −0.09 5.68 18.17 −1.15 0.12 −1.65
    27 −19.07 −3.37 −0.44 −7.88 −27.05 −5.91 −0.66 −12.54 101 −7.46 −1.15 −0.11 −1.85 −9.55 −1.33 −0.11 −0.60
    28 −29.41 0.46 −0.06 −7.88 −18.28 4.63 0.06 −8.02 103 2.26 −0.54 −0.31 −3.88 −3.28 −0.48 −0.30 −8.43
    30 −25.24 −2.54 −0.30 −11.27 −28.78 −2.38 −0.43 −16.29 105 −18.46 −0.04 −0.21 −9.05 −19.22 −0.29 −0.52 −7.74
    31 14.04 1.68 0.10 3.18 14.00 −0.25 0.34 6.35 106 −4.80 −1.15 −0.34 0.65 −6.55 −2.46 −0.16 4.54
    32 −35.91 −1.65 −0.02 −5.66 −31.83 3.88 −0.01 −9.52 107 −9.46 −0.43 −0.10 −0.41 −7.28 3.80 −0.41 −9.24
    33 −17.07 −2.21 −0.30 −0.88 −20.89 −0.17 −0.75 −7.79 108 30.65 0.68 0.58 18.98 28.28 1.01 0.57 17.65
    34 13.37 1.91 0.34 8.18 23.06 0.86 0.48 15.98 109 11.87 0.68 −0.10 0.68 15.78 2.55 0.20 6.01
    35 −7.68 0.91 0.04 −2.66 −3.94 3.84 0.02 −4.40 111 −2.68 −1.43 −0.42 −10.77 −7.44 −3.56 −0.52 −13.82
    36 −18.52 −3.37 −0.55 −11.30 −20.00 −1.80 −0.58 −12.04 116 4.54 0.74 −0.03 3.57 8.28 −1.20 0.26 13.79
    39 26.87 0.02 0.38 3.26 28.78 0.29 0.44 7.18 123 29.09 2.96 0.86 21.90 32.72 1.05 0.82 19.54
    42 −1.91 4.29 0.35 −3.63 2.67 1.40 0.15 5.48 124 −20.30 −0.98 −0.04 −7.10 −19.55 −0.56 −0.56 −8.24
    45 −13.18 −2.98 −0.34 −11.43 −14.28 −1.98 −0.71 −17.77 125 −11.63 −1.43 0.12 −5.91 −10.83 2.29 −0.45 −11.54
    48 10.98 3.29 0.28 2.20 13.78 2.15 0.83 17.23 126 −8.74 −1.15 −0.21 −4.10 −18.16 −3.67 −0.15 0.71
    49 30.59 0.02 0.60 11.29 27.39 −2.76 0.71 17.04 128 1.54 −0.26 −0.22 −2.43 1.50 −1.91 0.08 3.10
    51 47.04 5.24 0.74 13.98 47.56 1.67 0.68 16.85 130 −19.68 −2.54 −0.53 −8.49 −21.33 −0.51 −0.38 −5.13
    52 30.09 0.85 0.35 14.93 25.45 −1.30 0.36 10.37 132 30.32 3.57 0.57 13.70 32.95 1.97 0.89 22.73
    55 10.65 −0.09 −0.16 14.43 8.45 −0.55 0.12 7.46 133 2.48 0.24 0.13 10.26 8.17 0.61 0.17 9.35
    56 13.76 3.91 0.52 2.45 16.45 0.22 0.33 12.07 135 −0.57 3.41 0.04 2.82 5.78 6.34 0.29 3.43
    60 38.26 3.13 0.88 6.87 35.61 −0.15 0.69 13.96 138 −12.68 0.52 −0.47 −6.55 −18.00 −1.20 −0.50 −7.35
    61 3.93 −0.48 −0.02 1.09 6.06 1.57 0.24 0.96 140 6.65 1.52 0.04 −0.55 8.89 2.14 0.07 1.37
    62 16.98 −0.15 0.01 12.37 12.78 −3.77 0.33 14.57 142 −37.24 −1.59 −0.10 −15.21 −27.66 4.23 −0.39 −20.74
    64 36.70 2.24 0.61 19.70 41.00 2.63 0.82 25.40 145 11.70 1.41 0.07 15.32 13.89 2.94 0.43 10.12
    66 15.65 2.68 0.48 0.40 27.34 3.17 0.64 8.82 146 5.65 0.91 0.03 0.07 3.28 0.88 −0.13 3.73
    67 −29.30 −3.43 −0.64 −13.07 −32.11 −2.13 −0.83 −15.88 148 7.15 −0.65 −0.04 8.48 3.06 −0.94 0.28 13.01
    68 −22.46 −2.21 −0.55 −13.43 −25.72 −2.18 −0.85 −17.38 150 2.26 −1.43 −0.06 9.32 1.39 −0.11 0.15 10.18
    69 1.43 −1.59 0.07 −5.52 −3.83 −2.53 −0.25 −5.10 152 −15.18 −3.65 −0.15 −6.55 −26.11 −4.33 −0.51 −13.54
    70 −22.02 −0.15 −0.07 3.87 −21.11 −0.14 −0.13 0.40 153 13.15 −1.15 0.15 −0.05 18.34 2.60 −0.04 −2.38
    71 0.87 0.13 0.13 −5.02 −1.83 −1.01 −0.27 −3.24 154 1.76 −1.59 −0.09 3.26 2.84 −2.83 −0.06 2.65
    72 −0.68 4.07 0.15 −4.21 0.78 0.53 0.54 0.79 155 7.98 0.85 0.29 3.40 10.95 1.30 −0.17 −3.35
    73 −20.57 −1.71 −0.25 −7.10 −18.94 2.35 −0.22 −11.27 156 12.93 1.91 0.06 9.04 7.45 −2.28 −0.10 9.71
    75 −34.02 −1.15 −0.65 −10.82 −39.22 −2.01 −0.83 −14.63 158 12.15 −0.15 −0.03 −0.96 10.11 −1.11 0.04 10.46
    76 −25.74 −3.26 −0.39 −6.46 −26.44 −0.18 −0.99 −10.74 161 11.04 −0.82 0.34 9.07 5.28 0.63 0.19 2.21
    77 −0.30 −3.04 −0.33 −6.16 −7.83 −3.65 −0.43 −11.13 164 23.76 −0.26 0.15 6.79 24.45 0.88 0.26 6.15
    下载: 导出CSV

    表  4  15年生和20年生青海云杉半同胞子代生长性状相关性分析

    Table  4.   Correlation analysis of growth characters of half siblings of 15 year-old and 20 year-old P. crassifolia

    性状 Trait H15 I15 GD15 CW15H20 I20 GD20
    I15 0.399**
    GD15 0.666** 0.357**
    CW15 0.693** 0.358** 0.637**
    H20 0.905** 0.465** 0.670** 0.686**
    I20 0.098** 0.267** 0.212** 0.190** 0.341**
    GD20 0.511** 0.341** 0.568** 0.531** 0.639** 0.421**
    CW20 0.637** 0.387** 0.575** 0.741** 0.718** 0.308** 0.622**
    下载: 导出CSV

    表  5  不同年份青海云杉半同胞家系生长性状综合评定Qi

    Table  5.   Qi values of growth traits of half-sib families in different years

    家系号 Family IDQi,15家系号 Family IDQi,20
    51 1.486 64 1.532
    123 1.471 132 1.519
    64 1.457 51 1.517
    60 1.454 123 1.507
    132 1.443 60 1.492
    108 1.435 108 1.491
    49 1.416 48 1.488
    52 1.414 66 1.487
    56 1.398 34 1.479
    95 1.393 49 1.477
    下载: 导出CSV
  • [1] 孙应德, 许重九, 张鸿昌. 青海的云杉和云杉林[J]. 青海农林科技, 1981, 11(3):47−52.

    Sun Y D, Xu C J, Zhang H C. Spruce and spruce forest in Qinghai[J]. Science and Technology of Qinghai Agriculture and Forestry, 1981, 11(3): 47−52.
    [2] 魏克勤. 祁连山水源涵养林区的青海云杉林[J]. 甘肃林业科技, 1985, 7(3):14−20.

    Wei K Q. Picea crassifolia forest of water resources conservation forest of Qilian Mountains[J]. Journal of Gansu Forestry Science and Technology, 1985, 7(3): 14−20.
    [3] 郭前业, 吴鸿文, 张霞. 青海云杉播种育苗技术[J]. 中国林业, 2008, 59(8):61.

    Guo Q Y, Wu H W, Zhang X. Seeding andseedling technology of Picea crassifolia[J]. Forestry of China, 2008, 59(8): 61.
    [4] 闫克林, 陈刚, 谢小兵, 等. 基于K-均值法的青海云杉无性系半同胞子代测定林生长性状聚类分析[J]. 林业科技通讯, 2017, 60(8):8−10.

    Yan K L, Chen G, Xie X B, et al. Clustering analysis on the growth traits of half sib progeny test forest of Picea crassifolia clones based on the K-means[J]. Forest Science and Technology, 2017, 60(8): 8−10.
    [5] 吕东, 张宏斌, 李秉新, 等. 青海云杉无性系开花特性及种子园花粉流时空变化[J]. 东北林业大学学报, 2016, 44(3):68−73. doi: 10.3969/j.issn.1000-5382.2016.03.014

    Lü D, Zhang H B, Li B X, et al. Flowering characters of Picea crassifolia clones and temporal-spatial variation of pollen flow in Picea crassifolia orchard[J]. Journal of Northeast Forestry University, 2016, 44(3): 68−73. doi: 10.3969/j.issn.1000-5382.2016.03.014
    [6] 吕东, 张宏斌, 赵明, 等. 青海云杉无性系雌雄球花及球果量的变异研究[J]. 甘肃农业大学学报, 2013, 48(3):68−73,81. doi: 10.3969/j.issn.1003-4315.2013.03.014

    Lü D, Zhang H B, Zhao M, et al. Variation of cones and strobilus production among clone of Picea crassifolia[J]. Journal of Northeast Forestry University, 2013, 48(3): 68−73,81. doi: 10.3969/j.issn.1003-4315.2013.03.014
    [7] 赵祜, 王立, 吕东. 青海云杉种子园无性系结实性状遗传变异研究[J]. 安徽农业科学, 2017, 45(35):155−157. doi: 10.3969/j.issn.0517-6611.2017.35.047

    Zhao H, Wang L, Lü D. Genetic variation of clones fruiting traits in Picea crassifolia Kom. seed orchard[J]. Journal of Anhui Agricultural Sciences, 2017, 45(35): 155−157. doi: 10.3969/j.issn.0517-6611.2017.35.047
    [8] 钟伟华, 何昭珩, 周达, 等. 火炬松自由授粉子代测定研究[J]. 林业科学研究, 1994, 7(3):277−285. doi: 10.3321/j.issn:1001-1498.1994.03.010

    Zhong W H, He Z H, Zhou D, et al. Research of open-pollinated progeny of loblolly pine[J]. Forest Research, 1994, 7(3): 277−285. doi: 10.3321/j.issn:1001-1498.1994.03.010
    [9] 秦国峰, 周志春, 金国庆, 等. 马尾松遗传参数估算和优良家系评选[J]. 林业科学研究, 1992, 5(2):127−133.

    Qin G F, Zhou Z C, Jin G Q, et al. Genetic parameter estimation and pedigree selection of Masson,s pine[J]. Forest Research, 1992, 5(2): 127−133.
    [10] 王明庥. 林木遗传育种学[M]. 北京: 中国林业出版社, 2001: 171−177.

    Wang M X. Forest genetics and breeding[M]. Beijing: China Forestry Publishing House, 2001: 171−177.
    [11] 张宏斌, 吕东, 赵明, 等. 青海云杉半同胞子代测定和优良家系选择研究[J]. 甘肃农业大学学报, 2013, 48(3):82−87. doi: 10.3969/j.issn.1003-4315.2013.03.016

    Zhang H B, Lü D, Zhao M, et al. Half-sib progeny test and superior families selection of Picea crassifolia[J]. Journal of Gansu Agricultural University, 2013, 48(3): 82−87. doi: 10.3969/j.issn.1003-4315.2013.03.016
    [12] 吕东, 张宏斌, 李秉新, 等. 青海云杉优良单株半同胞种子及其子代苗表型性状分析[J]. 植物研究, 2018, 38(3):377−383. doi: 10.7525/j.issn.1673-5102.2018.03.009

    Lü D, Zhang H B, Li B X, et al. Phenotypic traits of half sibs-seeds and their offspring seedlings on Picea crassifolia superior individual trees[J]. Bulletin of Botanical Research, 2018, 38(3): 377−383. doi: 10.7525/j.issn.1673-5102.2018.03.009
    [13] 欧阳芳群, 祁生秀, 蔡启山, 等. 青海云杉自由授粉家系遗传评价与选择[J]. 林业科学研究, 2018, 31(6):26−32.

    Ouyang F Q, Qi S X, Cai Q S, et al. Genetic evaluation and selection on open-pollinated families of Picea crassifolia Kom.[J]. Forest Research, 2018, 31(6): 26−32.
    [14] 张鸿昌, 许重九, 孙应德. 青海省几种云杉生长特性的研究[J]. 青海农林科技, 1984, 14(1):44−54.

    Zhao H C, Xu C J, Sun Y D. Study on growth characteristics of several spruce in Qinghai Province[J]. Science and Technology of Qinghai Agriculture and Forestry, 1984, 14(1): 44−54.
    [15] 王军辉, 张建国, 张守攻, 等. 青海云杉硬枝扦插的激素、年龄和位置效应研究[J]. 西北农林科技大学学报(自然科学版), 2006, 6(7):65−71.

    Wang J H, Zhang J G, Zhang S G, et al. Research of hormone, age and position effect of hardwood cutting in Picea crassifolia Kom.[J]. Journal of Northwest A & F University(Natural Science Edition), 2006, 6(7): 65−71.
    [16] 杨俊杰. 火炬松半同胞家系遗传测定[D]. 长沙: 中南林业科技大学, 2017.

    Yang J J. Progeny test of half sib families of Pinus taeda L.[D]. Central South University of Forestry and Technology, 2017.
    [17] White T L, Adams W T, Neale D B. Forest genetics[M]. London: CABI Publishing, 2007.
    [18] Zhao X, Hou W, Zheng H, et al. Analyses of genotypic variation in white poplar clones at four sites in China[J]. Silvae Genetica, 2013, 62(1−6): 187−195. doi: 10.1515/sg-2013-0023
    [19] 陈晓阳, 沈熙环. 林木育种学[M]. 北京: 高等教育出版社, 2005.

    Chen X Y, Shen X H. Forest tree breeding[M]. Beijing: Higher Education Press, 2005.
    [20] 解孝满, 李景涛, 赵合娥, 等. 柳树无性系苗期遗传测定与选择[J]. 江苏林业科技, 2008, 35(3):6−9, 14. doi: 10.3969/j.issn.1001-7380.2008.03.002

    Xie X M, Li J T, Zhao H E, et al. Genetic determination and selection of willow clones at seedling stage[J]. Journal of Jiangsu Forestry Science & Technology, 2008, 35(3): 6−9, 14. doi: 10.3969/j.issn.1001-7380.2008.03.002
    [21] Lai M, Sun X, Chen D, et al. Age-related trends in genetic parameters for Larix kaempferi and their implications for early selection[J]. BMC Genetics, 2014, 15(1): S10.
    [22] 李帅锋, 苏建荣, 郎学东, 等. 思茅松自由授粉家系遗传参数与早期选择分析[J]. 林业科学研究, 2017, 30(6):929−935.

    Li S F, Su J R, Lang X D, et al. Genetic variation and early selection analysis of open-pollinated families of Pinus kesiya var. langbianensis[J]. Forest Research, 2017, 30(6): 929−935.
    [23] 杨秀艳, 张守攻, 孙晓梅, 等. 北亚热带高山区日本落叶松自由授粉家系遗传测定与二代优树选择[J]. 林业科学, 2010, 46(8):45−50. doi: 10.11707/j.1001-7488.20100807

    Yang X Y, Zhang S G, Sun X M, et al. Genetic test of open-pollinated Larix kaempferi families and selection for the second generation elite trees in northern sub-tropical alpine area[J]. Scientia Silvae Sinicae, 2010, 46(8): 45−50. doi: 10.11707/j.1001-7488.20100807
    [24] 姜国云, 蒋路平, 宋双林, 等. 红松半同胞家系遗传变异分析及果材兼用优良家系选择[J]. 植物研究, 2018, 38(5):775−784. doi: 10.7525/j.issn.1673-5102.2018.05.018

    Jiang G Y, Jiang L P, Song S L, et al. Genetic variance analysis and excellent fruit-timber families selection of half-sib Pinus koraiensis[J]. Bulletin of Botanical Research, 2018, 38(5): 775−784. doi: 10.7525/j.issn.1673-5102.2018.05.018
    [25] Bogdan S, Katicic-Trupcevic I, Kajba D. Genetic variation in growth traits in a Quercus robur L. open-pollinated progeny test of the Slavonian provenance[J]. Silvae Genetica, 2004, 53(5-6): 198−201.
    [26] 王娅丽, 李毅, 陈晓阳. 祁连山青海云杉天然群体表型性状遗传多样性分析[J]. 林业科学, 2008, 54(2):70−77. doi: 10.3321/j.issn:1001-7488.2008.02.011

    Wang Y L, Li Y, Chen X Y. Phenotypic diversity of natural populations in Picea crassifolia in Qilian Mountains[J]. Scientia Silvae Sinicae, 2008, 54(2): 70−77. doi: 10.3321/j.issn:1001-7488.2008.02.011
    [27] 贾晨, 辜云杰, 夏川, 等. 枫香半同胞家系子代测定及优良家系选择[J]. 西部林业科学, 2014, 43(5):122−128.

    Jia C, Gu Y J, Xia C, et al. The half-sib family progeny test and excellent family selection of Liquidambar formosana[J]. Journal of West China Forestry Science, 2014, 43(5): 122−128.
    [28] Maniee M, Kahrizi D, Mohammadi R. Genetic variability of some morpho-physiological traits in durum wheat (Triticum turgidum var. durum)[J]. Journal of Applied Sciences, 2009, 9(7): 1383−1387. doi: 10.3923/jas.2009.1383.1387
    [29] 许娜, 安三平, 王丽芳, 等. 青海云杉半同胞家系遗传变异及二代优树选择[J]. 甘肃林业科技, 2017, 2(1):1−5. doi: 10.3969/j.issn.1006-0960.2017.01.001

    Xu N, An S P, Wang L F, et al. Genetic variation and plus trees selection of families of Picea crassifolia[J]. Journal of Gansu Forestry Science and Technology, 2017, 2(1): 1−5. doi: 10.3969/j.issn.1006-0960.2017.01.001
    [30] Kumar S, Lee J. Age-age correlations and early selection for end-of-rotation wood density in radiata pine[J]. Forest Genetics, 2002, 9(4): 323−330.
    [31] Abdulsalam M, Ariyo O, Alghamdi S. Analysis of combining ability over environments in diallel crosses of maize (Zea mays)[J]. Journal of the Saudi Society of Agricultural Sciences, 2018, 17(1): 69−78. doi: 10.1016/j.jssas.2016.01.004
    [32] 杨章旗. 马尾松优良家系选择的适宜年龄研究[J]. 中南林学院学报, 2004, 24(4):24−26.

    Yang Z Q. Suitable age for selection of superior families in seed orchards of Masson pine[J]. Journal of Central South University of Forestry & Technology, 2004, 24(4): 24−26.
    [33] 李青粉, 马建伟, 王军辉, 等. 油松自由授粉家系分阶段测定与选择的差异分析[J]. 林业科学研究, 2015, 28(4):451−456. doi: 10.3969/j.issn.1001-1498.2015.04.001

    Li Q F, Ma J W, Wang J H, et al. Analysis of stage test and height selection of open-pollinated Pinus tabulaeformis family analysis of stage test and height selection of open-pollinated Pinus tabulaeformis family[J]. Forest Research, 2015, 28(4): 451−456. doi: 10.3969/j.issn.1001-1498.2015.04.001
  • 加载中
表(5)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  136
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2021-01-16
  • 网络出版日期:  2021-04-17
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回