Processing math: 100%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

长白山阔叶红松林不同演替阶段冠层光谱特征及其与气温的关系

王瑶瑶, 周光, 刘琪璟, 周阳

王瑶瑶, 周光, 刘琪璟, 周阳. 长白山阔叶红松林不同演替阶段冠层光谱特征及其与气温的关系[J]. 北京林业大学学报, 2021, 43(7): 40-53. DOI: 10.12171/j.1000-1522.20200373
引用本文: 王瑶瑶, 周光, 刘琪璟, 周阳. 长白山阔叶红松林不同演替阶段冠层光谱特征及其与气温的关系[J]. 北京林业大学学报, 2021, 43(7): 40-53. DOI: 10.12171/j.1000-1522.20200373
Wang Yaoyao, Zhou Guang, Liu Qijing, Zhou Yang. Canopy spectral characteristics of broadleaved Korean pine forest in different successional stages and its relation with temperature in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 40-53. DOI: 10.12171/j.1000-1522.20200373
Citation: Wang Yaoyao, Zhou Guang, Liu Qijing, Zhou Yang. Canopy spectral characteristics of broadleaved Korean pine forest in different successional stages and its relation with temperature in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 40-53. DOI: 10.12171/j.1000-1522.20200373

长白山阔叶红松林不同演替阶段冠层光谱特征及其与气温的关系

基金项目: 国家自然科学基金项目(31670436)
详细信息
    作者简介:

    王瑶瑶。主要研究方向:林业遥感与信息技术。Email:308714182@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    刘琪璟,教授。主要研究方向:森林资源调查与监测。Email:liuqijing@bjfu.edu.cn 地址:同上

  • 中图分类号: S791.247

Canopy spectral characteristics of broadleaved Korean pine forest in different successional stages and its relation with temperature in Changbai Mountain of northeastern China

  • 摘要:
      目的  通过遥感数据分析长白山阔叶红松林不同演替阶段冠层光谱变化特征,为揭示长白山群落内部种间变化以及植被生产力对气候因子的响应机制提供理论依据。
      方法  通过Google Earth Engine平台提取1984—2019年长白山原始阔叶红松林与次生白桦林Landsat和Sentinel多年冠层光谱数据并计算植被绿度参数,分析二者冠层光谱特征季节变化、植被绿度的季节与年际变化,计算植被年际绿度变化与同期月均温的Pearson相关系数。
      结果  (1)原始林与次生林冠层可见光反射率在非生长季较高,生长季下降,而近红外光变化趋势则与此相反。在生长旺盛季节(5—10月底)原始林与次生林可见光波段冠层反射率相近,近红外波段差异明显,次生林冠层反射率更高。二者都具有明显的“红谷”、 “绿峰”、 “蓝谷”和“红边”现象,原始林冠层光谱反射率年变化幅度小于次生林。(2)原始林与次生林的绿度表现为相同的变化趋势,即春季展叶期间增长、秋季落叶期衰减。非生长季,原始林植被指数变化较为稳定且大于次生林,次生林林下透光度高。生长季,次生林增强植被指数(EVI)和哨兵二号红边位置(S2REP)均大于原始林,植被冠层生理活动更为旺盛,不同的卫星影像数据表现一致,且次生林的EVI峰值比原始林出现得略早。(3)1985—2019年的35年期间,长白山气温呈上升趋势,植被绿度也随之变化,即:二者EVI在增加,且夏季(生长季)增长幅度大于其他季节,春、秋季的年际差异较大。(4)与原始林相比,次生林EVI年际变化受春季气温影响较大,在生长季初期,二者的EVI与气温呈显著正相关;在整个生长季期间,当气温增加达到一定阈值后,EVI增长显著。
      结论  长时间的连续冠层光谱变化监测与分析,可有效反映原始林与次生林植被物候变化差异。气温上升可能是引起长白山阔叶红松林绿度变化的重要因素之一。
    Abstract:
      Objective  Based on remote sensing data, the characteristics of canopy spectral changes in different succession stages of broadleaved Korean pine forest in Changbai Mountain of northeastern China were analyzed to provide theoretical basis for revealing the interspecies change and the response mechanism of vegetation productivity to climate factors in Changbai Mountain.
      Method  Through the Google Earth Engine platform, Landsat and Sentinel series of remote sensing images were used to extract multi-temporal canopy spectrum data for the broadleaved Korean pine forest (primary forest) and birch-aspen forest (secondary forest), both were in a same succession series in Changbai Mountain. Also we analyzed the seasonal variations of the canopy spectrum characteristics of the two, the seasonal and inter-annual variation of vegetation greenness, and calculated the Pearson correlation coefficient between the inter-annual vegetation greenness variation and the monthly average temperature of the same period from 1985 to 2019.
      Result  (1) For canopy spectral reflectance of the primary forest, the visible light was higher in leaf-off season than in growing season, while the near-infrared reflectance showed an opposite pattern. In the vigorous growth season (from the end of May to the end of October), the canopy reflectivity of the primary forest and the secondary forest was similar in the visible light band, but the near-infrared band was significantly different, and the secondary forest canopy reflectivity was higher. The phenomenon of “red valley”, “green peak”, “blue valley” and “red edge”, the curve form of spectral reflectance in the two vegetation types were evident, and the interannual fluctuation was weaker than that of the secondary forest. (2) The greenness of primary forest and secondary forest showed the same changing trend. It exhibited growth during leaf development in spring and attenuation during leaf fall in autumn. In the non-growing season, the degree of change in vegetation index of the primary forest was relatively stable and greater than that of the secondary forest, indicating that the understory of the secondary forest had high light transmittance. In vigorous growing season, the EVI and S2REP of the secondary forest were larger than those of the original forest, and the physiological activities of the vegetation canopy were more vigorous. Different satellite image data showed consistent performance, and the EVI peak of the secondary forest appeared slightly earlier than the original forest. (3) During the 35-year period from 1985 to 2019, the temperature in the study region had been on the rise, resulting in the increase in both vegetation greenness and the length of growing season; EVI of the primary forest was increasing, with the rate greater in summer than in other seasons. The interannual difference between spring and autumn for enhanced vegetation index was significant. (4) Compared with the primary forest, the interannual variation in EVI of the secondary forest was more correlated with spring temperature. At the beginning of growing season, both forests presented the same pattern that EVI and temperature were positively correlated. During the entire growing season, EVI increased steadily prior to the period when temperature reached a high level.
      Conclusion  Long-term continuous monitoring and analysis of canopy spectrum changes can effectively reflect the difference in vegetation phenology between the primary forest and the secondary forest. Temperature rise may be one of the important factors causing the greenness of the broadleaved Korean pine forest in Changbai Mountain of northeastern China.
  • 白桦(Betula platyphylla)作为我国重要的阔叶用材树种,广泛分布于东北、华北、西北及西南高山林区等14个省区[1],其木质坚硬,质地细白,在家具、建材、造纸等方面具有广泛用途。由于白桦为异花授粉树种,自交不育,基因型高度杂合,因此群体内个体间遗传差异十分明显,主要表现在个体间的干型、生长、适应性等性状各不相同。开展白桦家系多点造林试验,对不同地点间的参试家系进行选择,可最大限度地利用家系间及家系内个体间变异,加速白桦遗传改良进程。

    研究团队于1997—2000年间,依据表型性状从帽儿山、草河口、辉南、露水河、汪清、小北湖和东方红等多个种源内筛选出若干株白桦优良单株,将这些优树个体分年度定植于棚式种子园内,建立了白桦初级实生种子园。前期,对园中母树自由授粉的半同胞子代在单一地点的试验结果进行过初步分析[2],但是这仅为单一试验点的结果且林龄尚小。然而,通过多点试验研究,不仅能够分析各家系在单一地点的生长性状,同时也能够对参试家系进行基因型与环境交互作用的分析,是筛选对不同类型环境具有特殊适应性基因型的必要手段,也是进行优良家系选择及遗传改良的重要方法之一[3-4]。在以往的白桦多点试验研究中,本团队曾就白桦杂交子代2~5年生幼龄林测定数据进行过早期选择与评价[5-7],但也仅限于幼龄林时期,尚未对成年林分进行跟踪调查。为此,本试验开展12年生自由授粉的半同胞家系多点子代测定研究,在进行优良家系选择的同时对建园母树进行评价,为白桦种子园的改建提供参考。

    试验材料为东北林业大学白桦初级实生种子园内53株白桦母树自由授粉的半同胞子代家系。2001年采种,2002年育苗,2003年分别在黑龙江省伊春市朗乡林业局小白林场、吉林省吉林市林业科学研究院实验林场、黑龙江省尚志市帽儿山实验林场营建白桦半同胞家系测定林,3个试验点地理与气候条件见表 1。试验林按照完全随机区组设计,在帽儿山试验点为20株双行排列,在吉林与朗乡2试验点为10株单行排列,株行距2m×2m,3次重复。2015年春分别对3个地点的12年生白桦半同胞子代试验林进行全林树高、胸径调查。

    表  1  3个试验点的地理气候条件
    Table  1.  Geographical and climatic conditions of the three test sites
    序号
    No.
    试验点
    Test site
    纬度
    Latitude
    经度
    Longitude
    年降水量
    Annual precipitation/mm
    年平均温度
    Annual average temperature/℃
    无霜期
    Frost-freeseason/d
    土壤类型
    Soil type
    1 朗乡
    Langxiang
    46°48′N 128°50′E 676.0 1.0 100 永冻暗棕壤
    Permafrost dark brown
    2 帽儿山
    Maoershan
    45°16′N 127°31′E 666.1 2.4 120 暗棕壤
    Dark brown
    3 吉林
    Jilin
    43°40′N 126°40′E 700.0 4.1 135 暗棕壤
    Dark brown
    下载: 导出CSV 
    | 显示表格

    采用超声波测高仪及塔尺测量树高,采用围尺测量胸径。家系保存率按各试验点内各家系实际保存株数计算。根据白桦的二元材积表公式计算单株材积:V=0.0000051935163D1.8586884H1.0038941[8]

    表型变异系数(PCV)采用公式:PCV=σˉX×100%,式中:σ为性状标准差,X为性状平均值[9]

    遗传增益(G):G=h2SˉX×100%, 式中:h2为性状遗传力,S为入选各优良家系性状平均值与参试家系相应性状平均值的差值, X为参试家系性状平均值。

    方差分析及多重比较(Duncan)利用SPSS16.0和Microsoft Excel等统计分析软件进行计算。

    各试验地点间及试验点内均采用双因素方差分析线性模型进行分析,其模型表达式及各参数含义详见参考文献[6]。

    采用南京林业大学林木多地点半同胞子代测定遗传分析R语言程序包以及R软件进行多地点半同胞子代材积育种值BLUP估计。模型建立过程根据童春发[10-11]的方法进行,详见文献[11]。

    BLUP的线性混合模型公式为[11]

    yy=XXβ+ZZu+e

    式中: y为材积观测值向量,XZ分别为βu的相关矩阵,β为固定效应,u为随机遗传效应,e为随机误差效应。

    3个地点联合方差分析(表 2)表明:单株材积、树高性状在地点间和家系间以及地点与家系的交互作用均表现出极显著(P<0.01)的差异,胸径性状在地点间和家系间也表现出极显著(P<0.01)的差异;说明不同家系在同一地点内生长差异明显,同一个家系在不同立地条件下的生长表现也各不一致,各地点与家系间存在较为明显的互作效应。

    表  2  参试家系生长性状多地点联合方差分析
    Table  2.  Joint variance analysis of growth traits for birch families at different sites
    生长性状
    Growth trait
    变异来源
    Source of variation
    df SS MS F P
    树高
    Height(H)/m
    地点Site 2 1755.112 877.556 490.323** <0.01
    地点内区组Site (Block) 6 315.480 52.580 29.378** <0.01
    家系Family 52 351.766 6.765 3.780** <0.01
    家系×地点Family×site(G×E) 104 474.421 4.562 2.549** <0.01
    试验误差Experiment error 4065 7275.337 1.790
    总变异Total variance 4230 423725.196
    胸径
    Diameter at breast height (DBH)/cm
    地点Site 2 3674.704 1837.352 435.896** <0.01
    地点内区组Site (Block) 6 283.320 47.220 11.203** <0.01
    家系Family 52 389.907 7.498 1.779** <0.01
    家系×地点G×E 104 542.376 5.215 1.237 0.053
    试验误差Experiment error 4065 17134.428 4.215
    总变异Total variance 4230 366062.640
    单株材积Volume(V)/m3 地点Site 2 0.189 0.094 509.010** <0.01
    地点内区组Site (Block) 6 0.017 0.003 15.243** <0.01
    家系Family 52 0.025 <0.001 2.621** <0.01
    家系×地点G×E 104 0.029 <0.001 1.499** <0.01
    试验误差Experiment error 4065 0.753 <0.001
    总变异Total variance 4230 6.436
    注: *差异显著,P<0.05; **差异极显著,P<0.01。下同。Notes: * means significant difference at P<0.05 level; ** means extremely significant difference at P<0.01 level. The same below.
    下载: 导出CSV 
    | 显示表格

    单个地点的方差分析(表 3)表明:树高、胸径以及单株材积在家系间均达到差异显著(P<0.05)或极显著(P<0.01)水平,说明不同家系间生长存在明显差别。在3个试验点中,帽儿山试验点的白桦家系树高、胸径和单株材积生长表现最好,均值分别为10.3928m、9.6489cm和0.0408m3,且变异系数较小,分别为11.79%、22.64%和34.80%,说明参试家系在帽儿山试验点不仅生长量最大,而且生长整齐度也较好。吉林试验点的参试家系各性状均值均处于中间,生长变异水平也处于中等。朗乡试验点各性状均值最小,为8.6575m、7.1091cm和0.0226m3,这与当地年均温较低,无霜期较短等气候条件有关。

    表  3  不同试验点间参试家系生长性状的遗传参数
    Table  3.  Genetic parameters for growth traits of birch families at different sites
    试验地点
    Test site
    性状
    Growth trait
    均值
    Mean
    标准差
    Standarddeviation
    变幅
    Amplitude ofvariation
    变异系数
    Coefficient of variation/%
    F P
    朗乡
    Langxiang
    树高H/m 8.6575 1.6515 9.19~9.89 19.08 2.349 ** <0.01
    胸径DBH/cm 7.1091 2.0069 5.90~8.34 28.23 1.446* 0.02
    单株材积V/m3 0.0226 0.0119 0.0156~0.0311 52.65 1.650** <0.01
    帽儿山
    Maoershan
    树高H/m 10.3928 1.2252 9.39~11.30 11.79 7.984** <0.01
    胸径DBH/cm 9.6489 2.1848 8.67~10.77 22.64 1.868** <0.01
    单株材积V/m3 0.0408 0.0142 0.0331~0.0499 34.80 3.653** <0.01
    吉林
    Jilin
    树高H/m 9.7268 1.5534 8.15~11.00 15.97 3.408** <0.01
    胸径DBH/cm 9.1610 1.9483 7.73~10.21 21.27 2.293** <0.01
    单株材积V/m3 0.0351 0.0152 0.0231~0.0453 43.30 2.892** <0.01
    下载: 导出CSV 
    | 显示表格

    由于家系间各性状均达到显著差异水平(P<0.05),进而进行多重比较(表 4),初步筛选优良家系。将树高、胸径和单株材积分别在各试验点按均值高低排序后发现,由于3个试验点地理环境各有不同,基因型与环境的交互作用明显,所以53个家系在不同试验点生长表现各有差异,因此首先考虑在各试验点内进行单点优良家系初选,然后再进行3试验点间的联合选择。

    表  4  各试验地点参试家系生长性状多重比较
    Table  4.  Multiple comparisons of birch H, DBH and V for the tested lines at different sites
    家系
    Family
    朗乡Langxiang 帽儿山Maoershan 吉林Jilin
    树高H/m 胸径DBH/cm 单株材积V/m3 树高H/m 胸径DBH/cm 单株材积V/m3 树高H/m 胸径DBH/cm 单株材积V/m3
    B1 9.65 abcd 7.43 abcde 0.0291 ab 10.23 fghijklm 9.40 bcdef 0.0384 defghijkl 9.58 bcdefghijkl 9.28 abcdef 0.0335 bcdefghij
    B2 7.90 hijk 6.93 abcde 0.0193 bcdefgh 10.28 efghijkl 9.64 abcdef 0.0394 cdefghijkl 8.72 lm 7.73 g 0.0265 jk
    B3 8.30 defghijk 6.77 abcde 0.0209 abcdefgh 10.41 bcdefghijkl 9.47 bcdef 0.0406 cdefghijk 10.07 abcdefghij 9.50 abcdef 0.0395 abcdef
    B4 8.86 abcdefghij 7.05 abcde 0.0251 abcdefgh 9.67 nop 8.67 f 0.0331 l 9.56 bcdefghijkl 8.39 cdefg 0.0311 cdefghijk
    B5 9.53 abcde 7.79 abcd 0.0280 abcd 10.13 hijklmno 9.70 abcdef 0.0382 defghijkl 10.30 abcdef 9.44 abcdef 0.0394 abcdef
    B6 8.27 efghijk 6.81 abcde 0.0205 bcdefgh 10.34 cdefghijkl 9.27 cdef 0.0383 defghijkl 8.69 lm 9.15 abcdef 0.0278 ijk
    B7 9.11 abcdefghij 6.68 abcde 0.0230 abcdefgh 9.92 lmno 8.95 ef 0.0354 ijkl 9.24 hijkl 8.25 defg 0.0295 efghijk
    B8 8.14 fghijk 6.27 cde 0.0172 efgh 10.44 bcdefghijkl 9.15 cdef 0.0390 cdefghijkl 8.15 m 8.43 cdefg 0.0231 k
    B9 8.28 defghijk 6.05 de 0.0177 defgh 9.91 lmno 9.70 abcdef 0.0366 hijkl 9.83 bcdefghijk 8.58 cdefg 0.0326 cdefghijk
    B10 8.81 abcdefghij 8.34 a 0.0251 abcdefgh 10.56 bcdefghij 9.60 abcdef 0.0411 cdefghijk 9.77 bcdefghijk 8.82 abcdefg 0.0343 bcdefghij
    B11 8.29 defghijk 6.75 abcde 0.0221 abcdefgh 10.89 abc 9.50 bcdef 0.0425 bcdefghi 9.57 bcdefghijkl 9.57 abcdef 0.0348 bcdefghij
    B12 9.09 abcdefghij 6.91 abcde 0.0230 abcdefgh 10.47 bcdefghijkl 9.45 bcdef 0.0404 cdefghijk 9.71 bcdefghijk 8.35 cdefg 0.0321 cdefghijk
    B13 8.84 abcdefghij 7.09 abcde 0.0221 abcdefgh 10.35 cdefghijkl 9.89 abcde 0.0408 cdefghijk 9.92 bcdefghijk 9.14 abcdef 0.0356 abcdefghij
    B14 9.15 abcdefghi 7.65 abcde 0.0275 abcdef 10.45 bcdefghijkl 9.88 abcde 0.0415 bcdefghij 9.97 bcdefghijk 9.25 abcdef 0.0366 abcdefghij
    B15 9.52 abcde 7.50 abcde 0.0277 abcde 10.45 bcdefghijkl 10.47 ab 0.0437 abcdefgh 11.00 a 9.78 abc 0.0453 a
    B16 8.96 abcdefghij 7.29 abcde 0.0237 abcdefgh 10.94 ab 9.98 abcde 0.0460 abc 10.38 abcde 9.45 abcdef 0.0410 abcd
    B17 8.77 abcdefghij 8.18 ab 0.0247 abcdefgh 10.21 fghijklm 9.55 bcdef 0.0387 cdefghijkl 9.74 bcdefghijk 10.13 ab 0.0376 abcdefghi
    B18 9.72 ab 7.55 abcde 0.0284 abc 10.32 defghijkl 9.17 cdef 0.0382 defghijkl 9.74 bcdefghijk 9.36 abcdef 0.0351 abcdefghij
    B19 9.27 abcdefgh 7.54 abcde 0.0254 abcdefgh 10.42 bcdefghijkl 9.57 bcdef 0.0405 cdefghijk 10.26 abcdefg 9.72 abc 0.0400 abcde
    B20 8.53 abcdefghij 7.02 abcde 0.0215 abcdefgh 10.10 ijklmno 9.23 cdef 0.0371 fghijkl 9.04 kl 8.47 cdefg 0.0283 hijk
    B21 8.06 fghijk 7.06 abcde 0.0200 bcdefgh 10.58 bcdefghij 9.51 bcdef 0.0414 bcdefghij 9.05 kl 8.69 bcdefg 0.0292 fghijk
    B22 9.02 abcdefghij 7.91 abc 0.0262 abcdefg 10.01 jklmno 9.32 bcdef 0.0381 efghijkl 9.32 fghijkl 8.77 abcdefg 0.0302 efghijk
    B23 8.71 abcdefghij 6.44 bcde 0.0200 bcdefgh 10.23 fghijklm 9.33 bcdef 0.0398 cdefghijkl 9.37 fghijkl 8.63 cdefg 0.0336 bcdefghij
    B24 8.75 abcdefghij 6.97 abcde 0.0229 abcdefgh 10.09 ijklmno 9.49 bcdef 0.0385 cdefghijkl 9.15 jkl 9.01 abcdefg 0.0300 efghijk
    B25 7.98 ghijk 6.24 cde 0.0172 fgh 10.25 fghijklm 10.01 abcde 0.0418 bcdefghi 10.09 abcdefghij 9.57 abcdef 0.0385 abcdefgh
    B26 9.08 abcdefghij 7.77 abcd 0.0251 abcdefgh 9.72 mnop 9.05 def 0.0369 ghijkl 9.13 jkl 9.28 abcdef 0.0350 abcdefghij
    B27 8.41 bcdefghijk 7.23 abcde 0.0226 abcdefgh 10.32 defghijkl 9.81 abcdef 0.0410 cdefghijk 9.52 cdefghijkl 9.17 abcdef 0.0329 cdefghijk
    B28 8.77 abcdefghij 6.22 cde 0.0251 abcdefgh 10.07 jklmno 10.10 abcde 0.0407 cdefghijk 10.52 ab 10.10 ab 0.0453 a
    B29 7.19 k 6.12 cde 0.0161 gh 10.91 abc 9.87 abcde 0.0444 abcdef 9.95 bcdefghijk 9.50 abcdef 0.0374 abcdefghi
    B30 9.68 abc 6.47 bcde 0.0254 abcdefgh 10.65 bcdefghi 9.58 bcdef 0.0418 bcdefghi 9.73 bcdefghijk 9.28 abcdef 0.0346 bcdefghij
    B31 8.91 abcdefghij 6.80 abcde 0.0228 abcdefgh 10.40 bcdefghijkl 9.66 abcdef 0.0414 cdefghij 10.39 abcde 9.71 abc 0.0416 abc
    B32 8.48 bcdefghijk 7.62 abcde 0.0221 abcdefgh 10.38 bcdefghijkl 9.53 bcdef 0.0399 cdefghijkl 9.29 ghijkl 8.70 bcdefg 0.0303 efghijk
    B33 8.94 abcdefghij 7.66 abcde 0.0258 abcdefgh 10.29 efghijkl 9.19 cdef 0.0387 cdefghijkl 10.00 bcdefghijk 9.70 abcd 0.0390 abcdefg
    B34 9.89 a 7.88 abcd 0.0311 a 10.87 abcd 10.16 abcd 0.0458 abc 10.50 abc 9.78 abc 0.0414 abc
    B35 8.30 defghijk 6.93 abcde 0.0206 bcdefgh 10.83 abcde 10.77 a 0.0486 ab 9.70 bcdefghijk 8.75 bcdefg 0.0342 bcdefghij
    B36 8.08 fghijk 7.04 abcde 0.0189 bcdefgh 10.70 bcdefgh 10.09 abcde 0.0444 abcdef 10.00 bcdefghijk 9.44 abcdef 0.0368 abcdefghij
    B37 8.25 efghijk 7.49 abcde 0.0214 abcdefgh 10.58 bcdefghij 10.00 abcde 0.0435 abcdefgh 9.87 bcdefghijk 9.28 abcdef 0.0355 abcdefghij
    B38 8.31 cdefghijk 7.44 abcde 0.0239 abcdefgh 9.61 op 8.96 ef 0.0339 kl 9.27 ghijkl 8.87 abcdefg 0.0313 cdefghijk
    B39 8.56 abcdefghij 7.58 abcde 0.0226 abcdefgh 10.17 ghijklmn 9.82 abcdef 0.0404 cdefghijk 9.61 bcdefghijkl 8.84 abcdefg 0.0334 bcdefghij
    B40 7.81 ijk 6.57 abcde 0.0169 gh 11.30 a 10.31 abc 0.0499 a 9.96 bcdefghijk 9.37 abcdef 0.0382 abcdefghi
    B41 8.12 fghijk 6.91 abcde 0.0199 bcdefgh 10.66 bcdefghi 9.37 bcdef 0.0404 cdefghijk 10.17 abcdefghi 9.34 abcdef 0.0382 abcdefghi
    B42 8.79 abcdefghij 7.33 abcde 0.0229 abcdefgh 10.91 abc 10.11 abcde 0.0456 abcd 9.96 bcdefghijk 9.75 abc 0.0382 abcdefghi
    B43 8.73 abcdefghij 7.76 abcd 0.0250 abcdefgh 10.69 bcdefgh 9.50 bcdef 0.0427 bcdefghi 9.83 bcdefghijk 9.36 abcdef 0.0356 abcdefghij
    B44 7.74 jk 7.11 abcde 0.0185 cdefgh 10.69 bcdefgh 10.04 abcde 0.0442 abcdefg 10.21 abcdefgh 9.61 abcdef 0.0389 abcdefgh
    B45 9.45 abcdef 7.41 abcde 0.0285 abc 10.69 bcdefgh 10.27 abc 0.0452 abcde 9.50 defghijkl 9.51 abcdef 0.0344 bcdefghij
    B46 8.93 abcdefghij 7.85 abcd 0.0245 abcdefgh 10.50 bcdefghijk 9.86 abcde 0.0418 bcdefghi 9.48 efghijkl 8.20 efg 0.0300 efghijk
    B47 8.66 abcdefghij 6.29 cde 0.0196 bcdefgh 9.39 p 9.37 bcdef 0.0342 jkl 9.19 ijkl 8.19 fg 0.0308 defghijk
    B48 9.33 abcdefg 6.54 abcde 0.0222 abcdefgh 10.73 bcdefg 10.33 abc 0.0452 abcde 9.96 bcdefghijk 9.46 abcdef 0.0364 abcdefghij
    B49 7.84 ijk 5.90 e 0.0156 h 10.41 bcdefghijkl 9.04 def 0.0384 defghijkl 10.11 abcdefghij 9.39 abcdef 0.0380 abcdefghi
    B50 8.15 efghijk 6.42 bcde 0.0183 cdefgh 10.55 bcdefghij 10.23 abcd 0.0436 abcdefgh 10.06 bcdefghij 9.66 abcde 0.0389 abcdefgh
    B51 8.96 abcdefghij 7.94 abc 0.0248 abcdefgh 10.45 bcdefghijkl 9.61 abcdef 0.0413 cdefghij 10.48 abcd 10.21 a 0.0439 ab
    B52 8.18 efghijk 7.14 abcde 0.0195 bcdefgh 9.97 klmno 9.20 cdef 0.0354 ijkl 9.06 kl 8.52 cdefg 0.0284 ghijk
    B53 7.83 ijk 7.13 abcde 0.0184 cdefgh 10.75 bcdef 9.67 abcdef 0.0427 bcdefghi 9.86 bcdefghijk 9.13 abcdefg 0.0352 abcdefghij
    注:表中不同字母表示在P < 0.05水平上差异显著。Note: different letters mean significant difference at P < 0.05 level.
    下载: 导出CSV 
    | 显示表格

    在朗乡试验点,若以各性状均值加上0.2倍标准差为选择条件,则3个性状均高于选择标准的有:B5、B14、B15、B18、B19、B22、B26和B34家系,这8个家系为生长性状最优家系,其树高、胸径和单株材积均值分别为:9.40m、7.70cm和0.0274m3, 分别高于参试家系均值的8.54%、8.30%和21.49%,仅有2个生长性状高于选择标准的有:B1、B10、B33、B43和B45家系,为生长良好家系,其树高、胸径和单株材积均值分别为:9.12m、7.72cm和0.0267m3。根据多重比较结果,朗乡试验点初步选择这13个家系为优良家系,入选率为24.53%。依据上述选择标准,在帽儿山试验点生长最优家系为B34、B35、B36、B40、B42、B45和B48,这7个家系的树高、胸径和单株材积均值为:10.86m、10.29cm、0.0464m3,分别高于参试家系均值的4.51%、6.66%和13.76%,较好家系为B15、B16、B29和B44,其树高、胸径和单株材积均值为:10.75m、10.09cm和0.0446m3,因此,这11个家系入选为帽儿山试验点的优良家系,入选率为20.75%。同样选择标准,在吉林试验点选择B15、B19、B25、B28、B31、B34、B44、B50、B51、B3、B5、B16、B33、B41和B42等15个家系为优良家系,入选率为28.30%。

    进而对3个试验地点的选优结果进行比较发现:B34、B15家系在3个地点均入选为优良家系,说明这2个家系在各试验地不仅生长表现较为优异,而且生长稳定性也良好,是参试家系中的最优家系。另外,入选的优良家系中有些家系仅在2个地点表现良好,如在朗乡与吉林2试验点生长良好的是B5、B19和B33家系;在帽儿山与吉林2试验点均表现较好的是B16、B42和B44家系;在朗乡与帽儿山2试验点表现较好的是B45家系,说明这些家系虽然生长表现优良,但适应能力略低于B34、B15这2个最优家系。其余优良家系仅在其所入选地点内表现优良,说明这些家系由于基因型与环境交互作用的差异而导致的适应范围各有不同,所以仅在适宜其生长的地点表现良好。

    参试的53个白桦家系在各试验点平均保存率不尽相同(表 5)。3个地点中吉林试验点的各家系保存率最好,53个家系保存率均值为69.75%,有12个家系的保存率大于80.00%,其中B9家系保存率高达96.67%,B8家系保存率最低,仅为43.33%;帽儿山试验点53个家系保存率均值为60.40%,其中保存率最高的是B14家系,为94.29%, 保存率最低的是B3家系,仅为38.57%;朗乡试验点参试家系保存率均值为54.34%,B35和B25家系的保存率最高,为90.00%,B4、B50等2个家系次之,其他49个家系的保存率均在80.00%以下,B53、B51家系保存率最低,仅为23.33%。

    表  5  各试验地点参试家系保存率
    Table  5.  Preservation rate for the tested families at different sites
    参试家系
    Tested family
    保存率Preservation rate/% 3个地点保存率均值
    Average preservation rate at three sites/%
    朗乡
    Langxiang
    帽儿山
    Maoershan
    吉林
    Jilin
    B1 40.00 55.71 63.33 53.01
    B2 30.00 61.43 60.00 50.48
    B3 66.67 38.57 46.67 50.64
    B4 83.33 51.43 83.33 72.70
    B5 73.33 45.71 76.67 65.24
    B6 56.67 58.57 53.33 56.19
    B7 33.33 62.86 70.00 55.40
    B8 63.33 62.86 43.33 56.51
    B9 40.00 50.00 96.67 62.22
    B10 60.00 65.71 73.33 66.35
    B11 26.67 62.86 76.67 55.40
    B12 70.00 68.57 80.00 72.86
    B13 66.67 68.57 83.33 72.86
    B14 43.33 94.29 53.33 63.65
    B15 30.00 50.00 53.33 44.44
    B16 50.00 65.71 70.00 61.90
    B17 40.00 65.71 76.67 60.79
    B18 70.00 60.00 76.67 68.89
    B19 76.67 51.43 63.33 63.81
    B20 76.67 65.71 76.67 73.02
    B21 73.33 61.43 66.67 67.14
    B22 56.67 64.29 73.33 64.76
    B23 33.33 54.29 90.00 59.21
    B24 50.00 57.14 66.67 57.94
    B25 90.00 55.71 76.67 74.13
    B26 50.00 57.14 50.00 52.38
    B27 50.00 60.00 70.00 60.00
    B28 30.00 57.14 70.00 52.38
    B29 36.67 70.00 70.00 58.89
    B30 53.33 71.43 86.67 70.48
    B31 36.67 65.71 60.00 54.13
    B32 56.67 67.14 80.00 67.94
    B33 63.33 54.29 76.67 64.76
    B34 56.67 60.00 73.33 63.33
    B35 90.00 67.14 66.67 74.60
    B36 53.33 61.43 83.33 66.03
    B37 53.33 68.57 76.67 66.19
    B38 46.67 44.29 50.00 46.99
    B39 63.33 50.00 60.00 57.78
    B40 66.67 75.71 83.33 75.24
    B41 70.00 70.00 80.00 73.33
    B42 40.00 71.43 86.67 66.03
    B43 70.00 70.00 76.67 72.22
    B44 36.67 61.43 80.00 59.37
    B45 60.00 58.57 46.67 55.08
    B46 66.67 64.29 76.67 69.21
    B47 53.33 44.29 70.00 55.87
    B48 63.33 62.86 73.33 66.51
    B49 46.67 40.00 60.00 48.89
    B50 86.67 55.71 60.00 67.46
    B51 23.33 60.00 76.67 53.33
    B52 33.33 57.14 56.67 49.05
    B53 23.33 57.14 46.67 42.38
    下载: 导出CSV 
    | 显示表格

    上述针对各试验点各家系间的树高、胸径和单株材积等3个性状单独进行了方差分析、多重比较及各试验点的优良家系初步筛选。但优良家系的评定往往应考虑多个地点的综合表现,考虑到材积是公认的反映立地质量的林木生长主要性状,并且是能够综合体现树高性状与胸径性状的高低最直接的指标。因此,在本研究中选择BLUP模型利用各家系在3个试验点的单株材积数据进行育种值估算,进而进行家系的评价和选择(表 6)。

    表  6  参试家系材积性状育种值
    Table  6.  Breeding value for volume of birch families
    综合排名
    Comprehensive ranking
    家系
    Family
    育种值
    Breeding value
    标准误
    Standard error
    1 B34 0.009487 0.408866
    2 B15 0.008838 0.400508
    3 B28 0.007473 0.404450
    4 B16 0.006786 0.408455
    5 B51 0.005843 0.403728
    6 B40 0.005191 0.411808
    7 B42 0.005067 0.408921
    8 B45 0.004931 0.406538
    9 B48 0.003846 0.409883
    10 B35 0.003845 0.411074
    11 B19 0.002876 0.408067
    12 B31 0.002838 0.405394
    13 B5 0.002812 0.409427
    14 B43 0.002792 0.411366
    15 B14 0.002778 0.410816
    16 B44 0.002584 0.407243
    17 B36 0.002060 0.409832
    18 B29 0.001729 0.407011
    19 B33 0.001726 0.409499
    20 B11 0.001424 0.404868
    21 B37 0.001349 0.409699
    22 B17 0.001340 0.407742
    23 B30 0.001311 0.410246
    24 B18 0.001297 0.410728
    25 B10 0.001276 0.409895
    26 B50 0.001214 0.409561
    27 B41 0.000381 0.411618
    28 B3 0.000183 0.403408
    29 B26 0.000130 0.405231
    30 B13 -0.000096 0.410798
    31 B53 -0.000154 0.399256
    32 B1 -0.000505 0.405265
    33 B46 -0.001507 0.410566
    34 B25 -0.001666 0.411684
    35 B39 -0.001780 0.407691
    36 B12 -0.002024 0.411479
    37 B22 -0.002113 0.409472
    38 B23 -0.002169 0.405577
    39 B27 -0.002352 0.407904
    40 B32 -0.003134 0.410325
    41 B24 -0.003471 0.407761
    42 B49 -0.003577 0.402874
    43 B21 -0.004966 0.409794
    44 B20 -0.005170 0.411443
    45 B7 -0.005506 0.405812
    46 B38 -0.005755 0.403724
    47 B6 -0.005835 0.406911
    48 B9 -0.005966 0.407067
    49 B4 -0.005967 0.410607
    50 B2 -0.006776 0.403709
    51 B47 -0.007239 0.407103
    52 B52 -0.007793 0.403611
    53 B8 -0.007885 0.406856
    下载: 导出CSV 
    | 显示表格

    由育种值的结果可以看出,与前文多重比较选择的结果基本一致,综合排名在第1位的是B34家系,第2位的是B15家系,B28、B16、B51、B40、B42、B45、B48、B35、B19等家系次之。若以20.00%入选率为选择标准,则以上排名前11位的家系入选为优良家系,入选的优良家系材积均值分别较朗乡、帽儿山和吉林等3个地点的参试家系均值高8.29%、9.80%和13.60%,材积性状在3个地点的遗传增益分别为3.23%、7.16%和8.84%。

    研究基因型与环境交互作用效应对林木遗传改良具有重要意义[12-13]。对3个参试地点的白桦家系生长性状遗传变异分析显示,位于小兴安岭朗乡试验点参试的白桦家系生长量明显低于另外2个试验点,但各性状的变异系数却普遍偏高。这与该试验点所处的地理位置以及特殊的气候环境密切相关,朗乡试验点位于纬度较高的小兴安岭地区,无霜期短,年均温与≥10℃年积温均较低,而参试的大部分家系原产地均处于纬度较低的张广才岭与长白山地区,原产地与造林地环境差异较大,导致参试白桦家系间产生较大分化,有部分家系生长较好,而大多数家系则长势较弱。从而导致了在朗乡试验点定植的家系各性状生长量较低,并且变异系数较高。但这也为抗逆性家系的选择提供了可能,在较恶劣环境条件下依然能保持稳定的生产力以及较高保存率的家系必然是首选,如B5、B19等家系在朗乡试验点生长性状均排在前列并且保存率均高于70.00%。另外2个试验点环境条件虽较朗乡试验点优越但家系生长依然各有差异,因此,分别依据参试家系在各试验点的生长表现,利用多重比较的结果在各试验点内进行了优良家系的初选。

    早期选择可靠性及选择年龄的确定等问题一直以来都备受国内外同行关注。但是,越来越多的试验分析表明林木早期选择具有较高的可信度。如油松(Pinus tabulaeformis)、马尾松(P. massoniana)等树种的育种实践证明对生长期达1/4~1/2轮伐期的林分即可进行早期选择,并且早期选择的效率更高[14]。白桦人工林的主伐年龄为31~41年生[15],本项研究所选取的对象为12年生白桦半同胞家系子代测定林,其林龄已达1/3轮伐期,因此,对其进行早期选择应该具有较高准确性。

    对于多点造林试验,由于待测群体数量庞大,加之各造林点间的地理气候环境不尽相同,试验林的保存率也各不相同,导致观测数据复杂多样,给遗传评价和选择带来相当难度[16-17]。而育种值的估算恰恰能克服这一问题,它能体现表型值中遗传效应的加性效应部分,对群体规模大、结构复杂的不平衡数据进行统计分析时,能有效地剔除各种非遗传因素的影响,因而具有较高的选择准确性,已被广泛应用于马尾松、火炬松(Pinus taeda)、尾叶桉(Eucalyptus urophylla)等多个树种的选择中,是一种较理想的综合评价方法[18-20]。本研究采用BLUP最佳线性无偏预测模型参试家系进行多地点材积育种值估算,依据育种值高低对参试家系进行综合评价,以20.00%入选率为标准选择育种值排名前11位的家系为优良家系。同时,基于各地点白桦半同胞子代测定林生长表现分析结果,建议种子园改建时B34和B15这2个家系的采种母树为首选保留母树,B28、B16、B51、B40、B42、B45、B48、B35、B19这9个家系的采种母树为备选母树。

  • 图  1   植被遥感光谱信息提取位点

    Figure  1.   Sampling points for extracting spectral information from satellite images

    图  2   长白山两种森林植被冠层光谱8 d合成的反射率季节进程(2013—2019年Landsat 8数据)

    Figure  2.   Eight-day-composite seasonal pattern of canopy spectral reflectance of two forest vegetation types in Changbai Mountain (Landsat 8 data in 2013−2019)

    图  3   高分辨率影像提取的林冠层光谱反射率季节变化(2019年)

    Figure  3.   Seasonal pattern of forest canopy spectral reflectance from high-resolution images (2019)

    图  4   2019年长白山两种森林植被的绿度(a、b)与红边位置季节变化(c)

    Figure  4.   Seasonal changes of greenness (a, b) and red-edge position of two vegetation types in Changbai Mountain (c)

    图  5   长白山两种森林植被归一化植被指数逻辑斯蒂曲线

    Figure  5.   Logistic curves of NDVI of two vegetation types in Changbai Mountain

    图  6   长白山两种森林植被EVI季节变化(1985—2019年)

    Figure  6.   Seasonal pattern of EVI of two vegetation types in Changbai Mountain (1985−2019)

    图  7   长白山两种森林植被生长季EVI(a)和气温(b)的关系(1985—2018年)

    Figure  7.   Relationship between EVI (a) and temperature (b) of two forest vegetation types during growing season in Changbai Mountain (1985−2018)

    图  8   长白山两种森林植被EVI多年月均值与标准差(1985—2018年)

    Figure  8.   Multi-year monthly mean and standard deviation of EVI of two forest vegetation types during growing season in Changbai Mountain (1985−2018)

    表  1   长白山两种森林植被月均EVI年际变化与同期气温的相关系数(1985—2018年)

    Table  1   Correlation coefficients between month-specific average EVI and temperature of two vegetation types in Changbai Mountain (1985−2018)

    月份 Month原始林 Primary forest次生林 Secondary forest
    平均气温
    Mean temperature
    最高气温
    Maximum temperature
    最低气温
    Minimum temperature
    平均气温
    Mean temperature
    最高气温
    Maximum temperature
    最低气温
    Minimum temperature
    1月 January 0.007 1 0.163 9 −0.079 1 −0.118 5 −0.022 1 −0.237 3
    2月 February −0.079 5 −0.009 5 −0.094 9 −0.126 5 0.161 5 −0.006 2
    3月 March −0.099 8 0.097 7 0.070 8 −0.456 4** −0.445 1** −0.158 0
    4月 April −0.229 8 −0.158 2 −0.260 6 −0.367 1* −0.266 7 −0.283 1
    5月 May 0.524 4** 0.476 4** 0.171 6 0.548 2** 0.399 2* 0.114 4
    6月 June 0.375 3* 0.378 6* 0.102 0 0.230 6 0.378 5* 0.001 6
    7月 July 0.218 2 0.314 5 0.057 2 0.091 6 0.200 6 0.041 0
    8月 August −0.035 4 0.259 0 −0.383 9* −0.030 0 0.176 5 −0.368 3*
    9月 September 0.053 0 0.059 5 0.007 0 0.017 2 −0.023 6 −0.158 9
    10月 October 0.266 9 0.377 2* −0.024 2 0.232 7 0.241 1 0.014 3
    11月 November −0.116 8 −0.176 8 −0.088 4 0.1375 0.107 8 0.108 7
    12月 December 0.087 4 0.005 2 −0.209 7 −0.073 0 −0.390 9* −0.029 8
    注:*表示在P < 0.05水平上显著相关,**表示在P < 0.01水平上显著相关。Notes: * means a significant correlation at the P < 0.05 level, ** means a significant correlation at the P < 0.01 level.
    下载: 导出CSV
  • [1] 汲常萍. 长白山阔叶红松林和杨桦林不同土壤组分碳氮相关指标及差异研究[D]. 哈尔滨: 东北林业大学, 2014.

    Ji C P. Comparisons of soil carbon and nitrogen-related parameters in 5 different soil fractions between broad-leaved Korean Pine mixed forests and secondary poplar-birch forests in Changbai Mts[D]. Harbin: Northeast Forestry University, 2014.

    [2] 徐振邦, 代力民, 陈吉泉, 等. 长白山红松阔叶混交林森林天然更新条件的研究[J]. 生态学报, 2001, 21(9):1413−1420. doi: 10.3321/j.issn:1000-0933.2001.09.003

    Xu Z B, Dai L M, Chen J Q, et al. Natural regeneration condition in Pinus koraiensis broad-leaved mixed forest[J]. Acta Ecologica Sinica, 2001, 21(9): 1413−1420. doi: 10.3321/j.issn:1000-0933.2001.09.003

    [3] 王树力, 武敬辉, 史永纯. 红松种群天然更新及幼年生长与林分结构关系的研究[J]. 吉林林学院学报, 1998, 14(8):6−10.

    Wang S L, Wu J H, Shi Y C. On the relationship between natural regeneration and early growth of Korean pine and stand structure[J]. Journal of Jilin Forestry University, 1998, 14(8): 6−10.

    [4] 王连喜, 陈怀亮, 李琪, 等. 植物物候与气候研究进展[J]. 生态学报, 2010, 20(2):447−454.

    Wang L X, Chen H L, Li Q, et al. Research advances in plant phenology and climate[J]. Acta Ecologica Sinica, 2010, 20(2): 447−454.

    [5]

    Zhou G, Liu Q J, Xu Z Z, et al. How can the shade intolerant Korean pine survive under dense deciduous canopy?[J]. Forest Ecology and Management, 2020, 457: 117735. doi: 10.1016/j.foreco.2019.117735

    [6] 许丹, 伍维模, 王家强, 等. 塔里木河流域上游天然胡杨叶片叶绿素与可见光−近红外光谱反射率的相关性研究[J]. 塔里木大学学报, 2012, 24(4):53−59. doi: 10.3969/j.issn.1009-0568.2012.04.0011

    Xu D, Wu W M, Wang J Q, et al. Study on the correlation between leaf chlorophyll content of Populus euphratica and the hyperspectral remote sensing data in upstream of Tarim River[J]. Journal of Tarim University, 2012, 24(4): 53−59. doi: 10.3969/j.issn.1009-0568.2012.04.0011

    [7] 赵恒谦, 张文博, 朱孝鑫, 等. 煤炭矿区植被冠层光谱土地复垦敏感性分析[J]. 光谱学与光谱分析, 2019, 39(6):1858−1863.

    Zhao H Q, Zhang W B, Zhu X X, et al. Analysis on susceptibility of vegetation canopy spectra in coal mining area to land reclamation[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1858−1863.

    [8] 罗娜娜, 赵文吉, 晏星. 在滞尘影响下的植被叶片光谱变化特征研究[J]. 光谱学与光谱分析, 2013, 33(10):2715−2720. doi: 10.3964/j.issn.1000-0593(2013)10-2715-06

    Luo N N, Zhao W J, Yan X. Impact of dust-fall on spectral features of plant leaves[J]. Spectroscopy and Spectral Analysis, 2013, 33(10): 2715−2720. doi: 10.3964/j.issn.1000-0593(2013)10-2715-06

    [9] 张雪红, 田庆久, 沈润平. 冬小麦冠层光谱的方向性特征分析[J]. 光谱学与光谱分析, 2010, 30(6):1600−1605. doi: 10.3964/j.issn.1000-0593(2010)06-1600-06

    Zhang X H, Tian Q J, Shen R P. Analysis of directional characteristics of winter wheat canopy spectra[J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1600−1605. doi: 10.3964/j.issn.1000-0593(2010)06-1600-06

    [10] 于泉洲, 周蕾, 王绍强, 等. 基于EO-1 Hyperion的中国典型森林冠层高光谱特征分析[J]. 云南大学学报(自然科学版), 2018, 40(5):947−954.

    Yu Q Z, Zhou L, Wang S Q, et al. An analysis on the spectrum characteristics of Chinese typical forest canopy in growing season based on EO-1 Hyperion images[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(5): 947−954.

    [11] 马东辉, 柯长青. 南京冬季典型植被光谱特征分析[J]. 遥感技术与应用, 2016, 31(4):702−708.

    Ma D H, Ke C Q. Research on spectral characteristics of winter typical vegetation in Nanjing[J]. Remote Sensing Technology and Application, 2016, 31(4): 702−708.

    [12] 项巧巧, 申广荣, 吴裕, 等. 上海典型植被夏季与冬季的光谱特征分析[J]. 上海交通大学学报(农业科学版), 2018, 36(5):14−21.

    Xiang Q Q, Shen G R, Wu Y, et al. Spectral characteristics of typical vegetation in Shanghai in both summer and winter[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2018, 36(5): 14−21.

    [13] 程乾, 黄敬峰, 王人潮, 等. MODIS植被指数与水稻叶面积指数及叶片叶绿素含量相关性研究[J]. 应用生态学报, 2004, 15(8):1363−1367. doi: 10.3321/j.issn:1001-9332.2004.08.013

    Cheng Q, Huang J F, Wang R C, et al. Correlation analysis of simulated MODIS vegetation indices and rice leaf area index and leaf chlorophyll content[J]. Chinese Journal of Applied Ecology, 2004, 15(8): 1363−1367. doi: 10.3321/j.issn:1001-9332.2004.08.013

    [14]

    Frampton W J, Dash J, Watmough G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. Journal of Photogrammetry and Remote Sensing, 2013, 82: 83−92.

    [15] 李明泽, 王雪, 高元科, 等. 大兴安岭植被指数年际变化及影响因子分析[J]. 北京林业大学学报, 2015, 37(5):1−10.

    Li M Z, Wang X, Gao Y K, et al. Inter-annual variation in vegetation index and analysis of factors affecting it in Daxing’anling Mountains[J]. Journal of Beijing Forestry University, 2015, 37(5): 1−10.

    [16] 沈文娟, 李明诗. 基于长时间序列Landsat影像的南方人工林干扰与恢复制图分析[J]. 生态学报, 2017, 37(5):1438−1449.

    Shen W J, Li M S. Mapping disturbance and recovery of plantation forests in southern China using yearly Landsat time series observations[J]. Acta Ecologica Sinica, 2017, 37(5): 1438−1449.

    [17]

    Aulia M R, Liyantono, Setiawan Y, et al. Drought detection of west java’s paddy field using MODIS EVI satellite images (case study: Rancaekek and Rancaekek Wetan)[J]. Procedia Environmental Sciences, 2016, 33: 646−653. doi: 10.1016/j.proenv.2016.03.119

    [18] 李明, 吴正方, 杜海波, 等. 基于遥感方法的长白山地区植被物候期变化趋势研究[J]. 地理科学, 2011, 31(10):1242−1248.

    Li M, Wu Z F, Du H B, et al. Growing-season trends determined from SPOT NDVI in Changbai Mountains, China, 1999−2008[J]. Scientia Geographica Sinica, 2011, 31(10): 1242−1248.

    [19] 于健. 长白山阔叶红松林主要树种径向生长对气候变化响应及温度重建[D]. 北京: 北京林业大学, 2019.

    Yu J. Rosponse of radial growth of main tree species of broad-leaved Korean pine forest to climate change in Changbai Mountain and temperature reconstruction[D]. Beijing: Beijing Forestry University, 2019.

    [20] 郝占庆, 代力民, 贺红士. 气候变暖对长白山主要树种的潜在影响[J]. 应用生态学报, 2001, 12(5):653−658. doi: 10.3321/j.issn:1001-9332.2001.05.003

    Hao Z Q, Dai L M, He H S. Potential response of major tree species to climate warming in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2001, 12(5): 653−658. doi: 10.3321/j.issn:1001-9332.2001.05.003

    [21] 周玉科, 刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3):486−498.

    Zhou Y K, Liu J W. Spatio-temporal analysis of vegetation phenology with multiple methods over the Tibetan Plateau based on modis NDVI data[J]. Remote Sensing Technology and Application, 2018, 33(3): 486−498.

    [22] 吴玉莲, 王襄平, 李巧燕, 等. 长白山阔叶红松林净初级生产力对气候变化的响应: 基于BIOME-BGC模型的分析[J]. 北京大学学报(自然科学版), 2014, 50(3):577−586.

    Wu Y L, Wang X P, Li Q Y, et al. Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: an analysis based on BIOME-BGC modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 577−586.

    [23] 徐琼瑶. 长白山植被景观变化遥感监测[D]. 北京: 北京林业大学, 2012.

    Xu Q Y. Monitoring vegetation water content with MODIS data in Changbai Mountain Area[D]. Beijing: Beijing Forestry University, 2012.

    [24] 刘敏. 基于MODIS数据的长白山地区植被水分动态变化研究[D]. 吉林: 东北师范大学, 2010.

    Liu M. Monitoring vegetation water content with MODIS data in Changbai Mountain area[D]. Jilin: Northeast Normal University, 2010.

    [25] 于泉洲, 王绍强, 黄昆, 等. 基于Hyperion高光谱数据的温带森林不同冠层结构的光谱特征分析[J]. 光谱学与光谱分析, 2015(7):1980−1985. doi: 10.3964/j.issn.1000-0593(2015)07-1980-06

    Yu Q Z, Wang S Q, Huang K, et al. An analysis of the spectrums between different canopy structures based on Hyperion hyperspectral data in a temperate forest of northeast China[J]. Spectroscopy and Spectral Analysis, 2015(7): 1980−1985. doi: 10.3964/j.issn.1000-0593(2015)07-1980-06

    [26] 姜超. 长白山五种槭属植物光合及光谱特性研究[D]. 北京: 北京林业大学, 2013.

    Jiang C. The photosynthetic and spectral reflectance characteristics of five Acer species in Changbai Mountain[D]. Beijing: Beijing Forestry University, 2013.

    [27]

    Gorelick N, Hancher M, Dixon M, et al. Google earth engine: planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18−27. doi: 10.1016/j.rse.2017.06.031

    [28] 杜文先. 长白山杨桦林物候多样性及叶面积指数季节动态[D]. 北京: 北京林业大学, 2018.

    Du W X. Phenological diversity and seasonal leaf area index pattern of Betula-Populus forest in Changbai Mountain[D]. Beijing: Beijing Forestry University, 2018.

    [29] 于小舟, 袁凤辉, 王安志, 等. 积雪对长白山阔叶红松林土壤温度的影响[J]. 应用生态学报, 2010, 21(12):3015−3020.

    Yu X Z, Yuan F H, Wang A Z, et al. Effects of snow cover on soil temperature in broad-leaved Korean pine forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3015−3020.

    [30] 章钊华, 赵书河, 丛佃敏, 等. 基于遥感的泰山地区植被绿度趋势变化研究[J]. 地理空间信息, 2018, 16(7):65−68. doi: 10.3969/j.issn.1672-4623.2018.07.020

    Zhang Z H, Zhao S H, Cong D M, et al. Vegetation greenness trend changes in Tai Mountain area based on remote sensing[J]. Geospatial Information, 2018, 16(7): 65−68. doi: 10.3969/j.issn.1672-4623.2018.07.020

    [31] 梁守真, 马万栋, 王猛, 等. 冠层绿色FPAR与植被指数关系及其对气溶胶的敏感性分析[J]. 测绘与空间地理信息, 2018, 41(12):11−14. doi: 10.3969/j.issn.1672-5867.2018.12.004

    Liang S Z, Ma W D, Wang M, et al. Analysis on the relationship between green FPAR and vegetation indices and their sensitivity to aerosol optical depth[J]. Geomatics & Spatial Information Technology, 2018, 41(12): 11−14. doi: 10.3969/j.issn.1672-5867.2018.12.004

    [32] 王宗明, 国志兴, 宋开山, 等. 中国东北地区植被NDVI对气候变化的响应[J]. 生态学杂志, 2009, 28(6):1041−1048.

    Wang Z M, Guo Z X, Song K S, et al. Responses of vegetation NDVI in northeast China to climate change[J]. Chinese Journal of Ecology, 2009, 28(6): 1041−1048.

    [33] 路中, 雷国平, 马泉来, 等. 基于重构的Landsat 8时间序列数据和温度植被指数的区域旱情监测[J]. 水土保持研究, 2018, 25(5):371−377.

    Lu Z, Lei G P, Ma Q L, et al. Regional drought monitoring based on reconstructed Landsat 8 data and temperature vegetation index[J]. Research of Soil and Water Conservation, 2018, 25(5): 371−377.

    [34] 张墨谦. 遥感时间序列数据的特征挖掘: 在生态学中的应用[D]. 上海: 复旦大学, 2014.

    Zhang M Q. Characterizing the remotely sensed time series data for ecological applications[D]. Shanghai: Fudan University, 2014.

    [35] 李百超. 基于高光谱成像技术的苹果叶片氮素含量估测研究[D]. 泰安: 山东农业大学, 2018.

    Li B C. Estimation of nitrogen content in apple leaves based on hyperspectral imaging technology[D]. Taian: Shandong Agricultural University, 2018.

    [36] 李淑敏, 李红, 孙丹峰, 等. PROSAIL冠层光谱模型遥感反演区域叶面积指数[J]. 光谱学与光谱分析, 2009, 29(10):2725−2729. doi: 10.3964/j.issn.1000-0593(2009)10-2725-05

    Li S M, Li H, Sun D F, et al. Estimation of regional leaf area index by remote sensing inversion of PROSAIL canopy spectral model[J]. Spectroscopy and Spectral Analysis, 2009, 29(10): 2725−2729. doi: 10.3964/j.issn.1000-0593(2009)10-2725-05

    [37] 张朋涛. 青海湖流域植被叶绿素含量遥感定量反演研究[D]. 西宁: 青海师范大学, 2015.

    Zhang P T. Chlorophyll content of vegetation in Qinghai Lake Basin quantitative remote sensing inversion[D]. Xining: Qinghai Normal University, 2015.

    [38] 徐光彩, 庞勇, 李增元, 等. 小兴安岭主要树种冠层光谱季相变化研究[J]. 光谱学与光谱分析, 2013, 33(12):3303−3307. doi: 10.3964/j.issn.1000-0593(2013)12-3303-05

    Xu G C, Pang Y, Li Z Y, et al. The changes of forest canopy spectral reflectance with seasons in Xiaoxing’anling[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3303−3307. doi: 10.3964/j.issn.1000-0593(2013)12-3303-05

    [39] 周玉科. 基于遥感的中国东北植被物候不对称特征分析[J]. 遥感技术与应用, 2019, 34(2):345−354.

    Zhou Y K. Depicting the asymmetries of vegetation phenology over northeast China using remote sensing NDVI dataset[J]. Remote Sensing Technology and Application, 2019, 34(2): 345−354.

    [40] 赵冰茹, 马龙. 基于MODIS EVI的内蒙古草地多源信息综合分类研究[J]. 浙江大学学报(农业与生命科学版), 2007, 33(3):342−347.

    Zhao B R, Ma L. Multi-source data complex classification of grassland in Inner Mongolia based on MODIS EVI[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2007, 33(3): 342−347.

    [41] 方灿莹, 王琳, 徐涵秋. 不同植被红边指数在城市草地健康判别中的对比研究[J]. 地球信息科学学报, 2017, 19(10):1382−1392.

    Fang C Y, Wang L, Xu H Q. A comparative study of different red edge indices for remote sensing detection of urban grassland health status[J]. Journal of Geo-Information Science, 2017, 19(10): 1382−1392.

    [42] 赵冰茹, 贾翔, 金慧, 等. 1958—2015年长白山气候变化特征分析[J]. 北华大学学报(自然科学版), 2017, 18(6):727−731.

    Zhao B R, Jia X, Jin H, et al. Characteristics of climate change in Changbai Mountain from 1958 to 2015[J]. Journal of Beihua University (Natural Science), 2017, 18(6): 727−731.

    [43] 王小霞, 刘志华, 焦珂伟. 2000—2017年东北森林NDVI时空动态及其驱动因子[J]. 生态学杂志, 2020, 39(9):2878−2886.

    Wang X X, Liu Z H, Jiao K W. Spatiotemporal dynamics of normalized difference vegetation index (NDVI) and its drivers in forested region of Northeast China during 2000−2017[J]. Chinese Journal of Ecology, 2020, 39(9): 2878−2886.

    [44] 史国强, 牛丽君, 郭艳双,等. 长白山北坡春季物候特征及其对气候变化的响应[J]. 东北师大学报(自然科学版), 2019, 51(4):124−130.

    Shi G Q, Niu L J, Guo Y S, et al. Phenological characteristics of spring on the north slope of Changbai Mountain and its response to climate change[J]. Journal of Northeast Normal University (Natural Science Edition), 2019, 51(4): 124−130.

  • 期刊类型引用(3)

    1. 管奥,毋玉婷,陈宇,孙扬,祁鹏志,郭宝英. 曼氏无针乌贼转录组微卫星特征分析. 渔业科学进展. 2018(03): 144-151 . 百度学术
    2. 杜改改,孙鹏,索玉静,韩卫娟,刁松锋,傅建敏,李芳东. 基于柿雌雄花芽转录组测序的SSR和SNP多态性分析. 中国农业大学学报. 2017(10): 45-55 . 百度学术
    3. 梅利那,范付华,崔博文,文晓鹏. 基于马尾松转录组的SSR分子标记开发及种质鉴定. 农业生物技术学报. 2017(06): 991-1002 . 百度学术

    其他类型引用(5)

图(8)  /  表(1)
计量
  • 文章访问数:  1333
  • HTML全文浏览量:  674
  • PDF下载量:  123
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-11-28
  • 修回日期:  2021-01-19
  • 网络出版日期:  2021-04-19
  • 发布日期:  2021-07-24

目录

/

返回文章
返回