• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

白桦木质部原生质体初生细胞壁再生过程转录组分析

郑杰, 于颖, 贺卓熙, 路明远, 孙宇, 尹天龙, 王超

郑杰, 于颖, 贺卓熙, 路明远, 孙宇, 尹天龙, 王超. 白桦木质部原生质体初生细胞壁再生过程转录组分析[J]. 北京林业大学学报, 2022, 44(8): 12-22. DOI: 10.12171/j.1000-1522.20200376
引用本文: 郑杰, 于颖, 贺卓熙, 路明远, 孙宇, 尹天龙, 王超. 白桦木质部原生质体初生细胞壁再生过程转录组分析[J]. 北京林业大学学报, 2022, 44(8): 12-22. DOI: 10.12171/j.1000-1522.20200376
Zheng Jie, Yu Ying, He Zhuoxi, Lu Mingyuan, Sun Yu, Yin Tianlong, Wang Chao. Transcriptome analysis of regeneration process of primary cell wall in xylem protoplast of Betula platyphylla[J]. Journal of Beijing Forestry University, 2022, 44(8): 12-22. DOI: 10.12171/j.1000-1522.20200376
Citation: Zheng Jie, Yu Ying, He Zhuoxi, Lu Mingyuan, Sun Yu, Yin Tianlong, Wang Chao. Transcriptome analysis of regeneration process of primary cell wall in xylem protoplast of Betula platyphylla[J]. Journal of Beijing Forestry University, 2022, 44(8): 12-22. DOI: 10.12171/j.1000-1522.20200376

白桦木质部原生质体初生细胞壁再生过程转录组分析

基金项目: 东北林业大学大学生创新项目(201910225011)
详细信息
    作者简介:

    郑杰。主要研究方向:林木重要性状形成的分子机制。Email:jiezheng@nefu.edu.cn 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    王超,教授。主要研究方向:林木重要性状形成的分子机制。Email:wangchao@nefu.edu.cn 地址:同上

  • 中图分类号: S718.43

Transcriptome analysis of regeneration process of primary cell wall in xylem protoplast of Betula platyphylla

  • 摘要:
      目的  木质部细胞壁的组成及特性是决定材性的重要因素,研究木质部细胞壁形成的分子调控机制对于木材改良具有重要意义。本研究探究了白桦木质部原生质体初生壁再生过程的分子调控机制,并鉴定出重要调控基因,旨在为林木材性性状研究提供数据和材料。
      方法  分别以培养0 h和2 h的白桦木质部原生质体为材料,通过荧光增白剂染色观察初生壁再生过程。利用转录组分析技术研究初生壁再生前后的差异表达基因及其参与的调控途径,将检测到的差异表达基因在GO、KEGG、PlantTFDB数据库中进行比对分析。
      结果  荧光显微镜观察结果显示:原生质体分离后不具有细胞壁,培养2 h再生初生细胞壁。以|log2(FC)| ≥ 1(FC为差异倍数)且q < 0.05为标准筛选差异基因,结果显示:相较于刚分离的原生质体,培养2 h的原生质体中检测到4 396个上调表达的基因,4 056个下调表达基因,总计8 452个差异表达基因。其中GO数据库共注释到10个显著上调条目,KEGG数据库注释到10个显著差异代谢通路,PlantTFDB数据库共注释到16个家族的360个差异表达转录因子。GO注释结果表明,DNA复制、细胞周期相关基因上调表达。KEGG注释结果表明,谷胱甘肽、α-亚麻酸等与抗逆代谢相关的基因下调表达,果胶脂酶相关基因上调表达。PlantTFDB注释结果表明,bHLH、NAC、MYB、bZIP等与细胞壁合成密切相关的转录因子均差异表达。
      结论  培养2 h的木质部原生质体处于细胞壁再生及分裂准备状态,DNA复制、细胞周期、多糖合成代谢等相关基因在白桦木质部原生质体培养及初生细胞壁形成过程中起调控作用。
    Abstract:
      Objective  The properties of wood are determined by the composition and characteristics of xylem cell wall. It is important for wood improvement to study the molecular regulation mechanism of xylem cell wall formation. In this study, the molecular regulatory mechanisms in the process of regeneration of primary wall in the protoplast of birch (Betula platyphylla) xylem were analyzed and the important regulatory genes were identified, aiming to provide data and materials for the study of wood properties.
      Method  The protoplasts of birch xylem cultured for 0 h and 2 h were used as materials, respectively, and the regeneration process of primary cell wall was observed by staining with calcofluor white. The differentially expressed genes (DEGs) and differential metabolic pathways participating before and after the regeneration of the primary wall were compared by transcriptomic analysis. The detected DEGs were aligned with GO, KEGG and PlantTFDB.
      Result  Observation by fluorescence microscopy showed that protoplasts had no cell walls after enzymatic digestion and the primary cell walls had been regenerated after 2 h culture. The DEGs were screened using |log2(FC)| ≥ 1(fold change, FC) and q < 0.05 as the parameters. The results showed that compared with the protoplasts without cell wall, 4396 up-regulated genes and 4056 down-regulated genes were detected in the protoplasts cultured for 2 h, with a total number of 8452 DEGs. In the GO database, there were 10 significantly up-regulated terms. KEGG analysis noted 10 significantly different metabolic pathways. Total of 360 differentially expressed transcription factors from 16 families was annotated in PlantTFDB database. The GO database annotation results showed that DNA replication and cell cycle related genes were up-regulated in the cell wall regeneration lines compared with that in control. The results of KEGG database annotation showed that genes involved in glutathione, α-linolenic acid and other stress-related metabolism genes were down-regulated, and pectinester related genes were up-regulated. PlantTFDB annotation results showed that bHLH, NAC, MYB, bZIP and other transcription factors closely related to cell wall biosynthesis were differentially expressed.
      Conclusion  Above results show that xylem protoplasts are in a state of cell wall regeneration and division preparation at 2 h culture. DNA replication, cell cycle, polysaccharide biosynthesis and other related genes play a regulatory role in xylem protoplast culture and primary cell wall formation of B. platyphylla.
  • 图  1   白桦原生质体细胞壁再生荧光显微镜观察结果

    a. 培养0 h的原生质体;b. 培养0.5 h的原生质体;c. 培养1 h的原生质体;d. 培养2 h的原生质体。a, protoplasts cultured for 0 h; b, protoplasts cultured for 0.5 h; c, protoplasts cultured for 1 h; d, protoplasts cultured for 2 h.

    Figure  1.   Fluorescence microscope observation of cell wall regeneration in protoplasts of birch

    图  2   白桦木质部原生质体RNA提取结果

    C1 ~ C3. 培养0 h时的原生质体;T1 ~ T3. 培养2 h时的原生质体。C1 − C3, protoplast cultured for 0 h; T1 − T3, protoplast cultured for 2 h.

    Figure  2.   RNA extraction results from protoplasts of birch xylem

    图  3   对照组和实验组的聚类分析结果

    Figure  3.   Cluster analysis results of control group and experimental group

    图  4   培养2 h相对0 h原生质体内差异表达基因数量柱状图

    Figure  4.   Histogram of the number of DEGs in 2 h versus 0 h protoplasm

    图  5   培养2 h相对0 h原生质体内差异表达基因GO注释结果柱状图

    Figure  5.   GO annotation of differentially expressed genes in protoplasts after 2 h culture compared with just isolated protoplasts

    图  6   GO注释结果富集热图

    Figure  6.   GO annotation results enrich heat map

    图  7   差异转录因子家族分布柱状图

    Figure  7.   Histogram of differential transcription factor family distribution

    图  8   糖酵解(a)、磷酸戊糖(b)、戊糖及葡萄糖互变异构体(c)、纤维素合成(d)和苯丙烷代谢(e)途径差异示意图

    F16P. 果糖-1,6-二磷酸1.6-fructose diphosphate;F6P. 果糖-6-磷酸fructose 6-phosphate;G6P. 葡萄糖-6-磷酸glucose 6-phosphate;G1P. 磷酸葡萄糖 glucose 1-phosphate;红色文本代表基因的上调;绿色文本代表基因的下调;实线单箭头代表不可逆反应;实线双箭头代表可逆反应;虚线单箭头代表多步反应。Red text refers to gene up-regulation, the green text refers to gene down-regulation, the solid single arrow represents an irreversible reaction, the solid double arrow represents the reversible reaction, the dotted single arrow represents the multistep reaction.

    Figure  8.   Schematic diagram of differences in glycolysis (a), pentose phosphate (b), pentose and glucuronate interconversions (c), cellulose synthesis (d) and phenylpropanoid metabolism pathway (e)

    表  1   Clean reads与参考基因组比对结果

    Table  1   Clean reads and the sequence alignment results with reference genome

    组别
    Group
    过滤后序列总数
    Total clean reads
    比对成功率
    Mapping rate/%
    基因总数
    Total gene number
    Q30/%
    C144 905 83692.0419 83593.36
    C241 241 93092.2619 76493.44
    C345 786 95092.2819 88593.22
    T147 178 64691.3720 44293.53
    T244 340 70291.1320 31093.22
    T341 809 66091.0220 28193.32
    注:Q30为过滤后碱基质量值,表示碱基错误率小于0.001的测序碱基占测序总数的比例。Notes: Q30 is the base quality value after filtering, indicating the proportion of sequenced bases with a base error rate less than 0.001 in the total number of sequenced bases.
    下载: 导出CSV

    表  2   KEGG通路注释结果及富集分析统计表

    Table  2   Results of KEGG notions and the significantly enriched KEGG pathway statistics

    通路名称
    Pathway name
    Map编号
    Map No.
    p
    p value
    q
    q value
    上调数
    Number of up-regulation
    下调数
    Number of down-regulation
    谷胱甘肽代谢 Glutathione metabolism
    map00480 0.000 002 450 0.000 238 8 30
    α-亚麻酸代谢
    Alpha-Linolenic acid metabolism
    map00592 0.000 029 600 0.001 353 6 17
    DNA复制 DNA replication map03030 0.000 332 000 0.011 156 18 1
    光合作用天线蛋白
    Photosynthesis-antenna proteins
    map00196 0.001 147 000 0.026 197 7 0
    黄酮代谢 Flavonoid biosynthesis map00941 0.001 623 000 0.027 359 9 5
    戊糖及葡萄糖糖醛互变异构体
    Pentose and glucuronate interconversions
    map00040 0.001 997 000 0.027 359 14 8
    光合作用 Photosynthesis map00195 0.001 945 000 0.027 359 13 0
    卟啉和叶绿素代谢
    Porphyrin and chlorophyll metabolism
    map00860 0.001 666 000 0.027 359 14 3
    牛磺酸及亚牛磺酸代谢
    Taurine and hypotaurine metabolism
    map00430 0.002 319 000 0.028 882 2 5
    黄酮及黄酮合成
    Flavone and flavanol biosynthesis
    map00944 0.004 234 000 0.04 8340 6 1
    下载: 导出CSV

    表  3   原生质体细胞壁再生过程中相关差异基因统计

    Table  3   DEGs in the process of cell wall regeneration

    细胞壁发育相关代谢过程
    Metabolic processes associated with
    cell wall development
    差异表达基因编码的酶
    Enzyme cluster of DEGs encoding
    差异基因总数(上调数 + 下调数)
    Total DEGs number (up-regulation
    number + down-regulation number)
    葡萄糖及葡萄糖酰代谢
    Glucose and glucosyl metabolic
    UDP葡萄糖醛酸转移酶 UDP-glucosyl transferase (UDPGT) 37(13 + 24)
    UDP葡萄糖转移酶 UDP-glucose transferase (UDPG) 3(3 + 0)
    果糖二磷酸酶 Fructose diphosphatase (FBP) 1(1 + 0)
    果糖二磷酸醛缩酶 Fructose-bisphosphate aldolase (ALDO) 1(1 + 0)
    羰基转移酶家族 Glycosyl transferase family 12(0 + 12)
    糖基羟化酶家族 Glycosyl hydrolases family 9(9 + 0)
    内质网二糖结合 Di-glucose binding within endoplasmic reticulum 5(2 + 3)
    3-β葡萄糖苷酶 3-beta-glucosidase 3(3 + 0)
    1,3-葡聚糖合成酶 1,3-beta-glucan synthase 1(1 + 0)
    6-磷酸葡萄糖羟化酶 6-phosphogluconate dehydrogenase 1(0 + 1)
    6-磷酸葡萄糖异构酶 Glucosamine-6-phosphate isomerases 1(1 + 0)
    3-磷酸甘油醛脱氢酶 Glyceraldehyde 3-phosphate dehydrogenase 1(1 + 0)
    木糖代谢
    Xylose metabolic
    β-1,4-木糖基转移酶 Beta-1,4-xylosyltransferase 1(1 + 0)
    β-1,2-木糖基转移酶 Beta-1,2-xylosyltransferase 1(1 + 0)
    半乳糖代谢
    Galactose metabolic
    细胞壁相关受体激酶半乳糖醛酸结合
    Wall-associated receptor kinase galacturonan-binding
    10(4 + 6)
    半乳糖基转移酶 Galactosyltransferase 5(3 + 2)
    聚半乳糖醛酸酶 Polygalacturonase 5(2 + 3)
    聚半乳糖醛酸酶抑制剂 Polygalacturonase inhibitor 3(0 + 3)
    糖基水解酶 Glycosyl hydrolases 2(0 + 2)
    磷酸戊糖代谢
    Pentose phosphate metabolic
    核糖激酶 Ribokinase (RbsK) 3(3 + 0)
    6-磷酸葡萄糖脱氢酶 Phosphogluconic dehydrogenase (G6PD) 2(2 + 0)
    果胶代谢
    Pectic metabolism
    果胶酯酶 Pectinester 6(0 + 6)
    果胶裂解酶 Pectate lyase 7(7 + 0)
    苯丙素生物合成
    Phenylpropanoid biosynthesis
    月桂醇脱氢酶 Cinnamyl-alcihol dehydrogenase (CAD) 2(0 + 2)
    过氧化物酶 Peroxidase (POD) 6(6 + 0)
    下载: 导出CSV
  • [1]

    Hong Z M, Xing Y J, Yan G Y, et al. Response of fine root morphology and anatomical structure of Betula platyphylla and Populus davidiana natural secondary forest to nitrogen deposition in Changbai Mountains[J]. Acta Ecologica Sinica, 2020, 40(2): 608−620.

    [2] 张毅, 牟长城, 郑曈, 等. 小兴安岭天然白桦林生态系统碳储量[J]. 北京林业大学学报, 2015, 37(4): 38−47.

    Zhang Y, Mou C C, Zheng T, et al. Ecosystem carbon storage of natural secondary birch forests in Xiaoxing’an Mountains of China[J]. Journal of Beijing Forestry University, 2015, 37(4): 38−47.

    [3]

    Rastogi S, Pandey M M, Rawat A K S. Medicinal plants of the genus Betula: traditional uses and a phytochemical-pharmacological review[J]. Journal of Ethnopharmacology, 2015, 159: 62−83. doi: 10.1016/j.jep.2014.11.010

    [4] 李艳霞, 张含国, 邓继峰, 等. 长白落叶松木芯基本密度与材性指标相关及建筑材优良家系选择研究[J]. 北京林业大学学报, 2012, 34(5): 6−14.

    Li Y X, Zhang H G, Deng J F, et al. Correlations among wood density, wood physical mechanics index and growth trait, and selection of elite families for production of building products in Larix olgensis[J]. Journal of Beijing Forestry University, 2012, 34(5): 6−14.

    [5] 张冬梅, 鲍甫成, 张志毅. 杨树木材性状遗传学研究进展[J]. 世界林业研究, 2002, 15(6): 21−25. doi: 10.3969/j.issn.1001-4241.2002.06.004

    Zhang D M, Bao F C, Zhang Z Y. Advances in wood trait genetics of poplar[J]. World Forestry Research, 2002, 15(6): 21−25. doi: 10.3969/j.issn.1001-4241.2002.06.004

    [6] 王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响[J]. 北京林业大学学报, 2012, 34(3): 107−110.

    Wang C G, Jiang Z H, Fei B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107−110.

    [7] 张雨, 赵明洁, 张蔚. 植物次生细胞壁生物合成的转录调控网络[J]. 植物学报, 2020, 55(3): 351−368. doi: 10.11983/CBB19135

    Zhang Y, Zhao M J, Zhang W. Transcriptional regulation of plant secondary cell wall biosynthesis[J]. Chinese Bulletin of Botany, 2020, 55(3): 351−368. doi: 10.11983/CBB19135

    [8]

    Cocking E C. A method for the isolation of plant protoplasts and vacuole[J]. Nature, 1960(187): 927−929.

    [9] 彭邵锋, 陆佳, 陈永忠, 等. 木本植物原生质体培养体系研究进展[J]. 中国农学通报, 2013, 29(1): 1−6. doi: 10.3969/j.issn.1000-6850.2013.01.001

    Peng S F, Lu J, Chen Y Z, et al. Progress in the protoplast culture system of woody plants[J]. Chinese Agricultural Science Bulletin, 2013, 29(1): 1−6. doi: 10.3969/j.issn.1000-6850.2013.01.001

    [10]

    Eeckhaut T, Lakshmanan P S, Deryckere D, et al. Progress in plant protoplast research[J]. Planta, 2013, 238(6): 991−1003. doi: 10.1007/s00425-013-1936-7

    [11]

    Claudio L G, Graziano P, Ernesto P. High-throughput sequencing to detect DNA-RNA changes.[J]. Methods in Molecular Biology, 2021, 2181: 193−212.

    [12]

    Xue J L, Shi K, Chen C, et al. Evaluation of response of dynamics change in bioaugmentation process in diesel-polluted seawater via high-throughput sequencing: degradation characteristic, community structure, functional genes[J]. Journal of Hazardous Materials, 2021, 403: 123579.

    [13]

    Inaba T, Aoyagi T, Hori T, et al. Clarifying prokaryotic and eukaryotic biofilm microbiomes in anaerobic membrane bioreactor by non-destructive microscopy and high-throughput sequencing[J]. Chemosphere, 2020, 254: 126810. doi: 10.1016/j.chemosphere.2020.126810

    [14]

    Chang Y M, Liu W Y, Arthur C, et al. Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis[J]. Plant Physiology, 2012, 160(1): 165−177. doi: 10.1104/pp.112.203810

    [15]

    Tian K, Li Y, Wang B, et al. The genome and transcriptome of Lactococcus lactis ssp. lactis F44 and G423: insights into adaptation to the acidic environment[J]. Journal of Dairy Science, 2019, 102(2): 1044−1058. doi: 10.3168/jds.2018-14882

    [16]

    Sharma R, Tan F, Jung K H, et al. Transcriptional dynamics during cell wall removal and regeneration reveals key genes involved in cell wall development in rice[J]. Plant Molecular Biology, 2011, 77(4−5): 391−406. doi: 10.1007/s11103-011-9819-4

    [17]

    Trapnell C, Pachter L, Salzberg S L. TopHat: discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009, 25(9): 1105−1111. doi: 10.1093/bioinformatics/btp120

    [18]

    Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics, 2009, 26(1): 136−138.

    [19]

    Lin Y C, Li W, Chen H, et al. Simple improved-throughput xylem protoplast system for studying wood formation[J]. Nature protocols, 2014, 9(9): 2194−2205. doi: 10.1038/nprot.2014.147

    [20] 刘杏芍, 宋斯雨, 高贤贤, 等. 亚硝基谷胱甘肽还原酶GSNOR1正调控植物对疫霉菌的抗性[J]. 西北农业学报, 2020, 29(10): 1−15.

    Liu X S, Song S Y, Gao X X, et al. Nitroso glutathione reductase GSNOR1 for positive regulation of plant resistance against phytophthora[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(10): 1−15.

    [21] 宋文, 单春会, 宁明, 等. 谷胱甘肽-S-转移酶在植物响应冷胁迫方面的研究进展[J]. 食品工业, 2020, 41(7): 239−244.

    Song W, Shan C H, Ning M, et al. Advances in research of glutathione-S-transferase in response to cold stress in plants[J]. The Food Industry, 2020, 41(7): 239−244.

    [22] 毕艳, 郑伟, 周涛, 等. 太子参谷胱甘肽-S-转移酶基因家族生物信息学及表达分析[J]. 广西植物, 2020, 11(3): 1−11.

    Bi Y, Zheng W, Zhou T, et al. Bioinformatics and expression analysis of glutathione-S-transferase gene family in Pseudostellaria[J]. Guihaia, 2020, 11(3): 1−11.

    [23] 于蕊. 紫斑牡丹种子α-亚麻酸合成相关基因克隆与功能验证[D]. 杨凌: 西北农林科技大学, 2018.

    Yu R. Cloning and functional verification of genes related to α-linolenic acid synthesis of Paeonia rockii seed[D]. Yangling: Northwest A&F University, 2018.

    [24] 覃楠楠. 外源水杨酸对干旱胁迫下分枝结薯期甘薯植株生理指标的影响[D]. 杭州: 浙江大学, 2020.

    Qin N N. Effects of exogenous salicvlic acid on physiological indexes of sweet patato plants at branching-tubering under drought stress[D]. Hangzhou: Zhejiang University, 2020.

    [25] 周苹, 柴颖, 黄祥辉, 等. 元麦叶肉原生质体细胞壁再生过程中的扫描电镜观察及过氧化物酶活性[J]. 实验生物学报, 1986, 19(2): 12−20.

    Zhou P, Chai Y, Huang X H, et al. Scanning electron microscope observation and peroxidase activity in protoplast cell wall regeneration of rice wheat mesophyte[J]. Journal of Experimental Biology, 1986, 19(2): 12−20.

    [26] 刘梅, 李祖然, 张光群, 等. 野生小花南芥体内AsA-GSH循环对土壤Cd、Pb胁迫的响应[J]. 农业资源与环境学报, 2020, 11(3): 1−13.

    Liu M, Li Z R, Zhang G Q, et al. Response of ascorbate-glutathione cycle in wild Arabis alpina L. to soil Cd and Pb stress[J]. Journal of Agricultural Resources and Environment, 2020, 11(3): 1−13.

    [27] 邵青. 裸藻光响应下叶绿体发育相关的初步研究[D]. 深圳: 深圳大学, 2018.

    Shao Q. A preliminary study on chloroplast development in euglenophyta under light response [D]. Shenzhen: Shenzhen University, 2018.

    [28] 王成孜. 光照强度对超级稻和常规稻苗期光合特性影响的研究[D]. 南京: 南京农业大学, 2018.

    Wang C Z. Effects of light intensity on photosynthetic characteristics of super rice and conventional rice at seedling stage [D]. Nanjing: Nanjing Agricultural University, 2018.

    [29]

    Marcus F, Rittenhouse J, Gontero B, et al. Function, structure and evolution of fructose-1,6-bisphosphatase[J]. Archivos de biologia y medicina experimentales, 1987, 20(3−4): 371−378.

    [30]

    Kornberg A, Horecker B L. Glucose-6-phosphate dehydrogenase [J]. Method Enzymol, 1956, 1: 323.

    [31]

    Rajaonarison J F, Lacarelle B, De S G, et al. In vitro glucuronidation of 3′-azido-3′-deoxythymidine by human liver: role of UDP-glucuronosyltransferase 2 form[J]. Drug Metabolism and Disposition: the Biological Fate of Chemicals, 1991, 19(4): 809−815.

    [32] 林河通, 赵云峰, 席芳. 龙眼果实采后果肉自溶过程中细胞壁组分及其降解酶活性的变化[J]. 植物生理与分子生物学学报, 2007, 33(2): 137−145.

    Lin H T, Zhao Y F, Xi F. Changes in cell wall components and cell wall-degrading enzyme activities of postharvest longan fruit during aril breakdown[J]. Physiology and Molecular Biology of Plants, 2007, 33(2): 137−145.

    [33]

    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54(1): 519−546. doi: 10.1146/annurev.arplant.54.031902.134938

    [34] 李欣, 李影, 曲子越, 等. bHLH转录因子在茉莉酸信号诱导植物次生产物合成中的作用及分子机制[J]. 植物生理学报, 2017, 53(1): 1−8.

    Li X, Li Y, Qu Z Y, et al. The molecular mechanism and the function of bHLH regulating jasmonic acidmediated secondary metabolic synthesis[J]. Plant Physiology Journal, 2017, 53(1): 1−8.

    [35] 刘佳欣. BpNAC012基因调控木质部发育基因表达谱分析[D]. 哈尔滨: 东北林业大学, 2018.

    Liu J X. Expression profile analysis of BpNAC012 gene regulating xylem development [D]. Hrabin: Northeast Forestry University, 2018.

    [36]

    Ohnsson C, Jin X, Xue W, et al. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors[J]. Physiologia Plantarum, 2019, 165(4): 673−689. doi: 10.1111/ppl.12766

    [37]

    Laubscher M, Brown K, Tonfack L B, et al. Temporal analysis of Arabidopsis genes activated by Eucalyptus grandis NAC transcription factors associated with xylem fibre and vessel development[J]. Scientific Report, 2018, 8(1): 10983. doi: 10.1038/s41598-018-29278-w

    [38]

    Yamaguchi M, Ohtani M, Mitsuda N, et al. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis[J]. Plant Cell, 2010, 22(4): 1249−63. doi: 10.1105/tpc.108.064048

    [39] 张明亮. 水稻MYB转录因子调控细胞壁合成分子机理及秸秆酶解产糖因子研究[D]. 武汉: 华中农业大学, 2016.

    Zhang M L. Molecular mechanism of MYB transcription factor regulating cell wall synthesis in rice and study on enzymatic hydrolysis of straw to produce sugar factor [D]. Wuhan: Huazhong Agricultural University, 2016.

    [40]

    Jiao B, Zhao X, Liu W X, et al. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus[J]. Tree Physiology, 2019, 39(7): 1187−1200. doi: 10.1093/treephys/tpz040

    [41]

    Morse A M, Whetten R W, Dubos C, et al. Post-translational modification of an R2R3-MYB transcription factor by a MAP kinase during xylem development[J]. New Phytologist, 2009, 183(4): 1001−1013. doi: 10.1111/j.1469-8137.2009.02900.x

    [42]

    Patzlaff A, McInnis S, Courtenay A, et al. Characterisation of a pine MYB that regulates lignification[J]. Plant Journal, 2003, 36(6): 743−754. doi: 10.1046/j.1365-313X.2003.01916.x

    [43] 王莲萍, 王博, 王瑞, 等. 白桦2个bZIP基因的克隆及表达分析[J]. 分子植物育种, 2018, 16(9): 2811−2817.

    Wang L P, Wang B, Wang R, et al. Cloning and expression analyses of two bZIP genes from Betula platyphylla[J]. Molecular Plant Breeding, 2018, 16(9): 2811−2817.

    [44]

    Wang H, Yang J H, Chen F, et al. Transcriptome analysis of secondary cell wall development in Medicago truncatula[J]. BMC Genomics, 2016, 17(1): 23. doi: 10.1186/s12864-015-2330-6

    [45]

    Li W Y, Yu D, Yu J J, et al. Functional analysis of maize silk-specific ZmbZIP25 promoter[J]. International Journal of Molecular Sciences, 2018, 19(3): 822. doi: 10.3390/ijms19030822

    [46]

    Schumann S T, Ringli C, Heierli D, et al. In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylem-specific gene expression[J]. Plant Journal, 1996, 9(3): 283−296. doi: 10.1046/j.1365-313X.1996.09030283.x

图(8)  /  表(3)
计量
  • 文章访问数:  968
  • HTML全文浏览量:  340
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-28
  • 修回日期:  2021-02-07
  • 录用日期:  2022-05-08
  • 网络出版日期:  2022-05-12
  • 发布日期:  2022-08-24

目录

    /

    返回文章
    返回