Effects of different soil water potentials on seedling growth rhythm and seedling quality of Populus tomentosa
-
摘要:目的 探讨苗圃育苗过程中不同土壤水势条件下毛白杨苗木的生长节律、形态及生理响应规律,为制定合理灌溉方案提供参考。方法 以毛白杨1年生苗为材料,设置3个土壤水势阈值(−20、−40、−60 kPa,即灌溉起始阈值),并以生产上常规灌溉作为对照(灌溉起始阈值 < −80 kPa),通过Logistic方程拟合苗木生长模型并划分生长阶段,研究不同土壤水势下毛白杨苗木生长节律、苗高地径生长、生物量分配和养分含量的变化。结果 (1)与常规灌溉(CK)相比,以−20 kPa作为灌溉起始阈值能够显著促进苗木生长,苗高、地径平均提高了29.33%和24.12%,生物量显著增加了176.17%,且茎根比优于−40和−60 kPa处理。(2)不同土壤水势处理下,毛白杨苗高、地径苗期生长均呈现“S”型曲线,且Logistic方程拟合效果较好,可以用来进行苗高和地径生长的预测和分析;同时苗木苗高与茎生物量、地径和根生物量显著正相关,可以通过苗高、地径的测量值估算苗木生物量。(3)根据毛白杨1年生苗木的苗高生长规律可将生长期划分为4个阶段:成活期,移苗至移苗后15 d;生长初期,移苗后16 ~ 53 d;速生期,移苗后54 ~ 138 d;木质化期,移苗后139 ~ 220 d。(4)毛白杨苗木茎养分质量分数无明显变化规律,根养分质量分数随土壤水势升高总体呈降低趋势,常规灌溉下苗木茎、根养分质量分数最大,显著高于各处理15.14% ~ 46.43%;养分单株质量规律与质量分数规律相反,−20 kPa处理下苗木各养分单株质量最大,高于常规灌溉处理 100.08% ~ 237.51%。(5)以−20 kPa作为灌溉起始阈值时,苗木质量指数综合评定结果最优,苗木质量最佳。结论 土壤水势对毛白杨苗木的生长和生物量积累有显著影响,距地表10 cm处以−20 kPa作为速生期灌溉起始阈值时,苗木的苗高、地径、生物量和养分单株质量最大。Abstract:Objective This research was carried out to study the effect of different soil water potentials on seedling growth rhythm, morphology and physiology of Populus tomentosa seedlings, so as to provide a scientific basis for precision irrigation strategy and parameters.Method One-year-old Populus tomentosa seedlings were used as materials and treated with three water potential conditions (−20, −40, −60 kPa of soil water potential threshold) and conventional irrigation was used as control (initial irrigation threshold < −80 kPa), then Logistic equation was adopted to establish seedling growth model and divide the growth stage, and the changes of seedling growth rhythm, biomass allocation and nutrient accumulation under different soil water potentials were studied.Result (1) Compared with CK, seedling height and ground diameter increased by 29.33% and 24.12% on average, while biomass was significantly increased by 176.17% under −20 kPa treatment, shoot to root ratio of seedlings under −20 kPa treatment was superior to −40 and −60 kPa treatments. (2) Under different soil water potential treatments, seedling height and ground diameter presented a curve changed like “S” and significantly fitted with Logistic equation, which can therefore be used to predict the seedling growth. Stem and root biomass were significantly correlated with seedling height and ground diameter, respectively, so seedling biomass can be predicted referring to seedling height and ground diameter. (3) The growth phase according to one-year-old P. tomentosa seedling height growth can be divided into 4 stages: establishment phase, from transplanting to 15 d after transplanting; early growth phase, 16 to 53 d; rapid growth phase, 54 to 138 d; and hardening phase: 139 to 220 d. (4) Nutrient concentration of P. tomentosa seedling shoot showed no significant trend, but root concentration showed a tendency of dropping with the increase of soil water potential. The highest stem and root nutrient concentration was found in CK, which was 15.14%−46.43% higher than other treatments; while nutrient content had the opposite pattern, that is, under −20 kPa treatment, the nutrient content was the highest, 100.08%−237.51% higher than CK. (5) P. tomentosa seedlings had the best seedling integrated evaluation results and seedling quality under −20 kPa treatment.Conclusion Soil water potential has significant effects on seedling growth and biomass allocation of Populus tomentosa seedlings. The seedlings have the highest height, ground diameter, biomass and nutrient content when −20 kPa is chosen as irrigation threshold of 10 cm from the surface, the seedling height, ground diameter, biomass and nutrient mass per plant are the largest.
-
Keywords:
- soil water potential /
- Populus tomentosa /
- growth rhythm /
- seedling quality /
- directive breeding
-
-
图 3 不同水势下毛白杨苗木矿质养分和非结构性碳单株质量
大写字母与小写字母为Duncan多重比较结果,不同字母表示差异显著(P < 0.05)。Capital letters and lowercase letters are Duncan’s multiple comparison results, and different letters indicate significant differences (P < 0.05).
Figure 3. Seedling mineral nutrients and non-structural carbohydrate mass of P. tomentosa seedlings under different soil water potentials
表 1 不同土壤水势下毛白杨苗木苗高、地径生长过程表现
Table 1 Growth process of seedling height and ground diameter of Populus tomentosaseedlings under different soil water potentials
移栽后天数
Days after transplanting苗高 Seedling height/cm 地径 Root collar diameter (RCD) /mm A B C CK A B C CK 0 13.57 ± 1.52a 13.57 ± 1.52a 13.57 ± 1.52a 13.57 ± 1.52a 2.95 ± 0.33a 2.95 ± 0.33a 2.95 ± 0.33a 2.95 ± 0.33a 30 26.59 ± 3.95a 26.53 ± 2.58a 26.83 ± 3.78a 26.04 ± 4.10a 4.21 ± 0.57a 4.27 ± 0.37a 3.89 ± 0.35b 4.06 ± 0.46ab 45 60.75 ± 9.17a 56.56 ± 5.71b 55.18 ± 4.18bc 52.82 ± 6.87c 6.78 ± 1.00a 6.75 ± 0.56a 5.66 ± 0.45c 6.07 ± 0.66b 60 118.51 ± 15.10a 101.69 ± 11.50b 88.27 ± 8.44c 78.23 ± 8.48d 9.41 ± 0.96a 8.82 ± 0.74b 7.53 ± 0.64c 7.77 ± 0.91c 75 182.96 ± 20.12a 160.99 ± 14.55b 129.80 ± 11.54c 127.67 ± 15.31c 15.79 ± 2.02a 13.61 ± 1.46b 11.35 ± 1.22c 11.63 ± 1.28c 100 233.31 ± 19.66a 213.63 ± 19.41b 185.11 ± 14.85c 171.12 ± 18.86d 20.09 ± 2.48a 18.06 ± 1.88b 15.05 ± 1.44c 14.91 ± 1.65c 115 289.30 ± 22.00a 268.79 ± 19.33b 235.22 ± 18.09c 219.25 ± 21.59d 23.96 ± 2.53a 21.96 ± 1.95b 18.24 ± 1.80c 18.59 ± 2.18c 130 347.75 ± 24.56a 332.14 ± 22.15b 298.81 ± 23.93c 264.54 ± 24.97d 27.58 ± 2.99a 24.53 ± 2.31b 21.08 ± 2.13c 20.30 ± 2.43c 147 372.43 ± 24.61a 353.15 ± 23.84b 319.31 ± 24.52c 284.39 ± 27.31d 28.23 ± 3.21a 25.41 ± 2.07b 22.16 ± 2.26c 20.96 ± 2.67d 170 399.00 ± 24.77a 370.38 ± 24.97b 337.67 ± 25.38c 297.00 ± 32.11d 29.94 ± 3.57a 26.80 ± 2.40b 23.25 ± 2.38c 21.57 ± 2.87d 195 399.00 ± 24.77a 370.38 ± 24.97b 337.67 ± 25.38c 297.00 ± 32.11d 31.13 ± 3.70a 27.66 ± 1.92b 23.80 ± 2.20c 22.18 ± 2.93d 220 399.00 ± 24.77a 370.38 ± 24.97b 337.67 ± 25.38c 297.00 ± 32.11d 31.13 ± 3.70a 27.66 ± 1.92b 23.80 ± 2.20c 22.18 ± 2.93d 注:A、B、C分别代表3种不同灌溉起始阈值,CK为对照。小写字母为Duncan多重比较结果,同行相同字母表示不同处理间差异不显著,不同字母表示差异显著(P < 0.05)。下同。Notes: A, B and C represent three different irrigation threshold values, respectively, CK means control. Lowercase letters are Duncan multiple comparison results, the same letter in the same row indicates that the difference between varied treatments is not significant, and different letters indicate that the difference is significant (P < 0.05). The same below. 表 2 不同灌溉水平下毛白杨苗木苗高、地径Logistic方程及回归假设检验
Table 2 Logistic equations of P. tomentosa seedling height, RCD underdifferent water conditions and the regression test
指标
Index处理
Treatment回归方程
Regression equationR2 P 苗高
Seedling heightA y = 409.178/(1 + 30.569exp(−0.038x)) 0.993 < 0.001 B y = 380.379/(1 + 30.022exp(−0.039x)) 0.994 < 0.001 C y = 349.519/(1 + 30.081exp(−0.037x)) 0.994 < 0.001 CK y = 305.991/(1 + 28.810exp(−0.038x)) 0.995 < 0.001 地径
Root coolar diameterA y = 31.683/(1 + 17.074exp(−0.035x)) 0.995 < 0.001 B y = 28.212/(1 + 14.903exp(−0.034x)) 0.997 < 0.001 C y = 24.539/(1 + 13.899exp(−0.032x)) 0.995 < 0.001 CK y = 22.694/(1 + 12.412exp(−0.034x)) 0.993 < 0.001 表 3 不同灌溉水平下毛白杨苗木苗高、地径生长节律参数
Table 3 Growth rhythm parameters of seedling height and RCD of P. tomentosa
处理
Treatment苗高生长节律
Seedling height growth rhythm地径生长节律
RCD growth rhythmt1/d t2/d T/d Tm/d Vm/(cm·d−1) Vt/(cm·d−1) Lg/cm t1/d t2/d T/d Tm/d Vm/(mm·d−1) Vt/(mm·d−1) Lg/mm A 52 149 92 86 3.77 3.31 253.38 43 140 97 81 0.28 0.24 21.38 B 54 148 94 87 3.60 3.16 239.15 41 139 98 82 0.23 0.21 19.63 C 55 147 92 92 3.22 2.83 221.38 41 134 93 82 0.20 0.17 17.96 CK 53 138 85 88 2.82 2.47 198.65 35 128 93 76 0.19 0.16 14.63 注:t1、t2分别为速生期开始和结束时间,T为速生期持续时间,Tm为速生期最大生长速率出现时间;Vm、Vt分别为速生期最大生长速率和速生期平均生长速率,Lg为速生期增长量。Notes: t1, t2, T and Tm represent start time, end time, length of fast growing phase and the maximum growth rate appear time, respectively. Vm, Vt, Lg mean the maximum growth rate, average growth rate and increment at fast growing phase, respectively. 表 4 毛白杨苗木形态特征和生物量分配
Table 4 Seedling morphology parameters and biomass allocation of P. tomentosa seedlings
处理
Treatment苗高 Seedling height/cm 地径
RCD/mm苗高/地径
Seedling height/ RCD茎生物量
Stem biomass/g根生物量
Root biomass/g茎根比
Shoot/root苗高−茎生物量
相关系数
Seedling height-stem
biomass correlation
coefficient地径−根生物量
相关系数
RCD- root
biomass correlation
coefficientA 399.00 ± 24.77a 31.13 ± 3.70a 12.92 ± 0.97c 456.89 ± 59.36a 302.33 ± 88.36a 1.57 ± 0.22b 0.852** 0.709* B 370.38 ± 24.97b 27.66 ± 1.92b 13.41 ± 0.68b 313.67 ± 77.29b 160.88 ± 37.12b 1.97 ± 0.38a 0.927** 0.941** C 337.67 ± 25.38c 23.80 ± 2.20c 14.23 ± 0.77a 244.33 ± 55.43c 132.67 ± 39.56b 1.89 ± 0.23a 0.892* 0.918** CK 297.00 ± 32.11d 22.18 ± 2.93d 13.45 ± 0.78b 165.44 ± 45.19d 117.56 ± 38.58b 1.61 ± 0.28b 0.889* 0.767* 注:*表示相关性显著(P < 0.05),**表示相关性极显著(P < 0.01)。Notes: * means significant correlation (P < 0.05), ** means extremely significant correlation( P < 0.01). 表 5 不同土壤水势下毛白杨苗木各器官矿质养分和非结构性碳质量分数
Table 5 Seedling mineral nutrients and non-structural carbohydrate concentration of P. tomentosa seedlings under different soil water potentials
% 组织
Tissue养分
Nutrient处理 Treatment A B C CK 茎 Stem N 1.428 ± 0.047b 1.631 ± 0.084a 1.605 ± 0.045a 1.633 ± 0.09a P 0.099 ± 0.002a 0.102 ± 0.013a 0.097 ± 0.021a 0.109 ± 0.003a K 0.253 ± 0.056a 0.270 ± 0.014a 0.283 ± 0.025a 0.273 ± 0.023a 淀粉 Starch 2.449 ± 0.391a 2.582 ± 0.338a 2.407 ± 0.264a 2.515 ± 0.366a 可溶性糖 Soluble sugar 4.239 ± 0.162b 6.428 ± 0.411a 6.071 ± 1.122a 6.124 ± 1.628a 根 Root N 1.745 ± 0.055b 1.762 ± 0.094b 1.771 ± 0.076b 1.917 ± 0.086a P 0.175 ± 0.005ab 0.156 ± 0.023b 0.157 ± 0.007b 0.204 ± 0.022a K 0.452 ± 0.021b 0.508 ± 0.071ab 0.469 ± 0.062b 0.604 ± 0.041a 淀粉 Starch 6.645 ± 0.698b 5.607 ± 0.271c 6.280 ± 0.272b 8.274 ± 0.526a 可溶性糖 Soluble sugar 17.172 ± 2.212ab 16.412 ± 2.412bc 13.703 ± 2.187c 19.772 ± 2.329a 表 6 苗木质量指数综合评价
Table 6 Comprehensive evaluation of seedling quality index
处理
Treatment苗高
Seedling height地径
RCD生物量
Biomass茎根比
Shoot/
root养分质量分数 Nutrient mass fraction 养分单株质量 Nutrient mass per plant 综合结果
Comprehensive
result位次
RankingN P K 淀粉 Starch 可溶性糖
Soluble
sugarN P K 淀粉 Starch 可溶性糖
Soluble
sugarA 0.485 0.475 0.718 0.622 0.601 0.500 0.530 0.573 0.497 0.719 0.720 0.720 0.721 0.722 0.615 1 B 0.501 0.503 0.575 0.587 0.498 0.378 0.450 0.522 0.394 0.378 0.403 0.418 0.429 0.449 0.463 4 C 0.533 0.461 0.628 0.441 0.357 0.423 0.500 0.450 0.214 0.628 0.629 0.628 0.629 0.629 0.511 2 CK 0.541 0.595 0.492 0.385 0.388 0.568 0.620 0.474 0.480 0.512 0.517 0.519 0.522 0.522 0.510 3 相关系数Correlation coefficient 0.944 0.963 0.732 0.494 0.568 0.995 0.585 0.806 0.503 0.773 0.704 0.757 0.646 0.770 0.731 -
[1] 乌丽雅斯, 刘勇. 造林树种苗木定向培育理论探讨[J]. 北京林业大学学报, 2004, 26(4): 85−90. doi: 10.3321/j.issn:1000-1522.2004.04.018 Wuliyasi, Liu Y. Theories of directed seedling cultivation for reforestation varieties[J]. Journal of Beijing Forestry University, 2004, 26(4): 85−90. doi: 10.3321/j.issn:1000-1522.2004.04.018
[2] Grossnickle S C, MacDonald J E. Why seedlings grow: influence of plant attributes[J]. New Forests, 2018, 49(1): 1−34. doi: 10.1007/s11056-017-9606-4
[3] 李国雷, 刘勇, 祝燕, 等. 国外容器苗质量调控技术研究进展[J]. 林业科学, 2012, 48(8): 135−142. doi: 10.11707/j.1001-7488.20120822 Li G L, Liu Y, Zhu Y. A review on the abroad studies of techniques in regulating quality of container seedling[J]. Scientia Silvae Science, 2012, 48(8): 135−142. doi: 10.11707/j.1001-7488.20120822
[4] Dumroese R K, Landis T D, Pinto J R, et al. Meeting forest restoration challenges: using the target plant concept[J]. Reforesta, 2016, 1(1): 37−52.
[5] Haase D, Davis A. Developing and supporting quality nursery facilities and staff are necessary to meet global forest and landscape restoration needs[J]. Reforesta, 2017, 1(4): 69−93.
[6] Shi W H, Grossnickle S C, Li G L, et al. Fertilization and irrigation regimes influence on seedling attributes and field performance of Pinus tabuliformis Carr.[J]. Forestry, 2019, 92(1): 97−107. doi: 10.1093/forestry/cpy035
[7] Dumroese R K, Luna T, Landis T D. Nursery manual for native plants: a guide for tribal nurseries (Volume 1): nursery management[M]. Washington: Department of Agriculture, Forest Service, 2009.
[8] Sloan J L, Burney O T, Pinto J R. Drought-conditioning of quaking aspen (Populus tremuloides Michx.) seedlings during nursery production modifies seedling anatomy and physiology[J]. Frontiers in Plant Science, 2020, 11(4): 1−11.
[9] Dutra A F, Araujo M M, Tabaldi L A, et al. Optimization of water use in seedling production of arboreal species[J]. Cerne, 2018, 24(3): 201−208. doi: 10.1590/01047760201824032516
[10] 陈闯, 刘勇, 李国雷, 等. 底部渗灌灌水梯度对栓皮栎容器苗生长和养分状况的影响[J]. 林业科学, 2015, 51(7): 21−27. Chen C, Liu Y, Li G L, et al. Effects of sub-irrigation gradients on growth and nutrient status of containerized seedling of Quercus variabilis[J]. Scientia Silvae Science, 2015, 51(7): 21−27.
[11] Hansen E A. Irrigating short rotation intensive culture hybrid poplars[J]. Biomass, 1988, 16(4): 237−250. doi: 10.1016/0144-4565(88)90029-7
[12] Li D D, Fernández J E, Li X, et al. Tree growth patterns and diagnosis of water status based on trunk diameter fluctuations in fast-growing Populus tomentosa plantations[J/OL]. Agricultural Water Management, 2020, 241: 106348[2020−06−01]. https://doi.org/10.1016/j.agwat.2020.106348.
[13] He Y L, Xi B Y, Bloomberg M, et al. Effects of drip irrigation and nitrogen fertigation on stand growth and biomass allocation in young triploid Populus tomentosa plantations[J/OL]. Forest Ecology and Management, 2020. 461: 117937[2020−06−13]. https://doi.org/10.1016/j.foreco.2020.117937.
[14] 崔晓阳, 宋金凤, 张艳华. 不同土壤水势条件下水曲柳幼苗的光合作用特征[J]. 植物生态学报, 2004, 11(6): 794−802. doi: 10.3321/j.issn:1005-264X.2004.06.008 Cui X Y, Song J F, Zhang Y H. Some photosynthetic characteristics of Fraxinus mandshurica seedlings grown under different soil water potentials[J]. Acta Phytoecologica Sinica, 2004, 11(6): 794−802. doi: 10.3321/j.issn:1005-264X.2004.06.008
[15] 席本野, 王烨, 邸楠, 等. 地下滴灌下土壤水势对毛白杨纸浆林生长及生理特性的影响[J]. 生态学报, 2012, 32(17): 5318−5329. doi: 10.5846/stxb201203160352 Xi B Y, Wang Y, Di N, et al. Effects of soil water potential on the growth and physiological characteristics of Populus tomentosa pulpwood plantation under subsurface drip irrigation[J]. Acta Ecological Sinica, 2012, 32(17): 5318−5329. doi: 10.5846/stxb201203160352
[16] Lo B R, Francaviglia D. Comparative responses of ‘Gala’ and ‘Fuji’ apple trees to deficit irrigation: placement versus volume effects[J]. Plant and Soil, 2012, 357(1-2): 41−58. doi: 10.1007/s11104-012-1149-z
[17] Ballester C, Castel J, Intrigliolo D S, et al. Response of navel lane late citrus trees to regulated deficit irrigation: yield components and fruit composition[J]. Irrigation Science, 2013, 31(3): 333−341. doi: 10.1007/s00271-011-0311-3
[18] Grossnickle S C. Why seedlings survive: influence of plant attributes[J]. New Forests, 2012, 43(5−6): 711−738. doi: 10.1007/s11056-012-9336-6
[19] 康向阳. 新一轮毛白杨遗传改良策略的思考和实践[J]. 北京林业大学学报, 2016, 38(7): 1−8. Kang X Y. Thinking and practices for strategy on a new round genetic improvement of Populus tomentosa[J]. Journal of Beijing Forestry University, 2016, 38(7): 1−8.
[20] Dong W Y, Qin J, Li J Y, et al. Interactions between soil water content and fertilizer on growth characteristics and biomass yield of Chinese white poplar (Populus tomentosa Carr.) seedlings[J]. Soil Science and Plant Nutrition, 2011, 57(2): 303−312. doi: 10.1080/00380768.2010.549445
[21] 贺曰林, 王烨, 张宏锦, 等. 地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的影响[J]. 农业工程学报, 2018, 34(20): 90−98. doi: 10.11975/j.issn.1002-6819.2018.20.012 He Y L, Wang Y, Zhang H J, et al. Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in young populus tomentosa plantations under surface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 90−98. doi: 10.11975/j.issn.1002-6819.2018.20.012
[22] 赵燕, 董雯怡, 张志毅, 等. 施肥对毛白杨杂种无性系幼苗生长和光合的影响[J]. 林业科学, 2010, 46(4): 70−77. doi: 10.11707/j.1001-7488.20100411 Zhao Y, Dong W Y, Zhang Z Y, et al. Effects of fertilization on seedling growth and photosynthesis of hybrid clone seedlings of Populus tomentosa[J]. Scientia Silvae Science, 2010, 46(4): 70−77. doi: 10.11707/j.1001-7488.20100411
[23] 何茜, 李吉跃, 陈晓阳, 等. 毛白杨不同无性系苗木耗水量及其昼夜分配[J]. 华南农业大学学报, 2010, 31(1): 47−50, 54. doi: 10.3969/j.issn.1001-411X.2010.01.012 He Q, Li J Y, Chen X Y, et al. Water utilization and its distribution in day and night in different Populus tomentosa clones[J]. Journal of South China Agricultural University, 2010, 31(1): 47−50, 54. doi: 10.3969/j.issn.1001-411X.2010.01.012
[24] 赵燕, 李彦娇, 李吉跃, 等. 氮、磷、钾对毛白杨无性系生长的影响[J]. 湖北农业科学, 2015, 54(5): 1130−1134. Zhao Y, Li Y J, Li J Y, et al. Effects of nitrogen, phosphorus and potassium on the growth of Populus tomentosa clone[J]. Hubei Agricultural Sciences, 2015, 54(5): 1130−1134.
[25] 董雯怡, 赵燕, 张志毅, 等. 水肥耦合效应对毛白杨苗木生物量的影响[J]. 应用生态学报, 2010, 21(9): 2194−2200. Dong W Y, Zhao Y, Zhang Z Y, et al. Coupling effects of water and fertilizer on the biomass of Populus tomentosa seedlings[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2194−2200.
[26] 裴保华. 毛白杨年生育规律的研究[J]. 林业科学, 1962, 2(4): 293−297. Pei B H. Study on annual growth rhythm of Populus tomentosa[J]. Scientia Silvae Science, 1962, 2(4): 293−297.
[27] Xi B Y, Li G D, Bloomberg M, et al. The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosa in the North China Plain[J]. Australian Forestry, 2014, 77(3−4): 159−167. doi: 10.1080/00049158.2014.920552
[28] 鲍士旦. 土壤农化分析[M]. 北京: 农业出版社, 2005. Bao S D. Soil agrochemical analysis[M]. Beijing: Agricultural Publishing House, 2005.
[29] Spiro R G. Methods in enzymology [M]. New York: Academic Press, 1966.
[30] 刘勇, 陈艳, 张志毅, 等. 不同施肥处理对三倍体毛白杨苗木生长及抗寒性的影响[J]. 北京林业大学学报, 2000, 22(1): 38−44. doi: 10.3321/j.issn:1000-1522.2000.01.009 Liu Y, Chen Y, Zhang Z Y, et al. Effects of fertilizer treatments on seedling growth and cold resistance of triploid Populus tomentosa[J]. Journal of Beijing Forestry University, 2000, 22(1): 38−44. doi: 10.3321/j.issn:1000-1522.2000.01.009
[31] 崔党群. Logistic曲线方程的解析与拟合优度测验[J]. 数理统计与管理, 2005, 24(1): 112−115. doi: 10.3969/j.issn.1002-1566.2005.01.021 Cui D Q. Analysis and making good fitting degree test for Logistic curve regression equation[J]. Mathematical Statistics and Management, 2005, 24(1): 112−115. doi: 10.3969/j.issn.1002-1566.2005.01.021
[32] 郭欢欢, 刘勇, 姚飞, 等. 黄连木苗期年生长节律、生物量分配及养分积累[J]. 中南林业科技大学学报, 2018, 38(7): 71−75. Guo H H, Liu Y, Yao F, et al. Seedling growth rhythm, biomass allocation and nutrient accumulation of Pistacia chinensis[J]. Journal of Central South University of Forestry & Technology, 2018, 38(7): 71−75.
[33] 李峰卿, 姚甲宝, 曾平生. 光照强度和容器规格对纳塔栎1年生容器苗生长的影响[J]. 华南农业大学学报, 2017, 38(3): 87−92. doi: 10.7671/j.issn.1001-411X.2017.03.014 Li F Q, Yao J B, Zeng P S. Effects of light intensity and container size on growth of one-year-old seedlings of Quercus nuttallii[J]. Journal of South China Agricultural University, 2017, 38(3): 87−92. doi: 10.7671/j.issn.1001-411X.2017.03.014
[34] 覃敏, 尹天光, 杨锦昌, 等. 米老排不同种源苗期生长规律研究[J]. 中南林业科技大学学报, 2017, 37(1): 53−57. Qin M, Yin T G, Yang J C, et al. Growth pattern of Mytilaria laosensis seedlings from different provennaces[J]. Journal of Central South University of Forestry & Technology, 2017, 37(1): 53−57.
[35] 敖妍, 刘觉非, 陈浩, 等. 不同种源文冠果1年生苗生长节律及性状相关性研究[J]. 西北林学院学报, 2019, 34(3): 91−97. doi: 10.3969/j.issn.1001-7461.2019.03.14 Ao Y, Liu J F, Chen H, et al. Annual growth rhythm and character correlation analysis of 1-year-old Xanthoceras sorbifolium seedlings from different provenances[J]. Journal of Northwest Forestry University, 2019, 34(3): 91−97. doi: 10.3969/j.issn.1001-7461.2019.03.14
[36] 李峰卿, 王秀花, 楚秀丽, 等. 缓释肥N/P养分配比及加载量对3种珍贵树种大规格容器苗生长的影响[J]. 林业科学研究, 2017, 30(5): 743−750. Li F Q, Wang X H, Chu X L, et al. Effects of N/P ratio and loading on the growth of container seedling of three precious tree species[J]. Forest Research, 2017, 30(5): 743−750.
[37] 纪凯婷, 芦建国, 郭聪聪. 夏蜡梅1年生实生苗的生长节律[J]. 西北农林科技大学学报(自然科学版), 2015, 43(9): 165−170. Ji K T, Lu J G, Guo C C. Annual growth of one year old Sinocalycanthus chinensis seedling[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(9): 165−170.
[38] 韩立新, 汪有科, 张琳琳. 梨枣在果实生长期对土壤水势的响应[J]. 生态学报, 2012, 32(7): 2004−2011. doi: 10.5846/stxb201111181760 Han L X, Wang Y K, Zhang L L. Response of pear jujube trees on fruit development period to different soil water potential levels[J]. Acta Ecologica Sinica, 2012, 32(7): 2004−2011. doi: 10.5846/stxb201111181760
[39] 欧建德, 康永武. 容器规格对乳源木莲移植容器苗生长与生长节律的影响[J]. 西南林业大学学报(自然科学), 2020, 40(6): 1−7. Ou J D, Kang Y W. Effect of container size on growth rrocess and rhythm of Manglietia yuyuanensis containeried transplanting[J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(6): 1−7.
[40] Egea G, Nortes P A, González M M, et al. Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes[J]. Agricultural Water Management, 2010, 97(1): 171−181. doi: 10.1016/j.agwat.2009.09.006
[41] Galvez D A, Landhausser S M, Tyree M T. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation?[J]. Tree Physiology, 2011, 31(3): 250−257. doi: 10.1093/treephys/tpr012
[42] 刘亚清, 刘翠华, 宋景和. 兴安落叶松播种苗优化育苗模式研究[J]. 林业科技, 2010, 35(5): 18−21. doi: 10.3969/j.issn.1001-9499.2010.05.007 Liu Y Q, Liu C H, Song J H. Study on optimal seedling producing mode of Xingan larch seedlings[J]. Forestry Science & Tecnology, 2010, 35(5): 18−21. doi: 10.3969/j.issn.1001-9499.2010.05.007
[43] 娄玉穗, 王世平, 苗玉彬, 等. 不同灌溉阈值对‘巨峰’葡萄树体生长与果实品质的影响[J]. 果树学报, 2018, 35(1): 46−55. Lou Y S, Wang S P, Miao Y B, et al. Effect of different irrigation thresholds on tree growth and fruit quality in ‘Kyoho’ grape[J]. Journal of Fruit Science, 2018, 35(1): 46−55.
[44] 徐学欣, 王东. 微喷补灌对冬小麦旗叶衰老和光合特性及产量和水分利用效率的影响[J]. 中国农业科学, 2016, 49(14): 2675−2686. doi: 10.3864/j.issn.0578-1752.2016.14.003 Xu X X, Wang D. Effects of supplemental irrigation with micro-sprinkling hoses on flag leaves senescence and photosynthetic characteristics, grain yield and water use efficiency in winter wheat[J]. Scientia Agricultura Sinica, 2016, 49(14): 2675−2686. doi: 10.3864/j.issn.0578-1752.2016.14.003
[45] Liu H, Yu L P, Luo Y, et al. Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes[J]. Agricultural Water Management, 2011, 98(4): 483−492. doi: 10.1016/j.agwat.2010.09.006
[46] Huang D F, Fang P, Li W H, et al. Effects of water and fertilizer managements on yield, nutrition uptake of rice and of nitrogen and phosphorus loss of runoff from paddy field[J]. Advanced Materials Research, 2012, 10(13): 1527−1532.
[47] Shock C C, Feibert E B G, Seddigh M, et al. Water requirements and growth of irrigated hybrid poplar in a semi-arid environment in eastern oregon[J]. Western Journal of Applied Forestry, 2002, 17(1): 46−53. doi: 10.1093/wjaf/17.1.46
[48] Xi B Y, Wang Y, Jia L M, et al. Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: implications for irrigation water management[J]. Agricultural Water Management, 2013, 117(3): 83−92.
[49] Landhäusser S M, Rodriguez A J, Marenholtz E H, et al. Effect of stock type characteristics and time of planting on field performance of aspen (Populus tremuloides Michx.) seedlings on boreal reclamation sites[J]. New Forests, 2012, 43(5−6): 679−693. doi: 10.1007/s11056-012-9346-4
[50] 黄国伟, 杨杉, 李振芳, 等. 不同水分梯度下楸树苗期生长及光合特征比较[J]. 生态科学, 2019, 38(1): 130−136. Huang G W, Yang S, Li Z F, et al. Comparative analysis of the growth and photosynthetic characteristics of the Catalpa bungei seedlings in different water gradients[J]. Ecological Science, 2019, 38(1): 130−136.
[51] Cuesta B, Villar S P, Puertolas J, et al. Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species[J]. Forest Ecology and Management, 2010, 260(1): 71−78. doi: 10.1016/j.foreco.2010.04.002
[52] 李国雷, 刘勇, 祝燕, 等. 国外苗木质量研究进展[J]. 世界林业研究, 2011, 24(2): 27−35. Li G L, Liu Y, Zhu Y, et al. A review of oversea studies of seedling quality[J]. World Forestry Research, 2011, 24(2): 27−35.
[53] 刘英, 曾琪瑶, 曾炳山, 等. 南洋楹无性系抗寒性研究[J]. 中南林业科技大学学报, 2020, 40(5): 7−12. Liu Y, Zeng Q Y, Zeng B S, et al. Physiological analysis on cold resistance of Albizia falcataria clones[J]. Journal of Central South University of Forestry & Technology, 2020, 40(5): 7−12.
[54] 李晓宇, 杨成超, 彭建东, 等. 杨树苗期抗寒性综合评价体系的构建[J]. 林业科学, 2014, 50(7): 44−51. Li X Y, Yang C C, Peng J D, et al. Evaluation system construction for cold resistance of poplar seedlings[J]. Scientia Silvae Science, 2014, 50(7): 44−51.
[55] Villar-Salvador P, Puértolas J, Cuesta B, et al. Increase in size and nitrogen concentration enhances seedling survival in mediterranean plantations: insights from an ecophysiological conceptual model of plant survival[J]. New Forests, 2012, 43(5−6): 755−770. doi: 10.1007/s11056-012-9328-6
-
期刊类型引用(0)
其他类型引用(1)