高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同年龄红松根系氮素吸收及其与根形态和化学性状的关系

任浩 高国强 马耀远 李祖旺 谷加存

任浩, 高国强, 马耀远, 李祖旺, 谷加存. 不同年龄红松根系氮素吸收及其与根形态和化学性状的关系[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200385
引用本文: 任浩, 高国强, 马耀远, 李祖旺, 谷加存. 不同年龄红松根系氮素吸收及其与根形态和化学性状的关系[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200385
Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationships with root morphological and chemical traits in Korean pine (Pinus koraiensis) at different ages[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200385
Citation: Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationships with root morphological and chemical traits in Korean pine (Pinus koraiensis) at different ages[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200385

不同年龄红松根系氮素吸收及其与根形态和化学性状的关系

doi: 10.12171/j.1000-1522.20200385
基金项目: 国家自然科学基金项目(31870608),中央高校基本科研业务费专项(2572020DR05)
详细信息
    作者简介:

    任浩。主要研究方向:根系生理生态学。Email:renhaonefu@163.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号

    责任作者:

    谷加存,教授。主要研究方向:森林培育理论与技术;根系生理生态学。Email:gjcnefu@163.com 地址:同上

  • 中图分类号: S791.247

Root nitrogen uptake and its relationships with root morphological and chemical traits in Korean pine (Pinus koraiensis) at different ages

  • 摘要:   目的  明确不同年龄红松根系氮素吸收及其与根形态和化学性状的关系,增进对根系资源获取策略与树木个体发育之间联系的理解。  方法  本文选取黑龙江省凉水国家级自然保护区阔叶红松林内幼龄((14 ± 1)年)、中龄((48 ± 3)年)和成熟龄((17 ± 4)年)红松为材料,采用稳定性同位素示踪技术研究了各年龄阶段红松根系氮素吸收,同时测定了根系形态和化学性状。  结果  随着红松年龄的增大,根系铵态氮、甘氨酸和总吸收速率均逐渐降低,硝态氮吸收速率则无显著变化。红松不同年龄阶段,各形态氮对根系总氮吸收贡献率均表现铵态氮(62% ~ 65%)> 甘氨酸(25% ~ 32%)> 硝态氮(4% ~ 12%),其中硝态氮贡献率随红松年龄的增大而增大,铵态氮和甘氨酸的贡献率则无显著变化。甘氨酸以分子态被幼龄、中龄和成熟龄红松根系吸收的比例非常接近,分别为78%、81%和80%。根系直径随着红松年龄的增大而显著增粗,与根系铵态氮、甘氨酸和总氮吸收速率呈负相关(仅与甘氨酸相关性显著),与硝态氮吸收速率呈正相关;与此相反,比根长和比根表面积则随着红松年龄的增大呈现降低的趋势,均与根系铵态氮、甘氨酸和总氮吸收速率呈正相关(仅甘氨酸相关性显著),与硝态氮吸收速率呈负相关;根系组织密度和化学性状在红松的各年龄阶段均无显著变化,与根系氮吸收的相关性很低。  结论  随着红松年龄的增大,根系氮素吸收速率和偏好均发生明显改变,这可能与根系形态性状的变化有关。

     

  • 图  1  不同年龄红松根系氮素吸收速率(平均值 ± 标准误差)

    不同小写字母表示不同年龄间差异显著(P < 0.05)Different lowercase letters indicated significant differences among different ages (P < 0.05)

    Figure  1.  Root nitrogen uptake rate of Pinus koraiensis at different ages (mean ± SE)

    图  2  不同年龄红松根系各氮素形态对氮素吸收总量的贡献率

    Figure  2.  Contribution rates of each nitrogen form to total root nitrogen uptake of Pinus koraiensis at different ages

    图  3  不同年龄红松根系15N增量与13C增量的相关性

    Figure  3.  Correlations between 15N excess and 13C excess of root of Pinus koraiensis at different ages

    表  1  阔叶红松林取样木和取样根系附近土壤(0 ~ 10 cm深度)养分特征(平均值 ± 标准误差)

    Table  1.   Sample trees and soil characteristics (0 ~ 10 cm depth) around the roots for isotope labeling in a mixed broad-leaved Korean pine forest (mean ± SE)

    发育阶段
    Ontogenetic stage
    年龄/a
    Age/year
    平均树高
    Mean tree
    height/m
    平均胸径(地径)
    Mean DBH
    (ground diameter)/cm
    土壤全 C
    Total soil carbon/
    (g·kg−1)
    土壤全 N
    Total soil nitrogen/
    (g·kg−1)
    土壤铵态氮
    Soil ammonium/
    (mg·kg−1)
    土壤硝态氮
    Soil nitrate/
    (mg·kg−1)
    土壤 pH
    Soil pH
    幼龄Young 14 ± 1 1.5 ± 0.1 2.3 ± 0.1 27.69 ± 4.21a 2.28 ± 0.22a 50.74 ± 5.44a 20.90 ± 2.12a 5.14 ± 0.11a
    中龄 Middle-aged 48 ± 3 8.4 ± 0.8 10.2 ± 0.7 24.61 ± 1.34a 2.03 ± 0.09a 57.57 ± 8.27a 24.89 ± 5.39a 5.11 ± 0.06a
    成熟龄Mature 217 ± 4 27.0 ± 0.5 61.1 ± 2.2 30.84 ± 5.20a 2.60 ± 0.27a 54.73 ± 4.07a 17.64 ± 3.16a 5.17 ± 0.08a
    注:不同小写字母表示在不同年龄间差异显著(P < 0.05)。Note: Different lowercase letters indicated significant differences among different ages (P < 0.05).
    下载: 导出CSV

    表  2  不同年龄红松根系形态和化学性状(平均值 ± 标准误差)

    Table  2.   Root morphological and chemical traits of Pinus koraiensis at different ages (mean ± SE)

    根系形态和化学性状 Root morphological and chemical traits幼龄 Young中龄 Middle-aged成熟龄 Mature
    根直径 Root diameter/mm 0.40 ± 0.01b 0.46 ± 0.02a 0.46 ± 0.01a
    比根长 Specific root length/(m·g−1) 25.06 ± 1.54a 22.29 ± 2.01a 20.47 ± 0.77a
    根组织密度 Root tissue density/(g·cm−3) 0.30 ± 0.02a 0.28 ± 0.01a 0.29 ± 0.004a
    比根表面积 Specific root surface area/(cm2·g−1) 325.22 ± 16.34a 315.85 ± 18.04a 296.17 ± 4.18a
    根组织N浓度 Root tissue N concentration/(mg·g−1) 12.45 ± 0.41a 13.42 ± 0.61a 12.15 ± 0.68a
    根组织C浓度 Root tissue C concentration/(mg·g−1) 448.67 ± 7.52a 451.02 ± 6.05a 449.27 ± 2.09a
    注:不同小写字母表示在不同年龄间差异显著(P < 0.05)。Note: Different lowercase letters indicated significant differences among different ages (P < 0.05).
    下载: 导出CSV

    表  3  不同年龄红松根系N吸收速率与根系形态和化学性状的Pearson相关性分析

    Table  3.   Pearson’s correlations between root nitrogen uptake rate and morphological and chemical traits of Pinus koraiensis at different ages

    根系形态和化学性状 Root morphological and chemical traitsN吸收速率 Nitrogen uptake rate/(µg·g−1·h−1)
    铵态氮 Ammonium硝态氮 Nitrate甘氨酸 Glycine总N吸收 Total
    根直径 Root diameter/mm−0.3930.435−0.583*−0.443
    比根长 Specific root length/(m·g−1)0.156−0.4350.516*0.233
    组织密度 Root tissue density/(g·cm−3)0.0590.0060.1830.104
    比根表面积 Specific root surface area/(cm2·g−1)0.102−0.3640.3460.146
    组织N浓度 Tissue N concentration/(mg·g−1)0.1160.139−0.0420.096
    组织C浓度 Tissue C concentration/(mg·g−1)−0.219−0.065−0.291−0.271
    注:表内数值为相关系数,*表示显著相关(P < 0.05)。Notes: values in table are coefficients of correlation, * means there is a significant correlation (P < 0.05).
    下载: 导出CSV
  • [1] Lebauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371−379. doi: 10.1890/06-2057.1
    [2] 董雯怡, 聂立水, 李吉跃, 等. 应用15N示踪研究毛白杨苗木对不同形态氮素的吸收及分配[J]. 北京林业大学学报, 2009, 31(4):97−101. doi: 10.3321/j.issn:1000-1522.2009.04.017

    Dong X Y, Nie L S, Li J Y, et al. Effects of nitrogen forms on the absorption and distribution of nitrogen in Populus tomentosa seedlings using the technique of 15N tracing[J]. Journal of Beijing Forestry University, 2009, 31(4): 97−101. doi: 10.3321/j.issn:1000-1522.2009.04.017
    [3] Britto D T, Kronzucker H J. Ecological significance and complexity of N-source preference in plants[J]. Annals of Botany, 2013, 112(6): 957−963. doi: 10.1093/aob/mct157
    [4] 霍常富, 孙海龙, 范志强, 等. 根系氮吸收过程及其主要调节因子[J]. 应用生态学报, 2007, 18(6):1356−1364. doi: 10.3321/j.issn:1001-9332.2007.06.032

    Huo C F, Sun H L, Fan Z Q, et al. Physiological processes and major regulating factors of nitrogen uptake by plant roots[J]. Chinese Journal of Applied Ecology, 2007, 18(6): 1356−1364. doi: 10.3321/j.issn:1001-9332.2007.06.032
    [5] Liese R, Lübbe T, Albers N W, et al. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species[J]. Tree Physiology, 2018, 38(1): 83−95. doi: 10.1093/treephys/tpx131
    [6] Hong J T, Ma X X, Yan Y, et al. Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau?[J]. Plant and Soil, 2018, 424(1−2): 63−72. doi: 10.1007/s11104-017-3434-3
    [7] Song M H, Zheng L L, Suding K N, et al. Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization[J]. Plant and Soil, 2015, 394(1−2): 215−224. doi: 10.1007/s11104-015-2532-3
    [8] Leduc S D, Rothstein D E. Plant-available organic and mineral nitrogen shift in dominance with forest stand age[J]. Ecology, 2010, 91(3): 708−720. doi: 10.1890/09-0140.1
    [9] Jagodzinski A M, Ziółkowski J, Warnkowska A, et al. Tree age effects on fine root biomass and morphology over chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa stands[J]. PLoS ONE, 2016, 11(2): e148668.
    [10] Hishi T, Tateno R, Fukushima K, et al. Changes in the anatomy, morphology and mycorrhizal infection of fine root systems of Cryptomeria japonica in relation to stand ageing[J]. Tree Physiology, 2016, 37: 61−70.
    [11] Liu M, Xu F Z, Xu X L, et al. Age alters uptake pattern of organic and inorganic nitrogen by rubber trees[J]. Tree Physiology, 2018, 38: 1685−1693.
    [12] 李常诚, 李倩茹, 徐兴良, 等. 不同林龄杉木氮素的获取策略[J]. 生态学报, 2016, 36(9):2620−2625.

    Li C C, Li Q R, Xu X L, et al. Nitrogen acquisition strategies of Cunninghamia lanceolate at different ages.[J]. Acta Ecologica Sinica, 2016, 36(9): 2620−2625.
    [13] Zhang Z L, Li N, Xiao J, et al. Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China[J]. Soil Biology and Biochemistry, 2018, 119: 50−58. doi: 10.1016/j.soilbio.2018.01.002
    [14] 翟明普, 沈国舫. 森林培育学(第3版)[M]. 北京: 中国林业出版社, 2016.

    Zhai M P, Shen G F. Silviculture (3rd Edit)[M]. Beijing: China Forestry Publishing House, 2016.
    [15] Warren C R, Adams P R. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests[J]. Tree Physiology, 2007, 27(3): 413−419. doi: 10.1093/treephys/27.3.413
    [16] Liu M, Li C C, Xu X L, et al. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests[J]. Tree Physiology, 2017, 37(11): 1515−1526. doi: 10.1093/treephys/tpx046
    [17] Lipson D, Näsholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems[J]. Oecologia, 2001, 128(3): 305−316. doi: 10.1007/s004420100693
    [18] Warren C R. Potential organic and inorganic N uptake by six Eucalyptus species[J]. Functional Plant Biology, 2006, 33(7): 653−660. doi: 10.1071/FP06045
    [19] Wei L L, Chen C R, Xu Z H, et al. Direct uptake and rapid decrease of organic nitrogen by Wollemia nobilis[J]. Biology and Fertility of Soils, 2013, 49(8): 1247−1252. doi: 10.1007/s00374-013-0818-2
    [20] Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673−683. doi: 10.1111/j.1469-8137.2008.02573.x
    [21] Gu J C, Xu Y, Dong X Y, et al. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species[J]. Tree Physiology, 2014, 34(4): 415−425. doi: 10.1093/treephys/tpu019
    [22] Geßler A, Kreuzwieser J, Dopatka T, et al. Diurnal courses of ammonium net uptake by the roots of adult beech (Fagus sylvatica) and spruce (Picea abies) trees[J]. Plant and Soil, 2002, 240(1): 23−32. doi: 10.1023/A:1015831304911
    [23] Mckane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra[J]. Nature, 2002, 415: 68−71. doi: 10.1038/415068a
    [24] Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine north American trees[J]. Ecological Monographs, 2002, 72(2): 293−309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
    [25] 张韫, 崔晓阳. 白桦幼苗NH4+/NO3吸收特征的研究[J]. 北京林业大学学报, 2011, 33(3):26−30.

    Zhang Y, Cui X Y. NH4+/NO3 absorption characteristics of Betula platyphylla seedlings[J]. Journal of Beijing Forestry University, 2011, 33(3): 26−30.
    [26] Zhu F F, Dai L M, Hobbie E A, et al. Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of northeast China[J]. Frontiers in Plant Science, 2019, 10: 1−11.
    [27] Rosenvald K, Ostonen I, Uri V, et al. Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence[J]. European Journal of Forest Research, 2013, 132(2): 219−230. doi: 10.1007/s10342-012-0669-7
    [28] Jagodzinski A M, Kalucka I. Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap[J]. Dendrobiology, 2010, 64: 19−30.
    [29] 曾凡鹏, 迟光宇, 陈欣, 等. 辽东山区不同林龄落叶松人工林土壤−根系C∶N∶P生态化学计量特征[J]. 生态学杂志, 2016, 35(7):1819−1825.

    Zeng F P, Chi G Y, Chen X, et al. The stoichiometric characteristics of C, N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province, China.[J]. Chinese Journal of Ecology, 2016, 35(7): 1819−1825.
    [30] Robinson D, Hodge A, Fitter A. Constraints on the form and function of root systems[M]//de Kroon H., Visser E J W, eds. Root ecology. Berlin: Springer, 2003, 168: 1−31.
    [31] Kong D L, Wang J J, Zeng H, et al. The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots[J]. New Phytologist, 2017, 213(4): 1569−1572. doi: 10.1111/nph.14344
    [32] Guo D L, Mitchell R J, Hendricks J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 2004, 140(3): 450−457. doi: 10.1007/s00442-004-1596-1
    [33] Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits[J]. Nature, 2018, 555: 94−97. doi: 10.1038/nature25783
    [34] Bowsher A W, Miller B J, Donovan L A. Evolutionary divergences in root system morphology, allocation, and nitrogen uptake in species from high- versus low-fertility soils[J]. Functional Plant Biology, 2016, 43(2): 129−140. doi: 10.1071/FP15162
    [35] Comas L H, Eissenstat D M. Patterns in root trait variation among 25 co-existing North American forest species[J]. New Phytologist, 2009, 182(4): 919−928. doi: 10.1111/j.1469-8137.2009.02799.x
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  41
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-05-12
  • 网络出版日期:  2021-09-10

目录

    /

    返回文章
    返回