Functional analysis of P-glycoprotein in drug metabolism of Bursaphelenchus xylophilus
-
摘要:
目的 探究松材线虫对药物敏感能力产生的分子机制,为防治松材线虫提供理论基础。 方法 本研究从松材线虫基因组中获得秀丽线虫同源解毒基因Bx-pgp23,并对该基因蛋白编码区进行PCR扩增,随后通过生物信息学对蛋白质Bx-PGP23理化性质、亲疏水性、跨膜区分布、磷酸化位点、二级结构和三级结构进行了分析和预测。并通过RNAi技术对Bx-pgp23进行沉默处理,分析Bx-pgp23沉默与否对松材线虫药物敏感程度的影响。 结果 生物信息预测结果显示PGP蛋白稳定系数为38.31,亲水系数为−0.018,三级结构预测PGP蛋白具有多个氨基酸参与构成α螺旋和β折叠并且具有多个核苷酸结合域和跨膜结构域。应用RNAi技术对Bx-pgp23基因进行基因沉默,沉默后的Bx-pgp23基因表达量变为原来的42.65%。药剂敏感性检测实验结果显示,在1.5和2.5 g/L苦参碱溶液处理24 h后,RNAi组松材线虫死亡率与对照组相比升高了7.2%和6.4%,在1.5和2.5 g/L的苦参碱溶液处理48 h后,RNAi组松材线虫死亡率与对照组相比升高9.0%和7.2%。 结论 蛋白质Bx-PGP23是一种稳定的亲水蛋白,具有跨膜外排功能。成功克隆Bx-pgp23基因并合成了该基因dsRNA。Bx-pgp23基因沉默影响了松材线虫对苦参碱的敏感性,在相同质量浓度的苦参碱胁迫下,RNAi组线虫死亡率明显高于对照组,说明Bx-pgp23基因在松材线虫药物代谢调控中发挥着正向调控作用。 Abstract:Objective This paper aims to reveal the molecular mechanism of drug sensitivity of Bursaphelenchus xylophilus to provide a theoretical basis for the control of B. xylophilus. Method In this study, the homologous detoxification gene Bx-pgp23 of Caenorhabditis elegans was obtained from the genome of Bursaphelenchus xylophilus, and PCR amplified the protein-coding region of the gene. Subsequently, the physicochemical properties, hydrophobicity, transmembrane distribution, phosphorylation sites, secondary structure, and tertiary structure of the protein Bx-PGP23 were analyzed and predicted by bioinformatics. The effect of Bx-pgp23 silencing on drug sensitivity of B. xylophilus was analyzed by RNAi technology. Result Bioinformatics prediction indicated that the stability coefficient of PGP protein was 38.31 and the hydrophilic coefficient was −0.018. The tertiary structure predicted that PGP protein had multiple amino acids involved in the formation of α-helix and β-sheet with multiple nucleotide-binding domains and transmembrane domain. The gene silencing of Bx-pgp23 gene was performed by RNAi technology, after that, the expression of Bx-pgp23 gene was changed to 42.65% of the original. The results of the bioassay experiment suggested that after 24 h treatment with 1.5 and 2.5 g/L matrine solution, the mortality rate of pine nematode increased by 7.2% and 6.4% in the RNAi group compared with the control group, respectively. After treatment for 48 h with 1.5 and 2.5 g/L matrine solution, the mortality rate of B. xylophilus in the RNAi group increased by 9.0% and 7.2% compared with the control group. Conclusion Protein Bx-PGP23 was a stable hydrophilic protein with transmembrane efflux function. The Bx-pgp23 gene was successfully cloned and the dsRNA of the gene was synthesized. Bx-pgp23 gene silencing affected the sensitivity of B. xylophilus to matrine solution and the mortality rate of B. xylophilus in the RNAi group was significantly higher than the control group under the same mass concentration of matrine solution. The results demonstrate that the Bx-pgp23 gene plays a positive regulatory role in the regulation of drug metabolism in B. xylophilus. -
Key words:
- Bursaphelenchus xylophilus /
- P-glycoprotein /
- bioinformatics /
- RNAi
-
表 1 Bx-pgp23与8种线虫同源序列比对
Table 1. Alignment of Bx-pgp23 with 8 nematode homologous sequences
种名 Species name NCBI号 NCBI No. 比对得分 Comparison score E值 E value 同源性 Homology/% 捻转血矛线虫 Haemonchus contortus AFX93750.1 1 402 0 54.50 长形杯环线虫 Cylicocyclus elongatus AJM87336.1 1 398 0 53.39 环纹背带线虫 Teladorsagia circumcincta SJL35509.1 1 380 0 54.72 简单异尖线虫 Anisakis simplex AXS78254.1 1 375 0 54.04 秀丽线虫 Caenorhabditis elegans NP507487.1 1 329 0 51.14 鼠圆线虫 Strongyloides ratti XP024500556.1 1 328 0 51.24 胎生网尾线虫 Dictyocaulus viviparus KJH44478.1 1 256 0 48.65 锡兰钩虫 Ancylostoma ceylanicum EPB71825.1 1 240 0 51.06 注:E值表示在随机的情况下,其他序列与目标序的列相似度要大于这条显示的序列的可能性。Note: E value represents the similarity between other sequences and the target sequence which is greater than the possibility of this displayed sequence, in the case of random. -
[1] 郝昕. 松材线虫多效耐药基因克隆及功能研究[D]. 哈尔滨: 东北林业大学, 2019.Hao X. Cloning and functional analysis of multidrug resistance gene in Bursaphelenchus xylophilus[D]. Harbin: Northeast Forestry University, 2019. [2] 孙红, 周艳涛, 李晓冬, 等. 2020年全国主要林业有害生物发生情况及2021年发生趋势预测[J/OL]. 中国森林病虫 [2021−03−24]. https://doi.org/10.19688/j.cnki.issn1671-0886.20210004.Sun H, Zhou Y T, Li X D, et al. Occurrence of major forestry pests in China in 2020 and prediction of occurrence trend in 2021[J/OL]. Forest Pest and Disease [2021−03−24]. https://doi.org/10.19688/j.cnki.issn1671-0886.20210004. [3] 胡龙娇, 吴小芹. 松树抗松材线虫病机制研究进展[J]. 生命科学, 2018, 30(6):659−666.Hu L J, Wu X Q. Research progress on the mechanism of pine response to the infection of Bursaphelenchus xylophilus[J]. Chinese Bulletin of Life Sciences, 2018, 30(6): 659−666. [4] 徐晓朋. 松材线虫病综合防治技术[J]. 绿色科技, 2019, 10(19):102−103, 107. doi: 10.3969/j.issn.1674-9944.2019.19.040Xu X P. Comprehensive control technology of Bursaphelenchus xylophilus[J]. Journal of Green Science and Technology, 2019, 10(19): 102−103, 107. doi: 10.3969/j.issn.1674-9944.2019.19.040 [5] 覃贵勇. 我国松材线虫病化学防治研究进展[J]. 河南农业, 2016, 8(23):38−40.Qin G Y. Research progress on chemical control of Bursaphelenchus xylophilus in China[J]. Agriculture of Henan, 2016, 8(23): 38−40. [6] Matsuda K, Kimura M, Komai K, et al. Nematicidal activities of (-)-N-methylcytisine and (-)-anagyrine from Sophora flavescens against pine wood nematodes (organic chemistry)[J]. Agricultural & Biological Chemistry, 1989, 53(8): 2287−2288. [7] Matsuda K, Yamada K, Kimura M, et al. Nematicidal activity of matrine and its derivatives against pine wood nematodes[J]. Journal of Agricultural & Food Chemistry, 1991, 39(1): 189−191. [8] 崔慕华, 孙敦恒, 蒋显龙, 等. 苦参碱灌根防治山药根结线虫病效果初报[J]. 长江蔬菜, 2005(12):35.Cui M H, Sun D H, Jiang X L, et al. Preliminary report on the effect of matrine root irrigation on controlling yam root knot nematode[J]. Journal of Changjiang Vegetables, 2005(12): 35. [9] Dassa E, Bouige P. The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms[J]. Research in Microbiology, 2001, 152(3−4): 229. [10] 柏家林, 蔡葵蒸, 何进全. P糖蛋白介导的寄生虫抗药性及其逆转的研究进展[J]. 中国兽医科学, 2010, 40(10):1085−1092.Bai J L, Cai K Z, He J Q. Advances in P-glycoprotein-mediated anthelmintic resistance and its reversal in parasites[J]. Chinese Veterinary Science, 2010, 40(10): 1085−1092. [11] Stupp G S, Reuss S, Izrayelit Y, et al. Chemical detoxification of small molecules by Caenorhabditis elegans[J]. Acs Chemical Biology, 2013, 8(2): 309−313. doi: 10.1021/cb300520u [12] Broeks A, Janssen H W, Calafat J, et al. A P-glycoprotein protects Caenorhabditis elegans against natural toxins[J]. The EMBO Journal, 1995, 14(9): 1858−1866. doi: 10.1002/j.1460-2075.1995.tb07178.x [13] Ardelli B F, Prichard R K. Inhibition of P-glycoprotein enhances sensitivity of Caenorhabditis elegans to ivermectin[J]. Veterinary Parasitology, 2013, 191(3−4): 264−275. doi: 10.1016/j.vetpar.2012.09.021 [14] Graef J D, Demeler J, Skuce P, et al. Gene expression analysis of ABC transporters in a resistant Cooperia oncophora isolate following in vivo and in vitro exposure to macrocyclic lactones[J]. Parasitology, 2013, 140(4): 1−10. [15] 许佳瑶, 陈俏丽, 张瑞芝, 等. 松材线虫Bx-ubc-3基因克隆及泛素通路鉴定[J]. 森林工程, 2019, 35(5):9−15. doi: 10.3969/j.issn.1006-8023.2019.05.002Xu J Y, Chen Q L, Zhang R Z, et al. Genetic cloning of Bx-ubc-3 and identification of ubiquitin pathway from Bursaphelenchus xylophilus[J]. Forest Engineering, 2019, 35(5): 9−15. doi: 10.3969/j.issn.1006-8023.2019.05.002 [16] 郝昕, 王峰, 马玲, 等. 松材线虫耐药基因克隆及其功能[J]. 东北林业大学学报, 2018, 46(9):89−92, 97. doi: 10.3969/j.issn.1000-5382.2018.09.019Hao X, Wang F, Ma L, et al. Cloning and function of resistance gene of Bursaphelenchus xylophilus[J]. Journal of Northeast Forestry University, 2018, 46(9): 89−92, 97. doi: 10.3969/j.issn.1000-5382.2018.09.019 [17] Kikuchi T, Cotton J A, Dalzell J J, et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J/OL]. PLoS Pathogens, 2011, 7(9): e1002219 [2020−14−13]. https://doi.org/10.1371/journal.ppat.1002219. [18] Seddigh S, Darabi M. Functional, structural, and phylogenetic analysis of mitochondrial cytochrome b (cytb) in insects[J]. Mitochondrial DNA Part A, 2018, 29(2): 236−249. doi: 10.1080/24701394.2016.1275596 [19] Diao J, Hao X, Ma W, et al. Bioinformatics analysis of structure and function in the MRP gene family and its expression in response to various drugs in Bursaphelenchus xylophilus[J]. Journal of Forestry Research, 2021, 32(2): 779−787. doi: 10.1007/s11676-019-01086-6 [20] 王军伟, 吴秋云, 毛舒香, 等. 外源物质调控芥蓝幼苗CYP83A1基因表达及其生物信息学分析[J]. 分子植物育种, 2019, 17(24):7996−8004.Wang J W, Wu Q Y, Mao S X, et al. Regulation of CYP83A1 gene expression in cabbage seedling by exogenous substances and its bioinforma analysis[J]. Molecular Plant Breeding, 2019, 17(24): 7996−8004. [21] 念波. 松材线虫谷胱甘肽巯基转移酶基因BxGST3和BxGST1全长克隆和功能分析[D]. 南京: 南京林业大学, 2017.Nian B. Full-length cloning and functional analysis of glutathione S-transferase genes BxGST3 and BxGST1 from Bursaphelenchus xylophilus[D]. Nanjing: Nanjing Forestry University, 2017. [22] 王博文, 刘伟璐, 王峰, 等. 低温调控Bx-SCD促进松材线虫脂肪积累[J]. 东北林业大学学报, 2017, 45(7):89−93. doi: 10.3969/j.issn.1000-5382.2017.07.018Wang B W, Liu W L, Wang F, et al. Fat accumulation in Bursaphelenchus xylophilus by positively regulating Bx-SCD under low temperature[J]. Journal of Northeast Forestry University, 2017, 45(7): 89−93. doi: 10.3969/j.issn.1000-5382.2017.07.018 [23] Ali S, Zhang C, Wang Z, et al. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius)[J]. Scientific Reports, 2017, 7: 1−14. doi: 10.1038/s41598-016-0028-x [24] Li Y, Zheng C, Liu K, et al. Transformation of multi-antibiotic resistant Stenotrophomonas maltophilia with GFP gene to enable tracking its survival on pine trees[J]. Forests, 2019, 10(3): 231. doi: 10.3390/f10030231 [25] Kerboeuf D, Guegnard F. Anthelmintics are substrates and activators of nematode P glycoprotein[J]. Antimicrobial Agents & Chemotherapy, 2011, 55(5): 2224−2232. [26] Dermauw W, van Leeuwen T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance[J]. Insect Biochemistry and Molecular Biology, 2014, 45(1): 89−110. -