Design and simulation of the automatic-leveling high-position platform in orchards
-
摘要:目的 我国果园机械化程度低,尤其缺少丘陵山地果园的机械,目前果园疏花疏果、套袋、采摘等繁重工作主要依靠人工架梯完成。设计一款适用于丘陵山区苹果园的高位自动调平平台,可以提高果园采收机械的采收效率、安全性和稳定性。方法 根据果园地形特点和果树高度确定平台设计要求和调平方式,确定俯仰、侧倾不同部分尺寸关系,液压缸所需推力、平台角度和液压缸位移量的关系;建立平台控制系统数学模型,使用增量式PID控制器,以不同干扰信号在Simulink中仿真控制调平性能;在Adams中设计极限倾翻坡度实验,平台在不同姿态、不同升降高度和不同载质量情况下仿真验证其安全性。结果 建立各部分的数学关系,确定各部分基本尺寸,从而建立了平台三维模型。在控制系统仿真中,俯仰、侧倾控制系统在阶跃干扰信号下能使工作台很快回到水平位置,调平时间分别为1.6、2.1 s,超调量均为0;俯仰、侧倾控制系统在正弦干扰信号下能使工作台始终保持在0°附近,波动范围分别在0.15°、0.19°内。平台极限倾翻坡度仿真实验表明平台的倾翻稳定性随着举升高度和载质量的增加而降低,相比无调平时,有调平时的最小极限倾翻坡度增加了24.77%,平台安全性明显提高。结论 设计的果园高位自动调平平台能够在不同干扰下始终保持水平,具有较好的抗倾翻能力,安全可靠,能够满足丘陵山地果园的使用需求。Abstract:Objective There is a low degree of mechanization in China, especially the lack of machinery for hilly orchards. At present, the flower thinning, fruit-separated, bagging, picking and other heavy works of orchards mainly rely on artificial ladders. In order to improve the harvest efficiency, safety and stability of orchard harvesting machinery, we designed an automatic-leveling high-position platform suitable for apple orchards in hilly areas.Method Based on the characteristics of orchard terrain and the height of fruit trees, the design requirements and leveling methods of the platform, the size of different parts of pitch and roll, the thrust required by the hydraulic cylinder, the relationship between platform angle and the displacement of hydraulic cylinder were determined. A mathematical model of the platform control system was established. Then, we used an incremental PID controller to simulate the control leveling performance in Simulink with different interference signals. An extreme inclination slope experiment in Adams was designed, where the platform was simulated to verify the safety under different postures, different lifting heights and varied loads.Result The mathematical relationship of each part was established, and the basic dimensions of each part were determined so as to establish the three-dimensional model of the platform. In the control system simulation, the pitch and roll control systems can quickly return the platform to the horizontal position under the step interference signal. The leveling time was 1.6 and 2.1 s, respectively, and the overshoot was 0. Under the sinusoidal interference signal, the pitch and roll control system can keep the platform near 0°, and the fluctuation range was between 0.15° and 0.19°. The limit tilting slope simulation experiment of the platform revealed that the platform’s tilting stability decreased with the increase of lifting height and load. Compared with the case without leveling, the minimum limit tilt angle with leveling increased by 24.77%, so the safety of platform significantly improved.Conclusion The designed automatic leveling high-position platform in orchards can always maintain level under different interferences, with good anti-tilting ability, safety and reliability, and can meet the needs of hilly orchards.
-
Keywords:
- orchard harvesting machinery /
- automatic leveling /
- PID control /
- tilting experiment
-
-
图 2 升降及俯仰调平机构原理
O、O1分别为升降、俯仰调平机构坐标系原点;DE为工作台,PQ为升降液压缸,MN为俯仰液压缸;OD和EH为剪叉臂,其中OB、BD、EB和BH长度相等(mm);A、C两点为升降液压缸上下两端与剪叉臂的连接点,且AP与EH垂直,CQ与OB垂直;O和E分别为剪叉臂与机架、工作台的铰接点;D、H两点为铰接滑轮,滑轮与机架、工作台的滑轨相切,B点是两剪叉臂铰接点;h为工作台升起高度(mm);G为工作台和被载物体的总重(N);α为剪叉臂与水平面夹角(°);β为MO1与O1B的夹角(°);φ为俯仰臂O1D绕O1点转动的角度(°);θ为工作台与水平面夹角,即平台俯仰角(°);F1为升降液压缸推力(N);F2为俯仰液压缸推力(N)。O is the origin of lifting coordinate system, and O1 is the origin of pitch leveling mechanism coordinate system. DE is the platform, PQ is lifting hydraulic cylinder, MN is pitch hydraulic cylinder; OD and EH are scissor arms, and the lengths of OB, BD, EB and BH are equal (mm). A is the connection point between the upper end of lifting hydraulic cylinder and scissor arm, C is connection point between the lower end of lifting hydraulic cylinder and scissor arm, and AP is perpendicular to EH, and CQ is perpendicular to OB. O is hinge point between scissor arm and frame, E is the hinge point of scissor arm and platform; D and H are hinged pulleys, the pulley is tangent to slide rail of the rack and platform, B is hinge point of two scissor arms. h is lifting height of platform (mm). G is total mass of platform and the loaded object (N). α is the angle between scissor arm and horizontal plane (°). β is the angle between MO1 and O1B (°). φ is the angle that tilt arm O1D rotates around O1 point (°). θ is platform pitch angle between platform and horizontal plane (°). F1 is the thrust of lifting hydraulic cylinder (N). F2 is thrust of pitch hydraulic cylinder (N).
Figure 2. Principles of lifting and pitch leveling mechanism
图 3 侧倾调平机构原理
I1J1、IJ为侧倾液压缸;α1为侧倾液压缸I1J1与水平面的夹角(°);β1为侧倾液压缸IJ与水平面的夹角(°);θ1为平台与水平面的夹角,即平台侧倾角(°);O2为原点,I、I1、O3为底盘上的固定点;O3J1J为机架;O3R1与侧倾液压缸I1J1垂直,O3R与侧倾液压缸IJ垂直;e为机架上方总重G1在X2轴平行方向上与O2的距离,(mm);F3、F4为侧倾液压缸的推力(N)。I1J1 and IJ are the roll hydraulic cylinders, α1 is angle between roll hydraulic cylinder I1J1 and the horizontal plane (°). β1 is angle between roll hydraulic cylinder IJ and horizontal plane (°). θ1 is the angle between platform and horizontal plane, i.e. the platform roll angle (°). O2 is the origin, I,I1 and O3 are the fixed points on chassis, O3J1J is frame. O3R1 is perpendicular to the roll cylinder I1J1, O3R is perpendicular to roll cylinder IJ. e is the distance between total mass G1 and O2 in the direction parallel to X2 axis. F3 and F4 are thrust of roll hydraulic cylinder (N).
Figure 3. Principle of roll leveling mechanism
表 1 果园作业平台设计参数
Table 1 Design parameters of orchard operating platform
参数 Parameter 数值 Value 整机尺寸 Overall size 1 900 mm × 1 400 mm × 2 000 mm 整机质量 Overall mass/kg 1 200 最大载质量 Maximum load/kg 300 升降高度 Lifting height/mm 0 ~ 1 150 转弯半径 Turning radius/m 3 行驶速度 Drving speed/(km·h−1) 0 ~ 5 表 2 升降及俯仰调平机构尺寸
Table 2 Dimensions of lifting and pitch leveling structures
参数 Parameter 数值 Value lAB /mm220 lBC /mm702 lAP /mm70 lCQ /mm97 lEH /mm1 722 lO1N /mm411 lO1M /mm163 lO1D /mm561 β/(°) 88 注: lAB 、lBC 、lAP 和lCQ 分别为升降机构AB、BC、AP和CQ的长度;lEH为剪叉臂EH的长度;lO1N 、lO1M 和lO1D 分别为俯仰调平机构部分O1N、O1M和O1D的长度;β为MO1与O1B的夹角。Notes:lAB ,lBC ,lAP andlCQ are length of lifting mechanism AB, BC, AP and CQ, respectively. lEH is the length of scissor arm EH.lO1N ,lO1M andlO1D are length of pitch leveling mechanism O1N, O1M and O1D, respectively. β is angle between MO1 and O1B.表 3 侧倾调平结构尺寸
Table 3 Dimensions of roll leveling structures
参数 Parameter 数值 Value α1/(°) 28 ~ 70.5 lIO3 /mm264 lIJ /mm320 ~ 390 lI1I /mm373 注:α1为侧倾液压缸I1J1与水平面的夹角; lIO3 为侧倾调平机构部分IO3的长度;lIJ 和lI1I 分别为IJ和I1I的长度。Notes: α1 is the angle between roll hydraulic cylinder I1J1 and horizontal plane.lIO3 is length of tilting leveling mechanism IO3.lIJ andlI1I are the lengths of IJ and I1I, respectively. -
[1] 孙振杰. 履带式多功能果园作业平台的设计与研究[D]. 保定: 河北农业大学, 2012. Sun Z J. Design and research of crawler multifunctional orchard operating platform[D]. Baoding: Hebei Agricultural University, 2012.
[2] 郑永军, 江世界, 陈炳太, 等. 丘陵山区果园机械化技术与装备研究进展分析[J]. 农业机械学报, 2020, 51(11):1−20. doi: 10.6041/j.issn.1000-1298.2020.11.001. Zheng Y J, Jiang S J, Chen B T, et al. Review on technology and equipment of the mechanization in hilly orchard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 1−20. doi: 10.6041/j.issn.1000-1298.2020.11.001.
[3] 王利民, 刘佳, 高建孟. 中国苹果空间分布格局及年际动态变化分析[J]. 中国农业信息, 2019, 31(4):84−93. Wang L M, Liu J, Gao J M. Analysis of spatial pattern and interannual dynamics of apple planting area in China[J]. China Agricultural Informatics, 2019, 31(4): 84−93.
[4] 罗海风, 谭月胜. 一种欠驱动双板分离式采摘器的研制[J]. 北京林业大学学报, 2018, 40(12):110−116. Luo H F, Tan Y S. Research on an under actuated dual separation plate harvestor[J]. Journal of Beijing Forestry University, 2018, 40(12): 110−116.
[5] 邓享, 阚江明, 李文彬. 背负式林果采摘机的人机工程学评价[J]. 北京林业大学学报, 2017, 39(6):131−136. Deng X, Kan J M, Li W B. Ergonomics evaluation of knapsack forest-fruit-picking machine[J]. Journal of Beijing Forestry University, 2017, 39(6): 131−136.
[6] 齐文超, 李彦明, 陶建峰, 等. 丘陵山地拖拉机姿态主动调整系统设计与实验[J]. 农业机械学报, 2019, 50(7):381−388. doi: 10.6041/j.issn.1000-1298.2019.07.042. Qi W C, Li Y M, Tao J F, et al. Design and experiment of active attitude adjustment system for hilly area tractors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 381−388. doi: 10.6041/j.issn.1000-1298.2019.07.042.
[7] 齐文超, 李彦明, 张锦辉, 等. 丘陵山地拖拉机车身调平双闭环模糊PID控制方法[J]. 农业机械学报, 2019, 50(10):17−23, 34. doi: 10.6041/j.issn.1000-1298.2019.10.002. Qi W C, Li Y M, Zhang J H, et al. Double closed loop fuzzy pid control method of tractor body leveling on hilly and mountainous areas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 17−23, 34. doi: 10.6041/j.issn.1000-1298.2019.10.002.
[8] 周浩, 胡炼, 罗锡文, 等. 旋耕机自动调平系统设计与试验[J]. 农业机械学报, 2016, 47(增刊 1):117−123. Zhou H, Hu L, Luo X W, et al. Design and experiment on auto leveling system of rotary tiller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(Suppl. 1): 117−123.
[9] 胡炼, 林潮兴, 罗锡文, 等. 农机具自动调平控制系统设计与试验[J]. 农业工程学报, 2015, 31(8):15−20. Hu L, Lin C X, Luo X W, et al. Design and experiment on auto leveling control system of agricultural implements[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 15−20.
[10] 李钊, 樊桂菊, 张昊, 等. 农机具自动调平现状及趋势分析[J]. 中国农机化学报, 2019, 40(4):48−53. Li Z, Fan G J, Zhang H, et al. Analysis on the present situation and tendency of automatic leveling in agricultural machinery[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 48−53.
[11] 刘大为, 谢方平, 李旭, 等. 果园采摘平台行走机构的研究现状及发展趋势[J]. 农机化研究, 2013, 35(2):249−252. doi: 10.3969/j.issn.1003-188X.2013.02.061. Liu D W, Xie F P, Li X, et al. Research status and development trend of running gear in orchard picking platform[J]. Journal of Agricultural Mechanization Research, 2013, 35(2): 249−252. doi: 10.3969/j.issn.1003-188X.2013.02.061.
[12] Lee S S, Kim J T, Park W Y. Structural analysis for the development of a vertically raise type aerial work machinery[J]. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 2017, 10(3): 225−231. doi: 10.17661/jkiiect.2017.10.3.225
[13] Lee S S, Kim J T, Park W Y. Development of centralized controller with remote control and hydraulic lift[J]. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 2017, 10(3): 232−241. doi: 10.17661/jkiiect.2017.10.3.232
[14] 刘丽星, 刘洪杰, 裴晓康. 果园作业平台现状及发展趋势[J]. 现代农业科技, 2020(5):154−156, 163. doi: 10.3969/j.issn.1007-5739.2020.05.096 Liu L X, Liu H J, Pei X K. Current situation and development trend of orchard work platform[J]. Modern Agricultural Science and Technology, 2020(5): 154−156, 163. doi: 10.3969/j.issn.1007-5739.2020.05.096
[15] 刘西宁, 朱海涛, 巴合提. 牧神LG–1型多功能果园作业机的研制[J]. 新疆农机化, 2009, 30(1):42−44. doi: 10.3969/j.issn.1007-7782.2009.01.021 Liu X N, Zhu H T, Baheti. Development of Mushen LG-1 multifunctional orchard working machine[J]. Xinjiang Agricultural Mechanization, 2009, 30(1): 42−44. doi: 10.3969/j.issn.1007-7782.2009.01.021
[16] 崔志超, 管春松, 陈永生, 等. 温室用小型多功能电动履带式作业平台设计[J]. 农业工程学报, 2019, 35(9):48−57. doi: 10.11975/j.issn.1002-6819.2019.09.006. Cui Z C, Guan C S, Chen Y S, et al. Design of small multi-functional electric crawler platform for greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 48−57. doi: 10.11975/j.issn.1002-6819.2019.09.006.
[17] Fan G J, Wang Y Z, Zhang X H. Development and experiment of lifting platform for orchards in hilly area[J]. Applied Mechanics and Materials, 2017, 865: 111−117. doi: 10.4028/www.scientific.net/AMM.865.111.
[18] 樊桂菊, 王永振, 张晓辉, 等. 果园升降平台自动调平控制系统设计与试验[J]. 农业工程学报, 2017, 33(11):38−46. doi: 10.11975/j.issn.1002-6819.2017.11.005. Fan G J, Wang Y Z, Zhang X H, et al. Design and experiment of automatic leveling control system for orchards lifting platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 38−46. doi: 10.11975/j.issn.1002-6819.2017.11.005.
[19] 刘大为, 谢方平, 李旭, 等. 小型果园升降作业平台的设计与试验[J]. 农机工程学报, 2015, 31(3):113−121. Liu D W, Xie F P, Li X, et al. Design and experiment of small lifting platform in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 113−121.
[20] 王小龙, 谢方平, 刘大为, 等. 果园升降平台调平装置的设计[J]. 湖南农业大学学报, 2014, 40(5):548−551. Wang X L, Xie F P, Liu D W, et al. Design and experiment of the leveling device of the orchard lifting platform[J]. Journal of Hunan Agricultural University, 2014, 40(5): 548−551.
[21] Duan Z H, Qiu W, Ding W M, et al. Tilting stability analysis and experiment of the 3-DOF lifting platform for hilly orchards[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 73−80. doi: 10.25165/j.ijabe.20181106.3523.
[22] 袁文龙, 李明远, 滕新素, 等. 现代新型苹果园适度规模化建园技术标准[J]. 河北农业, 2019(3):48−50. Yuan W L, Li M Y, Teng X S, et al. Modern new apple orchard moderately large-scale construction technology standards[J]. Hebei Agriculture, 2019(3): 48−50.
[23] Tian H Y, Zhang Z Y. Design and simulation based on Pro/E for a hydraulic lift platform in scissors type[J]. Procedia Engineering, 2011, 16: 772−781. doi: 10.1016/j.proeng.2011.08.1153.
[24] 刘俊谊, 杨刚, 张万军, 等. 剪叉式提升机构受力特性分析[J]. 解放军理工大学学报(自然科学版), 2014, 15(2):133−138. Liu J Y, Yang G, Zhang W J, et al. Force analysis of scissor lift mechanisms[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2014, 15(2): 133−138.
[25] 国家技术监督局. 中国成年人人体尺寸: GB10000—1988[S]. 北京: 中国标准化与信息分类编码研究所, 1988. State Bureau of Technical Supervision. Human dimensions of Chinese adults: GB10000−1988[S]. Beijing: China National Institute of Standardization, 1988.
[26] 李四伟. 基于虚位移原理和有限元仿真的剪叉机构优化[J]. 机械工程师, 2017(3):117−118. doi: 10.3969/j.issn.1002-2333.2017.03.053. Li S W. Fork mechanism optimization based on virtual displacement principle and finite meta simulation[J]. Mechanical Engineer, 2017(3): 117−118. doi: 10.3969/j.issn.1002-2333.2017.03.053.
[27] 许益民. 电液比例控制系统分析与设计[M]. 北京: 机械工业出版社, 2005. Xu Y M. Analysis and design of electro-hydraulic proportional control system[M]. Beijing: China Machine Press, 2005.
[28] Eryilmaz B, Wilson B H. Unified modeling and analysis of a proportional valve[J]. Journal of the Franklin Institute, 2005, 343(1): 48−68.
[29] 张兵, 邓子龙. 基于Simulink的比例阀控液压缸的建模与仿真[J]. 机械制造与自动化, 2016, 45(3):105−108. doi: 10.3969/j.issn.1671-5276.2016.03.032. Zhang B, Deng Z L. Simulink based modeling and simulation of the proportional valve controlled cylinder hydraulic system[J]. Machine Building & Automation, 2016, 45(3): 105−108. doi: 10.3969/j.issn.1671-5276.2016.03.032.
[30] 郭洪波, 水涌涛, 李磊, 等. 阀控液压缸动力机构通用传递函数建模与分析[J]. 液压气动与密封, 2018, 38(2):22−25. doi: 10.3969/j.issn.1008-0813.2018.02.006. Guo H B, Shui Y T, Li L, et al. The general transfer function modeling and analysis of the valve-controlled hydraulic cylinder power mechanism[J]. Hydraulics Pneumatics and Seals, 2018, 38(2): 22−25. doi: 10.3969/j.issn.1008-0813.2018.02.006.
[31] 胡寿松. 自动控制原理[M]. 北京: 科学出版社, 2007. Hu S S. Principle of automatic control[M]. Beijing: Science Press, 2007.
[32] 吕广明. 工程机械智能化技术[M]. 北京: 中国电力出版社, 2007. Lü G M. Intelligent technology of engineering machinery[M]. Beijing: China Electric Power Press, 2007.
-
期刊类型引用(16)
1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 . 百度学术
2. 段平,王云川,晋秋梅,李佳. 基于无人机可见光影像的单木胸径估算方法. 测绘与空间地理信息. 2023(01): 14-17 . 百度学术
3. 魏智海,魏姿芃. 基于单木分割及点云特征提取的单木胸径估测. 陕西林业科技. 2023(02): 18-23 . 百度学术
4. 王杰芬,夏磊,林露花,胡璐璐,徐怀兴,王聚中,徐小军. 结合放射线法和无人机影像提取冠幅估算杉木碳储量研究. 浙江林业科技. 2023(05): 42-50 . 百度学术
5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
6. 肖德卿,罗芊芊,范辉华,邱群,周志春. 栽植模式对木荷幼林生长和形质性状家系变异影响. 林业科学. 2022(05): 85-92 . 百度学术
7. 王志波,季蒙,李永乐,李银祥,马世明,张海东. 华北落叶松人工林差分地位指数模型构建. 林业资源管理. 2021(01): 156-163 . 百度学术
8. 杨洋,尤龙辉,叶功富,聂森,程分生,余锦林. 沙质海岸基干林木麻黄幼林模拟抚育预测. 福建农林大学学报(自然科学版). 2021(02): 206-215 . 百度学术
9. 田红灯,申文辉,谭一波,郑威,何琴飞,朱慧,甘国娟. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报. 2021(05): 93-101 . 百度学术
10. 朱晋梅,朱光玉,易烜,杨琬珑,牟村,王琢玙. 湖南省栎类次生林冠幅—胸径模型模拟研究. 湖南林业科技. 2021(03): 46-51 . 百度学术
11. 赵保国,朱江,艾训儒,姚兰,郭秋菊,洪建峰. 水杉原生种群胸径树高与树冠的通径分析. 东北林业大学学报. 2021(10): 16-20 . 百度学术
12. 于晓池,李凤,欧阳,张鹏,郭小龙,肖遥,赵秋玲,杨桂娟,王军辉,麻文俊. 基于表型的灰楸核心种质构建. 林业科学研究. 2021(06): 38-45 . 百度学术
13. 贾鹏刚,夏凯,董晨,冯海林,杨垠晖. 基于无人机影像的银杏单木胸径预估方法. 浙江农林大学学报. 2019(04): 757-763 . 百度学术
14. 张冬燕,王冬至,范冬冬,张健东,李大勇. 不同立地类型华北落叶松人工林冠幅与胸径关系研究. 林业资源管理. 2019(04): 69-73 . 百度学术
15. 伍小敏,徐春,杨汉波,陈炙,郭洪英,黄振,王泽亮. 四川桤木天然林和人工林的单木生长模型研究. 四川林业科技. 2018(04): 8-11+44 . 百度学术
16. 周凤艳. 沙地樟子松不同林龄树高、胸径等生长指标的关系研究. 吉林林业科技. 2017(01): 12-15 . 百度学术
其他类型引用(13)