高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低共熔溶剂木质素的分离及结构性质研究进展

许凤 程鹏 郭宗伟 许阳蕾

许凤, 程鹏, 郭宗伟, 许阳蕾. 低共熔溶剂木质素的分离及结构性质研究进展[J]. 北京林业大学学报, 2021, 43(4): 158-168. doi: 10.12171/j.1000-1522.20200410
引用本文: 许凤, 程鹏, 郭宗伟, 许阳蕾. 低共熔溶剂木质素的分离及结构性质研究进展[J]. 北京林业大学学报, 2021, 43(4): 158-168. doi: 10.12171/j.1000-1522.20200410
Xu Feng, Cheng Peng, Guo Zongwei, Xu Yanglei. Research progress on the fractionation and structural properties of lignin based on deep eutectic solvents[J]. Journal of Beijing Forestry University, 2021, 43(4): 158-168. doi: 10.12171/j.1000-1522.20200410
Citation: Xu Feng, Cheng Peng, Guo Zongwei, Xu Yanglei. Research progress on the fractionation and structural properties of lignin based on deep eutectic solvents[J]. Journal of Beijing Forestry University, 2021, 43(4): 158-168. doi: 10.12171/j.1000-1522.20200410

低共熔溶剂木质素的分离及结构性质研究进展

doi: 10.12171/j.1000-1522.20200410
基金项目: 北京林业大学一流学科建设自主创新项目(2019XKJS0330)
详细信息
    作者简介:

    许凤,博士,教授。主要研究方向:生物质高值化利用。Email:xfx315@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学材料科学与技术学院

  • 中图分类号: TQ351

Research progress on the fractionation and structural properties of lignin based on deep eutectic solvents

  • 摘要: 作为自然界中最丰富的天然可再生芳香类化合物,木质素被认为是生产生物基燃料和化学品的重要原料。工业木质素主要包括碱木质素和木质素磺酸盐,来源于制浆过程。制浆过程中不仅存在操作条件苛刻、能耗大、废水负荷高等问题,而且分离到的工业木质素纯度低、化学结构变化大,影响其后续高值转化利用。为此,需发展温和、清洁、高效的木质素分离技术以降低能耗及减轻污染问题。低共熔溶剂(DES)是一种新兴的绿色溶剂,由氢键供体和氢键受体以一定的摩尔比混合,并通过氢键作用形成的熔点低于其原组分的共晶混合物,具有易合成、稳定性强、生物相容性好、选择性强、可回收利用等优点。近年来DES被广泛应用于木质素的清洁高效分离研究,不同种类的DES对木质素的分离能力有较大差距。一般来说,羧酸类DES对木质素的分离能力较强,而酰胺类DES则相对较差。DES分离的木质素具有纯度高、分子量小、多分散性小的特点,与工业木质素相比具有一定的应用潜力。本文以DES对木质素的分离效率为主线,总结了常见的DES种类,分别阐述了DES组成、反应温度、时间、固液比对木质素分离效率及其结构性质的影响,介绍了DES的回收利用。并针对DES分离木质素过程中存在的问题,从DES筛选、辅助手段及反应条件优化、DES回收利用等研究方面提出了展望,以期为木质素清洁高效分离及其高值化利用提供有益参考。

     

  • 图  1  柳枝稷DES木质素的2D HSQC NMR图谱

                          引自文献[49]。Cited from reference [49].

    Figure  1.  2D HSQC NMR spectra of DES lignin of switchgrass

    图  2  NADES预处理水稻秸秆和循环利用示意图

                          引自文献[57]。Cited from reference [57].

    Figure  2.  Schematic representation of NADES pretreatment of rice straw and recycling

    表  1  不同DES处理木质纤维生物质的木质素分离效率

    Table  1.   Lignin fractionation efficiency of lignocellulosic biomass treated by different DES

    类别
    Category
    氢键供体
    Hydrogen bond
    donor (HBD)
    氢键受体
    hydrogen bond
    acceptor (HBA)
    摩尔比
    Molar ratio
    原料
    Feedstock
    条件
    Condition
    木质素分离效率
    Lignin extraction efficiency/%
    参考文献
    Reference
    羧酸类
    Carboxylic acids
    乳酸
    Lactic acid
    氯化胆碱
    Choline chloride (ChCl)
    杨木 Poplar 145 ℃, 6 h 78.5 [30]
    花旗松
    Pseudotsuga menziesii
    145 ℃, 9 h 58.2 [30]
    5∶1 油棕空果壳
    Oil palm empty fruit bunch (EFB)
    120 ℃, 8 h 88.0 [31]
    3∶1 EFB 100 ℃, 2 h [32]
    2∶1 杨木 Poplar 150 ℃, 4 h 66.4 [33]
    2∶1 蓖麻籽
    Castor seed coats
    160 ℃, 8 h 34.0 [34]
    10∶1 柳木
    Salix matsudana
    120 ℃, 12 h 91.8 [35]
    10∶1 桉木
    Eucalyptus camaldulensis
    110 ℃, 6 h 80.0 [36]
    乳酸
    Lactic acid
    苄基三甲基氯化铵
    Benzyltrimethylammonium chloride (BTMAC)
    2∶1 玉米芯 Corncob 140 ℃, 2 h 63.4 [37]
    乳酸
    Lactic acid
    苄基三乙基氯化铵
    Benzyltriethylammonium chloride (BTEAC)
    2∶1 玉米芯 Corncob 140 ℃, 2 h 56.5 [37]
    乳酸
    Lactic acid
    D(+)-果糖
    D(+)-glucose
    5∶1 EFB 120 ℃, 8 h 55.0 [31]
    甲酸
    Formic acid
    ChCl 2∶1 火炬松
    Pinus taeda
    155 ℃, 2 h [38]
    2∶1 芒草
    Miscanthus spp.
    130 ℃, 30 min, 微波
    130 ℃, 30 min, microwave
    82.0 [39]
    2∶1 EFB 120 ℃, 8 h 61.0 [40]
    丙酸 Propanoic acid ChCl 2∶1 EFB 120 ℃, 8 h 20.4 [40]
    丁酸 Butanoic acid ChCl 2∶1 EFB 120 ℃, 8 h [40]
    赖氨酸 Lysine 甜菜碱 Betaine 1∶1 玉米芯 Corncob 60 ℃, 5 h 49.06 [41]
    乙酰丙酸
    Levulinic acid
    ChCl 2∶1 玉米芯 Corncob 90 ℃, 24 h 43.0 [42]
    乙酰丙酸
    Levulinic acid
    乙酰胺
    Acetamide
    2∶1 毛竹
    Phyllostachys edulis
    120 ℃, 2 h 20.6 [43]
    对香豆酸
    p-coumaric acid (PCA)
    ChCl 1∶1 柳枝稷
    Panicum virgatum
    160 ℃, 3 h 60.8 [44]
    草酸
    Oxalic acid
    ChCl 2∶1 欧洲山毛榉
    Fagus sylvatica
    80 ℃, 8 h [45]
    1∶1 桦木
    Birch wood
    130 ℃, 1 h, 微波130 ℃, 1 h, microwave 85.0 [39]
    1∶1 玉米芯 Corncob 90 ℃, 24 h 98.5 [42]
    乙醇酸
    Glycolic acid
    ChCl 2∶1 玉米芯 Corncob 90 ℃, 24 h 56.4 [42]
    6∶1 木通草渣
    Residues of akebia
    120 ℃, 8 h 60.0 [46]
    丙二酸 Malonic acid ChCl 1∶1 玉米芯 Corncob 90 ℃, 24 h 56.5 [42]
    戊二酸 Glutaric acid ChCl 1∶1 玉米芯 Corncob 90 ℃, 24 h 34.3 [42]
    丁二酸 Succinic acid ChCl 2∶1 EFB 120 ℃, 8 h 10.7 [40]
    马来酸 Maleic acid ChCl 1∶1 EFB 120 ℃, 8 h 22.9 [40]
    苹果酸 Malic acid ChCl 1∶1 玉米芯 Corncob 90 ℃, 24 h 22.4 [42]
    柠檬酸 Citric acid ChCl 1∶1 EFB 120 ℃, 8 h 20.0 [40]
    多元醇类
    Polyhydric alcohols
    丙三醇
    Glycerol
    ChCl 2∶1 柳枝稷
    Panicum virgatuma
    121 ℃, 1 h 63.84 [47]
    2∶1 火炬松
    Pinus taeda
    155 ℃, 2 h [38]
    2∶1 玉米芯 Corncob 90 ℃, 24 h 71.3 [42]
    丙三醇
    Glycerol
    碳酸钾
    K2CO3
    7∶1 稻草
    Rice straw
    140 ℃, 100 min [23]
    6∶1 EFB 120 ℃, 8 h 51.0 [31]
    丙三醇,六水合氯化铝
    Glycerol, aluminum chloride hexahydrate
    ChCl 1∶0.28∶2 杨木 Poplar 120 ℃, 4 h 95.46 [48]
    乙二醇,对甲苯磺酸
    Ethylene glycol, p-toluenesulfonic acid (PTSA)
    盐酸胍
    Guanidine hydrochloride (GH)
    1.94∶0.06∶1 柳枝稷
    Panicum virgatum
    120 ℃, 6 min 82.1 [49]
    1,4-丁二醇
    1,4-butanediol
    ChCl 2∶1 木糖渣
    Xylose residue
    120 ℃, 2 h 54.0 [50]
    对羟基苯甲醇
    p-hydroxybenzyl alcohol (PHBA)
    ChCl 1∶1 柳枝稷
    Panicum virgatum
    160 ℃, 3 h 0.4 [44]
    乙二醇
    Ethylene glycol
    ChCl 2∶1 玉米芯 Corncob 90 ℃, 24 h 87.6 [42]
    2∶1 柳枝稷
    Panicum virgatum
    130 ℃, 45 min 74.41 [51]
    酰胺类
    Amides
    尿素
    Urea
    ChCl 2∶1 大蒜皮
    Garlic skin
    110 ℃, 4 h 59.07 [52]
    2∶1 欧洲山毛榉
    Fagus sylvatica
    80 ℃, 8 h [45]
    2∶1 EFB 120 ℃, 8 h 34.0 [31]
    2∶1 EFB 120 ℃, 3 h [53]
    2∶1 玉米芯 Corncob 80 ℃, 15 h [54]
    尿素
    Urea
    胺基磺酸
    Sulfamic acid
    2∶1 云杉
    Picea asperata
    105 ℃, 30 min [25]
    其他类
    Others
    邻苯二酚
    Catechol
    ChCl 1∶1 柳枝稷
    Panicum virgatum
    160 ℃, 3 h 43.2 [44]
    香草醛
    Vanillin
    ChCl 2∶1 柳枝稷
    Panicum virgatum
    160 ℃, 3 h 49.6 [44]
    KOH ChCl 4∶1 欧洲山毛榉
    Fagus sylvatica
    80 ℃, 8 h [45]
    D(+)-果糖
    D(+)-glucose
    ChCl 1∶1 EFB 120 ℃, 8 h 17.0 [31]
    咪唑
    Imidazole
    ChCl 7∶3 玉米芯 Corncob 150 ℃, 15 h 88.0 [54]
    注:a 0.9%H2SO4做催化剂。Note: a 0.9% H2SO4 is added as catalysts.
    下载: 导出CSV

    表  2  不同DES木质素的分子量及其多分散指数

    Table  2.   Molecular mass and polydispersity index of different DES lignin

    低共熔溶剂
    Deep eutectic solvent (DES)
    原料
    Feedstock
    反应条件
    Reaction condition
    重均分子量
    Mass-average
    molecular mass/
    (g·mol−1)
    数均分子量
    Number-average
    molecular mass/
    (g·mol−1)
    多分散指数
    Polydispersity
    index (PDI)
    参考文献
    Reference
    乳酸/氯化胆碱
    Lactic acid/choline chloride
    杨木
    Poplar
    110 ℃, 6 h 1 790 1 300 1.37 [36]
    乳酸/苄基三乙基氯化铵
    Lactic acid/benzyltriethylammonium chloride
    玉米芯
    Corncob
    120 ℃, 2 h −  −  1.44 [37]
    丙三醇/氯化胆碱/六水合氯化铝
    Glycerol/choline chloride/aluminum chloride
    hexahydrate
    杨木
    Poplar
    120 ℃, 4 h 5 466 3 270 1.67 [48]
    微波辅助草酸/氯化胆碱
    Microwave assisted oxalic acid/ChCl
    杨木
    Poplar
    80 ℃, 5 min 847 698 1.21 [59]
    乳酸/氯化胆碱
    Lactic acid/ChCl
    胡桃
    Juglans nigra
    145 ℃, 6 h 4 200 2 460 1.80 [68]
    草酸/氯化胆碱
    Oxalic acid/ChCl
    碱木质素
    Alkali lignin
    120 ℃, 6 h 1 800 1 410 1.27 [65]
    下载: 导出CSV
  • [1] 裴继诚, 杨淑慧, 平清伟, 等. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2016.

    Pei J C, Yang S H, Ping Q W, et al. Lignocellulosic chemistry[M]. Beijing: China Light Industry Press, 2016.
    [2] Chen L, Dou J, Ma Q, et al. Rapid and near-complete dissolution of wood lignin at ≤ 80 ℃ by a recyclable acid hydrotrope[J]. Science Advances, 2017, 3(9): e1701735. doi: 10.1126/sciadv.1701735
    [3] 刘金科, 杨桂花, 齐乐天, 等. 胆碱类低共熔溶剂选择性分离杨木中木质素的研究[J]. 中国造纸, 2020, 39(4):1−9.

    Liu J K, Yang G H, Qi L T, et al. Selective extraction of poplar lignin with choline-based deep eutectic solvents[J]. China Pulp & Paper, 2020, 39(4): 1−9.
    [4] van Osch D, Kollau L, van den Bruinhorst A, et al. Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation[J]. Physical Chemistry Chemical Physics, 2017, 19(4): 2636−2665. doi: 10.1039/C6CP07499E
    [5] Lyu G, Wu Q, Li T, et al. Thermochemical properties of lignin extracted from willow by deep eutectic solvents (DES)[J]. Cellulose, 2019, 26(15): 8501−8511. doi: 10.1007/s10570-019-02489-8
    [6] 马晓振, 罗清, 秦冬冬, 等. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5):617−626.

    Ma X Z, Luo Q, Qin D D, et al. Lignin-based polyurethane[J]. Progress in Chemistry, 2020, 32(5): 617−626.
    [7] 罗通, 吕高金, 王超, 等. 工业木质素活化改性及其在复合材料中的应用进展[J]. 中国造纸, 2020, 39(9):60−67.

    Luo T, Lü G J, Wang C, et al. Modification of industrial lignin and its application in composite materials: a review[J]. China Pulp & Paper, 2020, 39(9): 60−67.
    [8] 李小玉, 李广慈, 李学兵. 不同化学法分离解聚过程对木质素结构的影响[J]. 辽宁石油化工大学学报, 2020, 40(1):1−9. doi: 10.3969/j.issn.1672-6952.2020.01.001

    Li X Y, Li G C, Li X B, et al. Effect of chemical separation and depolymerization processes on lignin structure[J]. Journal of Liaoning Petrochemical University, 2020, 40(1): 1−9. doi: 10.3969/j.issn.1672-6952.2020.01.001
    [9] Haldar D, Purkait M K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: mechanistic insight and advancements[J]. Chemosphere, 2021, 264: 128523. doi: 10.1016/j.chemosphere.2020.128523
    [10] Li C L, Knierim B, Manisseri C, et al. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification[J]. Bioresource Technology, 2010, 101(13): 4900−4906. doi: 10.1016/j.biortech.2009.10.066
    [11] 刘振, 孙海红, 郝静静. 离子液体对玉米秸秆组分的溶解选择性[J]. 可再生能源, 2014, 32(6):871−875.

    Liu Z, Sun H H, Hao J J. Solubility selectivity of ionic liquids to components of corn straw[J]. Renewable Energy Resources, 2014, 32(6): 871−875.
    [12] 周全伟. 基于醇胺型离子液体处理的奇岗草木质素的分离机制及其用于膜材料制备[D]. 济南: 齐鲁工业大学, 2020.

    Zhou Q W. Separation of Miscanthus × giganteus lignin based on the treatment of alcoholamine-type ionic liquid system and its application in preparation of composite membrane material[D]. Jinan: Qilu University of Technology, 2020.
    [13] Maki-Arvela P, Anugwom I, Virtanen P, et al. Dissolution of lignocellulosic materials and its constituents using ionic liquids: a review[J]. Industrial Crops and Products, 2010, 32(3): 175−201. doi: 10.1016/j.indcrop.2010.04.005
    [14] Shen Y, Sun J K, Yi Y X, et al. One-pot synthesis of levulinic acid from cellulose in ionic liquids[J]. Bioresource Technology, 2015, 192: 812−816. doi: 10.1016/j.biortech.2015.05.080
    [15] Abbott A P, Boothby D, Capper G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29): 9142−9147. doi: 10.1021/ja048266j
    [16] Sanchez P B, Gonzalez B, Salgado J, et al. Physical properties of seven deep eutectic solvents based on L-proline or betaine[J]. Journal of Chemical Thermodynamics, 2019, 131: 517−523. doi: 10.1016/j.jct.2018.12.017
    [17] Tian D, Guo Y, Hu J, et al. Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity[J]. International Journal of Biological Macromolecules, 2020, 142: 288−297. doi: 10.1016/j.ijbiomac.2019.09.100
    [18] Francisco M, van den Bruinhorst A, Kroon M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14(8): 2153. doi: 10.1039/c2gc35660k
    [19] Francisco M, van den Bruinhorst A, Kroon M C. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents[J]. Angewandte Chemie International Edition, 2013, 52(11): 3074−3085. doi: 10.1002/anie.201207548
    [20] Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060−11082. doi: 10.1021/cr300162p
    [21] Liu Q, Zhao X, Yu D, et al. Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin[J]. Green Chemistry, 2019, 21(19): 5291−5297. doi: 10.1039/C9GC02306B
    [22] Nam M W, Zhao J, Lee M S, et al. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae[J]. Green Chemistry, 2015, 17(3): 1718−1727. doi: 10.1039/C4GC01556H
    [23] Lim W L, Gunny A A N, Kasim F H, et al. Alkaline deep eutectic solvent: a novel green solvent for lignocellulose pulping[J]. Cellulose, 2019, 26(6): 4085−4098. doi: 10.1007/s10570-019-02346-8
    [24] Skulcova A, Majova V, Sima J, et al. Mechanical properties of pulp delignified by deep eutectic solvents[J]. Bioresources, 2017, 12(4): 7479−7486.
    [25] Li P, Sirviö J A, Hong S, et al. Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment[J]. Chemical Engineering Journal, 2019, 375: 122050. doi: 10.1016/j.cej.2019.122050
    [26] Sirvio J A, Visanko M. Highly Transparent nanocomposites based on poly (vinyl alcohol) and sulfated UV-absorbing wood nanofibers[J]. Biomacromolecules, 2019, 20(6): 2413−2420. doi: 10.1021/acs.biomac.9b00427
    [27] Xu G C, Ding J C, Han R Z, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource Technology, 2016, 203: 364−369. doi: 10.1016/j.biortech.2015.11.002
    [28] Cai Z, Long J, Li Y, et al. Selective production of diethyl maleate via oxidative cleavage of lignin aromatic unit[J]. Chem, 2019, 5(9): 2365−2377. doi: 10.1016/j.chempr.2019.05.021
    [29] Kumar A K, Sharma S, Shah E, et al. Technical assessment of natural deep eutectic solvent (NADES) mediated biorefinery process: a case study[J]. Journal of Molecular Liquids, 2018, 260: 313−322. doi: 10.1016/j.molliq.2018.03.107
    [30] Alvarez-Vasco C, Ma R, Quintero M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chemistry, 2016, 18(19): 5133−5141. doi: 10.1039/C6GC01007E
    [31] Tan Y T, Ngoh G C, Chua A S M. Evaluation of fractionation and delignification efficiencies of deep eutectic solvents on oil palm empty fruit bunch[J]. Industrial Crops and Products, 2018, 123: 271−277. doi: 10.1016/j.indcrop.2018.06.091
    [32] Teh S S, Loh S K, Mah S H. Development of choline-based deep eutectic solvents for efficient concentrating of hemicelluloses in oil palm empty fruit bunches[J]. Korean Journal of Chemical Engineering, 2019, 36(10): 1619−1625. doi: 10.1007/s11814-019-0348-1
    [33] 周敏姑, 郭英杰, 郝子越, 等. 氯化胆碱/乳酸低共熔溶剂预处理对杨木酶水解特性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(12):1−8.

    Zhou M G, Guo Y J, Hao Z Y, et al. Effects of choline chloride/lactic acid deep eutectic solvents pretreatment on enzymatic hydrolysis of poplar[J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(12): 1−8.
    [34] Wang S Z, Su S H, Xiao L P, et al. Catechyl lignin extracted from castor seed coats using deep eutectic solvents: characterization and depolymerization[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7031−7038.
    [35] Li T, Lyu G, Liu Y, et al. Deep eutectic solvents (DESs) for the isolation of willow lignin (Salix matsudana cv. Zhuliu)[J]. International Journal of Molecular Sciences, 2017, 18(11): 2266. doi: 10.3390/ijms18112266
    [36] Shen X J, Wen J L, Mei Q Q, et al. Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization[J]. Green Chemistry, 2019, 21(2): 275−283. doi: 10.1039/C8GC03064B
    [37] Guo Z W, Zhang Q L, You T T, et al. Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization[J]. Green Chemistry, 2019, 21(11): 3099−3108. doi: 10.1039/C9GC00704K
    [38] Lynam J G, Kumar N, Wong M J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684−689. doi: 10.1016/j.biortech.2017.04.079
    [39] Kohli K, Katuwal S, Biswas A, et al. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents[J]. Bioresource Technology, 2020, 303: 122897. doi: 10.1016/j.biortech.2020.122897
    [40] Tan Y T, Ngoh G C, Chua A S M. Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin[J]. Bioresource Technology, 2019, 281: 359−366. doi: 10.1016/j.biortech.2019.02.010
    [41] Liang Y, Duan W J, An X X, et al. Novel betaine-amino acid based natural deep eutectic solvents for enhancing the enzymatic hydrolysis of corncob[J]. Bioresource Technology, 2020, 310: 123389. doi: 10.1016/j.biortech.2020.123389
    [42] Zhang C W, Xia S Q, Ma P S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents[J]. Bioresource Technology, 2016, 219: 1−5. doi: 10.1016/j.biortech.2016.07.026
    [43] Ling Z, Guo Z W, Huang C X, et al. Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility[J]. Bioresource Technology, 2020, 305: 123025. doi: 10.1016/j.biortech.2020.123025
    [44] Kim K H, Dutta T, Sun J, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry, 2018, 20(4): 809−815. doi: 10.1039/C7GC03029K
    [45] Mamilla J L K, Novak U, Grilc M, et al. Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals[J]. Biomass and Bioenergy, 2019, 120: 417−425. doi: 10.1016/j.biombioe.2018.12.002
    [46] Yu Q, Zhang A, Wang W, et al. Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia’ herbal residues[J]. Bioresource Technology, 2018, 247: 705−710. doi: 10.1016/j.biortech.2017.09.159
    [47] Chen Z, Reznicek W D, Wan C X. Deep eutectic solvent pretreatment enabling full utilization of switchgrass[J]. Bioresource Technology, 2018, 263: 40−48. doi: 10.1016/j.biortech.2018.04.058
    [48] Xia Q, Liu Y, Meng J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry, 2018, 20(12): 2711−2721. doi: 10.1039/C8GC00900G
    [49] Chen Z, Jacoby W A, Wan C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings[J]. Bioresource Technology, 2019, 279: 281−286. doi: 10.1016/j.biortech.2019.01.126
    [50] Guo Z W, Ling Z, Wang C, et al. Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue[J]. Bioresource Technology, 2018, 265: 334−339. doi: 10.1016/j.biortech.2018.06.027
    [51] Chen Z, Bai X L, Lusi A, et al. High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12205−12216.
    [52] Ji Q, Yu X, Yagoub A G A, et al. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent[J]. Industrial Crops and Products, 2020, 149: 112357. doi: 10.1016/j.indcrop.2020.112357
    [53] Thi S, Lee K M. Comparison of deep eutectic solvents (DES) on pretreatment of oil palm empty fruit bunch (OPEFB): cellulose digestibility, structural and morphology[J]. Bioresource Technology, 2019, 282: 525−529. doi: 10.1016/j.biortech.2019.03.065
    [54] Procentese A, Johnson E, Orr V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource Technology, 2015, 192: 31−36. doi: 10.1016/j.biortech.2015.05.053
    [55] Tan Y T, Chua A S M, Ngoh G C. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products: a review[J]. Bioresource Technology, 2020, 297: 122522. doi: 10.1016/j.biortech.2019.122522
    [56] 金永灿, 谷峰. 木质素清洁高效分离研究进展[J]. 中国造纸, 2019, 38(6):65−72. doi: 10.11980/j.issn.0254-508X.2019.06.010

    Jin Y C, Gu F. Research progress in clean and efficient separation of lignin[J]. China Pulp & Paper, 2019, 38(6): 65−72. doi: 10.11980/j.issn.0254-508X.2019.06.010
    [57] Kumar A K, Parikh B S, Pravakar M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue[J]. Environmental Science Pollution Research, 2016, 23(10): 9265−9275. doi: 10.1007/s11356-015-4780-4
    [58] D’Agostino C, Harris R C, Abbott A P, et al. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2011, 13(48): 21383−21391. doi: 10.1039/c1cp22554e
    [59] Liu Y, Chen W, Xia Q, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem, 2017, 10(8): 1692−1700. doi: 10.1002/cssc.201601795
    [60] Li C, Tanjore D, He W, et al. Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass[J]. Biotechnology for Biofuels, 2013, 6: 154. doi: 10.1186/1754-6834-6-154
    [61] Yuan X, Duan Y, He L, et al. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering[J]. Bioresource Technology, 2017, 232: 113−118. doi: 10.1016/j.biortech.2017.02.014
    [62] Chen Z, Ragauskas A, Wan C. Lignin extraction and upgrading using deep eutectic solvents[J]. Industrial Crops and Products, 2020, 147: 112241. doi: 10.1016/j.indcrop.2020.112241
    [63] Das L, Li M, Stevens J, et al. Characterization and catalytic transfer hydrogenolysis of deep eutectic solvent extracted sorghum lignin to phenolic compounds[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10408−10420.
    [64] Haldar D, Purkait M K. Lignocellulosic conversion into value-added products: a review[J]. Process Biochemistry, 2020, 89: 110−133. doi: 10.1016/j.procbio.2019.10.001
    [65] Hong S, Shen X, Pang B, et al. In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment[J]. Green Chemistry, 2020, 22(6): 1851−1858. doi: 10.1039/D0GC00006J
    [66] Guo Z, Li D, You T, et al. New Lignin streams derived from heteropoly acids enhanced neutral deep eutectic solvent fractionation: toward structural elucidation and antioxidant performance[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(32): 12110−12119.
    [67] Wang Z K, Hong S, Wen J L, et al. Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and antioxidative lignin[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(2): 1050−1057.
    [68] Li W, Amos K, Li M, et al. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks[J]. Biotechnology for Biofuels, 2018, 11: 304. doi: 10.1186/s13068-018-1305-7
    [69] Cronin D, Chen X, Moghaddam L, et al. Deep eutectic solvent extraction of high purity lignin from a corn stover hydrolysate[J]. ChemSusChem, 2020, 13: 4678−4690. doi: 10.1002/cssc.202001243
    [70] 周金梅, 李思明, 覃春芳, 等. 有机溶剂法纯化蔗渣木质素[J]. 应用化工, 2017, 46(8):1447−1450. doi: 10.3969/j.issn.1671-3206.2017.08.001

    Zhou J M, Li S M, Qin C F, et al. Organic solvent purify bagasse lignin[J]. Applied Chemical Industry, 2017, 46(8): 1447−1450. doi: 10.3969/j.issn.1671-3206.2017.08.001
    [71] 康玉. 木质素基防晒霜与纳米纤维素复合膜产品的开发[D]. 北京: 北京化工大学, 2017.

    Kang Y. Preparation of lignin-based sunscreens and cellulose nanocomposite film[D]. Beijing: Beijing University of Chemical Technology, 2017.
    [72] Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: improving lignin processing in the biorefinery[J]. Science, 2014, 344: 1246843. doi: 10.1126/science.1246843
    [73] 刘天勤, 连海兰, 洪枢, 等. 氯化胆碱/尿素低共熔溶剂改性木质素的环氧固化体系[J]. 东北林业大学学报, 2018, 46(4):78−87. doi: 10.3969/j.issn.1000-5382.2018.04.016

    Liu T Q, Lian H L, Hong S, et al. Effect of modified lignin by choline chloride/urea deep-eutectic solvent on curing properties of epoxy resin[J]. Journal of Northeast Forestry University, 2018, 46(4): 78−87. doi: 10.3969/j.issn.1000-5382.2018.04.016
    [74] Xu P, Zheng G W, Zong M H, et al. Recent progress on deep eutectic solvents in biocatalysis[J]. Bioresources and Bioprocessing, 2017, 4(1): 34. doi: 10.1186/s40643-017-0165-5
    [75] Satlewal A, Agrawal R, Bhagia S, et al. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: recent developments, challenges and novel opportunities[J]. Biotechnology Advances, 2018, 36(8): 2032−2050. doi: 10.1016/j.biotechadv.2018.08.009
    [76] Liang X, Fu Y, Chang J, et al. Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology[J]. Separation and Purification Technology, 2019, 210: 409−416. doi: 10.1016/j.seppur.2018.08.021
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  637
  • HTML全文浏览量:  201
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 修回日期:  2021-01-17
  • 网络出版日期:  2021-04-09
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回