Processing math: 100%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

我国不同林区典型乔木树种枝叶燃烧碳排放特性

魏帽, 郭新彬, 马远帆, 郭雨萱, 孙馨宇, 田明月, 郭福涛

魏帽, 郭新彬, 马远帆, 郭雨萱, 孙馨宇, 田明月, 郭福涛. 我国不同林区典型乔木树种枝叶燃烧碳排放特性[J]. 北京林业大学学报, 2022, 44(2): 37-46. DOI: 10.12171/j.1000-1522.20200419
引用本文: 魏帽, 郭新彬, 马远帆, 郭雨萱, 孙馨宇, 田明月, 郭福涛. 我国不同林区典型乔木树种枝叶燃烧碳排放特性[J]. 北京林业大学学报, 2022, 44(2): 37-46. DOI: 10.12171/j.1000-1522.20200419
Wei Mao, Guo Xinbin, Ma Yuanfan, Guo Yuxuan, Sun Xinyu, Tian Mingyue, Guo Futao. Carbon emission characteristics of branch and leaf combustion of typical tree species in different forest regions of China[J]. Journal of Beijing Forestry University, 2022, 44(2): 37-46. DOI: 10.12171/j.1000-1522.20200419
Citation: Wei Mao, Guo Xinbin, Ma Yuanfan, Guo Yuxuan, Sun Xinyu, Tian Mingyue, Guo Futao. Carbon emission characteristics of branch and leaf combustion of typical tree species in different forest regions of China[J]. Journal of Beijing Forestry University, 2022, 44(2): 37-46. DOI: 10.12171/j.1000-1522.20200419

我国不同林区典型乔木树种枝叶燃烧碳排放特性

基金项目: 国家自然科学基金项目(31770697),福建省大学生创新创业训练项目(201910309061)。
详细信息
    作者简介:

    魏帽。主要研究方向:林火生态以及林火与大气污染等研究。 Email: 15769175683@163.com 地址: 350002 福建省福州市仓山区建新镇上下店路15号福建农林大学林学院

    责任作者:

    郭福涛,副教授,博士生导师。主要研究方向:林火生态学、林火预测预报、林火与大气污染等研究。Email: guofutao@126.com 地址:同上

  • 中图分类号: S762

Carbon emission characteristics of branch and leaf combustion of typical tree species in different forest regions of China

  • 摘要:
      目的  对我国不同林区典型乔木树种燃烧释放含碳物质排放特性的研究,可为了解含碳气体和颗粒物对大气环境和全球碳循环的影响提供科学依据。
      方法  本研究运用自主设计的生物质燃烧系统,模拟东北林区、南方林区和西南林区共19种典型乔木树种枝、叶燃烧,分析不同树种、不同树种类型及不同林区的含碳气体(CO2、CO和CxHy)、颗粒物排放(PM2.5)和颗粒物中碳质组分(元素碳EC和有机碳 OC)之间的排放因子差异。
      结果  (1)CO2、CO、EC、OC、PM2.5排放因子最高的树种均为马尾松,分别为(1 588.00 ± 104.43)g/kg、(324.80 ± 11.60)g/kg、(28.45 ± 4.12)g/kg、(3.42 ± 0.58)g/kg 和(12.03 ± 1.46)g/kg,且树种间枝与叶排放因子有明显差异。(2)不同林区中,针叶树种的含碳物质排放因子普遍高于阔叶树,且针叶树的含碳物质排放因子占比高于阔叶树。(3)不同林区树种平均排放因子均存在显著性差异,其中南方林区CO2、CO、EC、OC的平均排放因子最高,分别为(1 344.49 ± 61.18)g/kg、(259.40 ± 14.54)g/kg、(2.18 ± 0.41)g/kg和(7.96 ± 0.98)g/kg。
      结论  本研究揭示了我国不同林区典型乔木树种燃烧释放含碳物质排放特性,有利于精准研究林火对区域碳循环影响及大范围碳排放估算。
    Abstract:
      Objective  The combustion of forest fuel releases a large amount of carbon containing gas and particles, which dramatically impacts the atmospheric environment and the global carbon cycle.
      Method  In this study, a self-designed biomass combustion system was used to simulate the branch and leaf combustion of 19 typical tree species in northeastern, southern and southwestern forest regions of China. The differences of emission factors among carbon gas (CO2, CO and CxHy), particulate matter (PM2.5) and carbon component (elemental carbon, EC and organic carbon, OC) in particulate matter were analyzed comparatively between different tree species, different tree types and varied forest regions.
      Result  (1) Pinus massoniana had the highest emission factors of CO2, CO, EC, OC and PM2.5, which were (1 588.00 ± 104.43) g/kg, (324.80 ± 11.60) g/kg, (28.45 ± 4.12) g/kg, (3.42 ± 0.58) g/kg and (12.03 ± 1.46) g/kg, respectively. The emission factors of branches and leaves among tree species showed a significant difference. (2) The emission factors of carbon-containing matter from coniferous trees in different forest areas were generally higher than that of broadleaved trees, and carbon emission factor ratio of coniferous trees was higher than that of broadleaved trees. (3) Additionally, the average emission factors of tree species varied in different forest regions, and the southern forest region had the highest emission factors of CO2 (1 344.49 ± 61.18) g/kg, CO (259.40 ± 14.54) g/kg, EC (2.18 ± 0.41) g/kg, and OC (7.96 ± 0.98) g/kg, respectively.
      Conclusion  Our study reveals the carbon emission characteristics of typical tree species in different forest regions of China, which is conducive to the accurate research on the effect of forest fires on regional carbon circulation and large-scale carbon emission estimation.
  • 在快速城镇化发展进程中,人类较大程度地改变了自然地形地貌,以不透水地面铺砌代替原有透水土壤和植被,造成下渗量与蒸发量的显著减少,从而引起同强度暴雨形成的地表径流量增大,峰值流量增加等现象[1]。为解决城市内涝等问题,“海绵城市”和低影响开发系统(Low impact development, LID)概念应运而生。目前对低影响开发系统的研究多数集中于市政道路[2]、住宅小区[3-4]、公园绿地[5-6]以及城市绿道[7]中绿地的渗透滞留能力,对其后续储蓄利用的量化研究较少。为解决上述问题,本文以位于北京市的首钢西十为研究对象,结合景观需求建设渗透滞留与储蓄利用相结合的低影响开发系统。

    北京市位于华北平原北部,为典型的北温带半湿润大陆性季风气候,年平均降雨量(1950—2012年期间)为585.0 mm,80%降雨量集中于汛期(6—9月)[8],对城市内涝造成极大压力。本文选取首钢北区西北角的西十片区作为研究区域,西十内部及周边场地硬质化程度高达65.3%,现状下垫面对自然雨水下渗疏解能力非常有限,具有典型特征。

    西十地块原为首钢料场,运输线两侧土壤含铁较高,研究表明土壤污染深度为0.5~2.0 m[15]。改造过程中将表层以下2 m的土壤替换为壤土,渗透系数为3.5×10-6 m/s[9]

    图 1图 2所示,西十地块四面环街,占地4.24 hm2,地势整体呈西北高东南低,内部有筒仓、转运站、料仓、泵站等多组建筑体,总占地面积约1.5 hm2。场地周边区域(包括秀池东路、秀池北街两条道路和筒仓办公楼、北七筒建筑遗址、停车场、N3-17办公楼、武警用房、员工宿舍、干法除尘等建筑及其外环境,共5.8 hm2)地势略低于西十地块,东侧和北侧有多组由厂房改建的配套服务建筑,强降雨时存在较为严重的内涝问题亟待解决,因此将其与西十地块一同作为本文的研究对象,称为外源雨水地块。

    图  1  西十地块及外源雨水地块范围
    Figure  1.  Scope of West 10 Plot and exogenous rainwater area
    图  2  场地条件
    Figure  2.  Site conditions

    根据《新首钢高端产业综合服务区控制性详细规划》要求,西十地块及外源雨水地块低影响开发系统雨水消纳能力应达到北京市3年一遇24 h降雨量(108 mm[9])的标准。设计在满足功能需求和景观效果的前提下,制定合理的低影响开发系统设计策略,在有限的绿地空间中因地制宜地叠加低影响开发设施层以应对降雨后地表径流产生速度加快、峰值流量加大、峰现时间提前等问题,以达到上位规划对径流消纳的要求,同时考虑将收集的地表径流用于后期灌溉。

    根据《海绵城市建设技术指南》低影响开发主要通过“源头削减、中途传输、末端调蓄”等多种手段[10]。西十地块及外源雨水场地提出的设计策略为:根据场地竖向、土地利用等条件优先构建渗透滞留系统,在不具备条件的情况下考虑将径流收集再利用,从源头、中途、末端3个方面进行低影响开发系统设计(见图 3)。

    图  3  低影响开发系统设计流程图
    Figure  3.  System of rainwater in low impact development (LID) model

    西十地块以建立渗透滞留系统为目标,针对“源头削减”本研究提出在满足功能使用的前提下,尽可能多地利用透水铺装、建设绿色屋顶、增加绿地面积,从源头有效削减地表径流。此次设计的“中途传输”途径为植草沟,沿硬质边缘形成线性景观带,达到收集、传输、滞留及下渗径流的目的。“末端调蓄”设施有下沉式绿地、生物滞留池两种。植草沟内的雨水排入末端调蓄设施内,雨水在此进行滞留下渗,当雨量过大时末端调蓄设施内的雨水通过溢流口排入市政雨水管网。

    外源雨水地块绿地面积较小(占总面积的28.3%),不适宜做渗透滞留设施,且建筑密度较大、人群活动量大,雨水应尽快排出场地,因此将建立储存利用系统作为设计策略。“末端调蓄”设施只有雨水调蓄池,调蓄池内收集的雨水用于西十地块浇灌。

    综上所述,西十地块及外源雨水地块低影响开发系统分为渗透滞留和储蓄利用两部部分。渗透滞留系统包含种植屋面、透水铺装、下凹式绿地、植草沟、生物滞留池5类LID设施;储蓄利用系统以雨水调蓄池为储蓄设施收集地表径流。低影响系统设计见图 4,各类LID设施设计要点见表 1,各类用地面积及用地比例见表 2表 3

    图  4  首钢西十低影响开发系统平面图
    Figure  4.  Plan of LID system of West 10 Plot
    表  1  各类LID设施设计要点
    Table  1.  Design points of LID facilities
    区域Area 低影响开发设施LID facility 设计要点Design point
    西十地块West 10 Plot 种植屋面Planting roof 将具备条件的平屋顶(6 495.1 m2)改建为可上人的屋顶花园,为办公人员提供多样活动空间的同时,在急降雨时可滞存一部分雨水以达到推迟峰现时间的目的The flat roof (6 495.1 m2) which can be converted into a roof garden provides office workers with a variety of activity spaces and retains rainwater in case of emergency rainfall to delay the peak time
    透水铺装Permeable pavement 将场地中工业废弃物加工成透水混凝土砖,应用于地块内主园路(6 647.8 m2)Permeable concrete bricks which are processed from industrial wastes in the site applied to the main garden road (6 647.8 m2) in the plot
    植草沟Vegetative swale 沿硬质边缘形成线性景观带(425.4 m2),以接纳铺装及绿地上的地表径流,将径流输送至雨水花园内部A linear landscape belt (425.4 m2) is formed along the hard edge to accept the surface runoff from pavement and green space and transport the runoff to the rain garden
    下凹式绿地Rain garden 选择地块内部地势较低的区域集中布置两处下凹绿地(1 090.5 m2),一处位于建筑下沉庭院内,可就近接纳周边绿地及铺装上的地表径流;另一处利用下洼料场基址设计成90余米长的带状雨水花园,其为地表终端LID设施,接纳场地内全部径流Two concave green spaces (1 090.5 m2) are arranged centrally in the low-lying area inside the plot. One is located in the sunken courtyard of the building, which can receive the runoff of surrounding green space and pavement. Another site is designed as a belt rain garden more than 90 m long, which is the surface terminal LID facility and accepts all runoff in the site
    生物滞留池Bio-retention cell 在人群活动量相对较小的地势低洼区域布置了1 035.8 m2的生物滞留池,当强降雨发生后,生物滞留池中一定时间内的雨水积蓄不影响场地的正常使用In low-lying areas with relatively small amount of population activity, 1 035.8 m2 of bio-retention cell was arranged. When heavy rainfall occurred, rainwater accumulation in the bio-retention cell within a certain period of time did not affect the normal use of the site
    外源雨水地块Exogenous rainwater area 透水铺装Permeable pavement 将场地中工业废弃物加工成透水混凝土砖,应用于秀池北街、秀池东路人行道(7 422.0 m2)Permeable concrete bricks which are processed from industrial wastes in the site applied to the sidewalks of Xiuchi North Street and Xiuchi East Road (7 422.0 m2)
    植草沟Vegetative swale 沿硬质边缘形成线性景观带(443.1 m2),以接纳铺装及绿地上的地表径流,将径流输送至雨水调蓄池中A linear landscape belt (443.1 m2) is formed along the hard edge to accept the surface runoff from pavement and green space and transport the runoff to the rain retention barrel
    雨水调蓄池Rain retention barrel 外源雨水场地低处设置有雨水调蓄池,以接纳建筑屋顶雨水及全部地表径流。以设计目标为根据进行计算,外源雨水地块雨水调蓄池总容量为4 189 m3,方可达到消纳北京市3年重现期24 h降雨量这一目标。雨水调蓄池内雨水用于西十地块植物灌溉,并设有溢水口,当降雨强度超过地块内部LID设施消纳能力时,雨水通过溢水口排入市政雨水管网A rain retention barrel is installed at the lower level of the exogenous rainwater area to receive rainwater from the roof of the building and all surface runoff. According to the calculation based on the design objective, the total capacity of rain retention barrel in the exogenous rainwater area was 4 189 m3, which can reach the goal of absorbing 24-hour rainfall in the 3-year recurrence period of Beijing. Rainwater in the rain retention barrel is used for plant irrigation in the west 10 plot, and there is an overflow outlet. When the rainfall intensity exceeds the capacity of LID facilities inside the block, rainwater was discharged into the municipal rainwater pipe network through the overflow outlet
    下载: 导出CSV 
    | 显示表格
    表  2  西十地块用地面积及用地比例表
    Table  2.  Table of West 10 Plot of land area and land use ratio
    用地类型Type of land use 项目类型Item type 面积Area/m2 总面积Total area/m2 子项比例Subitem proportion/% 比例Proportion/%
    绿化用地Green space 普通绿地Common green space 15 737.9 18 371.8 37.1 43.4
    植草沟Vegetative swale 425.4 1.1
    生物滞留池Bio-retention cell 1 035.8 2.4
    下沉式绿地Rain garden 1 172.7 2.8
    建筑占地Building space 屋顶花园绿地Green space of roof garden 4 871.3 14 987.3 11.5 35.7
    屋顶花园铺装Impermeable pavement of roof garden 1 623.8 3.8
    不上人硬质屋顶Hard roof of no people 8 492.2 20.4
    园路及铺装场地用地Path and square 透水铺装Permeable pavement 6 647.8 8 954.4 15.6 20.8
    不透水铺装Impermeable pavement 2 306.6 5.2
    水体Water space 景观水体(不具备调蓄功能) Landscape water space (no regulating function) 52.3 52.3 0.1 0.1
    合计Total 42 365.8 100
    下载: 导出CSV 
    | 显示表格
    表  3  外源雨水地块用地面积及用地比例表
    Table  3.  Table of exogenous site of land area and land use ratio
    用地类型Type of land use 项目类型Item type 面积Area/m2 总面积Total area/m2 子项比例Subitem proportion/% 比例Proportion/%
    绿化用地Green space 普通绿地Common green space 15 967.6 16 410.7 27.5 28.3
    植草沟Vegetative swale 443.1 0.8
    建筑占地Building space 不上人硬质屋顶Hard roof of no people 16 865.1 16 865.1 29.1 29.1
    园路及铺装场地用地Path and square 透水铺装Permeable pavement 7 422.0 24 740.1 12.8 42.6
    不透水铺装Impermeable pavement 17 318.1 29.8
    雨水调蓄池(地下) Rain retention barrel 雨水调蓄池(地下) Rain retention barrel (underground) 4 189 4 189
    合计Total 58 015.9 100
    下载: 导出CSV 
    | 显示表格

    按照《新首钢高端产业综合服务区控制性详细规划》要求完成西十地块及外源雨水地块低影响开发系统设计,并对上述设计方案进行SWMM模型构建。构建西十地块与外源雨水地块两套体系,西十地块体系用于对比传统模型和低影响开发模型,以分析低影响开发系统的雨洪调控效果;外源雨水地块体系用于对比雨水调蓄池蓄水量与植物灌溉需水量,以分析两者之间的数量关系。

    通过SWMM构建低影响开发模型和传统开发模型,对比两者之间数据以分析首钢西十低影响开发系统对区域径流总量、峰值流量和峰现时间的调控效果。

    研究区域为西十地块及外源雨水地块,主要包含3类下垫面——屋顶、铺装、绿地。其中:不透水下垫面有硬质屋顶、不透水铺装;透水下垫面有绿色屋顶、透水铺装、绿地。根据上述低影响开发系统设计策略,遵循概化原则,将西十地块及外源雨水地块共划分为21个子汇水单元,末端出水口为2个。

    传统开发模式为通过竖向设计将绿地及屋顶径流排到铺装或道路上,再通过雨排水管线排入市政管网(图 5)。为方便后期对比分析,传统开发模型构建时绿地及铺装面积与低影响开发模型中一致(表 4)。雨排水管线图见图 6,SWMM模型概化图见图 7

    图  5  传统开发模式径流排放路径
    Figure  5.  Drainage path of runoff in traditional development model
    图  6  首钢西十传统雨水系统平面图
    Figure  6.  Plan of traditional storm-water system in Shougang West 10 Plot
    图  7  首钢西十传统雨水系统概化图
    Figure  7.  Generalized map of traditional storm-water system in Shougang West 10 Plot
    表  4  传统开发模式用地面积及用地比例表
    Table  4.  Table of land area and land use ratio in traditional development model
    项目类型Item type 面积Area/m2 比例Proportion/%
    绿化用地Green space 34 782.5 34.7
    建筑占地Building space 31 852.4 31.7
    园路及铺装场地用地Path and square 33 694.5 33.5
    水体Water space 52.3 0.1
    雨水调蓄池(地下) Rain retention barrel (underground) 4 189
    合计Total 100 381.7 100
    下载: 导出CSV 
    | 显示表格

    本研究在推求各子汇水区的产流过程时,选用霍顿(Horton)公式进行下渗计算。根据方案设计对不同下垫面进行设定,各项参数参考SWMM用户手册[12]中的推荐值及相关文献。汇水模型为非线性水库模型,水力模型选用动力波模型[11]。根据场地土壤特性,入渗率为12.6 mm/h,衰弱常数为4 h-1。透水和不透水地表糙率系数分别为0.15和0.011,洼蓄量均为3 mm;植草沟宽度为2 000 mm,深度为500 mm;下沉式绿地平均深度为800 mm;生物滞留池平均深度为1 000 mm。

    根据北京市2017年全年降雨量日值统计(http://www.meteoblue.com/en/weather/archive/export/beijing-capital-international-airport_china_6301354),通过SWMM模拟得出西十地块及外源雨水场地每日径流总量及峰值流量;整合数据得到每周雨水调蓄池内收集的径流总量,同计算得出的浇灌需水量进行对比,以周为单位分析外源雨水地块收集的径流与西十地块的浇灌需求之间的关系。

    SWMM模型可使用的降雨数据为两种类型:(1)实测历时降雨资料;(2)设计降雨[13]。本研究根据北京《雨水控制与利用工程设计规范》(DB11/685—2013)北京地区1年一遇、2年一遇、3年一遇、5年一遇、10年一遇、20年一遇重现期降雨量分别为45、81、108、141、209、270 mm,降雨历时为24 h,模拟时间48 h。

    渗透滞留系统在重现期为1、2、3、5、10、20年的24 h降雨情况下,西十地块和外源雨水地块的低影响开发模型与传统开发模型的径流总量、峰值径流量和峰现时间分别见表 5表 6;西十地块出口径流曲线对比图见图 8~13;外源雨水地块雨水调蓄池内部容积变化曲线对比图见图 14~19。根据上述数据结构可得出以下结果:

    表  5  西十地块不同降雨强度下的出水口径流量模拟结果
    Table  5.  Simulated results of West 10 Plot of the runoff under different rainfall intensities
    模拟项目Simulation item 1年一遇(45 mm)24 h 1-year-once(45 mm)24 hour 2年一遇(81 mm)24 h 2-year-once(81 mm)24 hour 3年一遇(108mm)24 h 3-year-once(108 mm)24 hour 5年一遇(141 mm)24 h 5-year-once(141 mm)24 hour 10年一遇(209 mm)24 h 10-year-once(209 mm)24 hour 20年一遇(270 mm)24 h 20-year-once(270 mm)24 hour
    低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference
    径流总量Total runoff/m3 0 1 189 1 189 0 2 411 2 411 0 3 490 3 490 1 028 4 846 3 818 3 818 7 699 3 881 6 712 10 284 3 572
    峰值流量Peak flow/(m3·s-1) 0 0.027 0.027 0 0.065 0.065 0 0.092 0.092 0.037 0.124 0.087 0.128 0.192 0.064 0.203 0.252 0.049
    峰现时间Time of peak flow occurrence 消失Disappea- rance 09:01 消失Disappea- rance 09:00 消失Disappea- rance 09:00 15:15 09:00 375 min 14:10 09:00 310 min 13:00 09:00 240 min
    下载: 导出CSV 
    | 显示表格
    表  6  外源雨水地块不同降雨强度下的出水口径流量模拟结果
    Table  6.  Simulated results of exogenous site of the runoff under different rainfall intensities
    模拟项目Simulation item 1年一遇(45 mm)24 h 1-year-once(45 mm)24 hour 2年一遇(81 mm)24 h 2-year-once(81 mm)24 hour 3年一遇(108 mm)24 h 3-year-once(108 mm)24 hour 5年一遇(141 mm)24 h 5-year-once(141 mm)24 hour 10年一遇(209 mm)24 h 10-year-once(209 mm)24 hour 20年一遇(270 mm)24 h 20-year-once(270 mm)24 hour
    低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference 低影响开发模式LID model 传统开发模式Traditional development model 差值Difference
    径流总量Total runoff/m3 800 1 806 1 006 2 633 3 599 966 4 189 5 156 967 6 145 7 108 963 10 249 11 205 956 13 970 14 912 942
    峰值流量Peak flow/(m3·s-1) 0.026 0.040 0.014 0.079 0.093 0.014 0.116 0.132 0.016 0.162 0.179 0.017 0.256 0.275 0.019 0.341 0.362 0.021
    峰现时间Time of peak flow occurrence 12:20 09:01 119 min 10:45 09:00 105 min 10:15 09:00 75 min 10:10 09:00 70 min 10:00 09:00 60 min 09:55 08:58 57 min
    下载: 导出CSV 
    | 显示表格
    图  8  西十地块1年一遇24小时降雨出口径流曲线
    Figure  8.  Runoff curve of 1-year-once 24 hour rainfall event in West 10 Plot
    图  9  西十地块2年一遇24小时降雨出口径流曲线
    Figure  9.  Runoff curve of 2-year-once 24 hour rainfall event in West 10 Plot
    图  10  西十地块3年一遇24小时降雨出口径流曲线
    Figure  10.  Runoff curve of 3-year-once 24 hour rainfall event in West 10 Plot
    图  11  西十地块5年一遇24小时降雨出口径流曲线
    Figure  11.  Runoff curve of 5-year-once 24 hour rainfall event in West 10 Plot
    图  12  西十地块10年一遇24小时降雨出口径流曲线
    Figure  12.  Runoff curve of 10-year-once 24 hour rainfall event in West 10 Plot
    图  13  西十地块20年一遇24小时降雨出口径流曲线
    Figure  13.  Runoff curve of 20-year-once 24 hour rainfall event in West 10 Plot
    图  14  外源雨水地块1年一遇24小时降雨雨水调蓄池瞬时容积变化曲线
    Figure  14.  nstantaneous volume change curve of rain retention barrel of 1-year-once 24 hour rainfall event in exogenous site
    图  15  外源雨水地块2年一遇24小时降雨雨水调蓄池瞬时容积变化曲线
    Figure  15.  Instantaneous volume change curve of rain retention barrel of 2-year-once 24 hour rainfall event in exogenous site
    图  16  外源雨水地块3年一遇24小时降雨雨水调蓄池瞬时容积变化曲线
    Figure  16.  Instantaneous volume change curve of rain retention barrel of 3-year-once 24 hour rainfall event in exogenous site
    图  17  外源雨水地块5年一遇24小时降雨雨水调蓄池瞬时容积变化曲线
    Figure  17.  Instantaneous volume change curve of rain retention barrel of 5-year-once 24 hour rainfall event in exogenous site
    图  18  外源雨水地块10年一遇24小时降雨雨水调蓄池瞬时容积变化曲线
    Figure  18.  Instantaneous volume change curve of rain retention barrel of 10-year-once 24 hour rainfall event in exogenous site
    图  19  外源雨水地块20年一遇24小时降雨雨水调蓄池瞬时容积变化曲线
    Figure  19.  Instantaneous volume change curve of rain retention barrel of 20-year-once 24 hour rainfall event in exogenous site

    (1) 根据表 3,通过低影响开发模型与传统开发模型结果数据对比,可知经过西十地块地表低影响开发设施后,在1年一遇、2年一遇、3年一遇、5年一遇、10年一遇及20年一遇降雨强度下出水口的径流总量分别削减100%、100%、100%、78.79%、50.41%、34.73%,峰值流量分别减少100%、100%、100%、70.12%、33.33%、19.44%,峰现时间为1年一遇、2年一遇、3年一遇峰值消失,5年一遇、10年一遇及20年一遇降雨强度下分别延迟375、310、240 min。由此得出结论:低影响开发模式可减少径流总量、峰值径流量,推迟峰现时间。外源雨水场地内LID设施除透水铺装外只有植草沟。由表 4可知,对比传统开发模式,低影响开发模式对场地径流总量的削减量较小,1年一遇、2年一遇、3年一遇、5年一遇、10年一遇、20年一遇重现期径流总量分别为800、2 633、4 189、6 145、10 249、13 970 m3,因此可将这部分径流收集到雨水调蓄池中用于西十地块浇灌。

    (2) 根据图 8~19可知:低影响开发模式在降雨前期对地表瞬时径流量的削减能力较强;随着时间的推迟削减能力逐渐减弱,在降雨后期低影响开发设施承载容量趋于饱和,此时低影响开发模式下的出口径流量高于传统开发模式。

    根据SWMM模拟结果,外源雨水地块全年总蓄水量为9 617 m3,径流收集主要集中在第25~35周;单周最大收水总量为2 078 m3,发生在第27周(6月初);第1~20周、43~52周收水量基本为0。

    根据植物种类及北京气候类型,可推算出园林植物需水量:

    PWR=ET0×KL (1)

    式中:PWR为园林植物需水量,mm/d;ETO为参照作物需水量,mm/d;KL为园林系数。

    根据彭曼-蒙蒂斯公式计算参照作物需水量:

    ETo=0.408Δ(RnG)+γ900T+273u2(esea)Δ+γ(1+0.34u2) (2)

    式中:ETO为参照作物需水量,mm/d;Rn为输入冠层净辐射量,MJ/m2·d;G为土壤热通量,MJ/m2·d;T为2 m高处日平均温度,℃;u2为2 m高处风速,m/s;es为饱和水汽压,kPa;ea为实际水汽压,kPa;Δ为饱和水汽压与温度关系曲线在某处得斜率,kPa/℃;γ为干湿温度计常数,kPa/℃。

    园林系数(KL)的计算公式为:

    KL=KsKdKme (3)

    式中:Ks为园林植物种类因子;Kd为园林种植密度因子;Kmc为园林小气候因子。

    园林植物净需水量:

    PWRnet=PWRRe (4)

    式中:PWRnet为园林植物净需水量,mm/d;Re为有效降雨量,mm/d。

    园林植物净灌溉需水量(IWRnet)是指存储于植物根区,可添加于土壤水库以满足净植物需水量(PWRnet)的那部分灌溉水量。

    IWRnet=PWRnet (5)

    为简化运算过程,将已报道的不同类型植物的种类系数、密度因子、小气候因子平均值[14](表 7)带入公式(3)得到冷季型草园林系数(KL)为0.8,其余植被类型园林系数(KL)为0.5。本研究参照北京市房山地区气象站20年(1982—2002年)常规观测气象数据,根据公式(2)计算出每月平均ETO[16],估算出园林植物需水量PWR(表 8)。园林植物在不降雨或降雨不足时需要人工灌溉。将上述结果带入公式(1)计算得出不降雨时园林植物需水量速率;结合不同植被类型面积求得2017年每周西十场地园林植物灌溉需水量;与雨水调蓄池周容积量进行对比可知每周雨水利用率及雨水调蓄池空置率如图 20所示。由此,计算得出第25周、第27周、第29~32周、第34~35周、第41周雨水调蓄池中收集水量在满足当月灌溉需求后仍有余量;全年径流收集的利用率为43.65%;在冬季雨水调蓄池空置率较大。

    图  20  2017年每周植物需水量与雨水调蓄池容积量关系图
    Figure  20.  Diagram of weekly plant water requirement and rainwater storage of rain retention barrel in 2017
    表  7  各类园林植物园林系数相关指标及面积
    Table  7.  Relevant indicators and area of KL for all kinds of garden plants
    植被类型Vegetation type 种类系数Coefficient of species(Ks) 密度因子Density factor(Kd) 小气候因子Microclimatic factor(Kmc) 面积Area/m2
    乔木Tree 0.9 0.5 0.2 1.3 1.0 0.5 1.4 1.0 0.5
    灌木Shrub 0.7 0.5 0.2 1.1 1.0 0.5 1.3 1.0 0.5
    地被植物Ground plant 0.9 0.5 0.2 1.1 1.0 0.5 1.2 1.0 0.5 12 400.5
    树木、灌木、地被植物混合Mixed trees, shrubs and ground plants 0.9 0.5 0.2 1.3 1.0 0.6 1.4 1.0 0.5
    冷季型草Cold season type grass 0.8 1.0 1.0 0.6 1.2 1.0 0.8 5 971.3
    合计Total 18 371.8
    下载: 导出CSV 
    | 显示表格
    表  8  2017年每月植物需水量
    Table  8.  Monthly plant water requirement in 2017
    时间Time 1月Jan. 2月Feb. 3月Mar. 4月Apr. 5月May. 6月Jun. 7月Jul. 8月Aug. 9月Sep. 10月Oct. 11月Nov. 12月Dec.
    ETO/(mm·d-1) 0.72 1.20 2.17 3.38 4.26 4.72 4.21 3.74 3.02 2.00 1.19 0.72
    PWR/(mm·d-1) 0.43 0.72 1.30 2.02 2.55 2.82 2.52 2.24 1.81 1.20 0.71 0.43
    下载: 导出CSV 
    | 显示表格

    按照西十地块及外源雨水地块低影响开发系统雨水消纳能力应达到北京市3年一遇24 h降雨量(108 mm[9])的标准,经过上述设计研究及对SWMM模拟结果的定量分析可得出以下结论:

    (1) 面对相同的雨洪调控目标,本研究根据基底条件和景观需求的差异制定不同的设计策略。西十地块优先构建渗透滞留系统,结合场地现状基底构建425.4 m2植草沟、1 035.8 m2生物滞留池、1 172.7 m2下沉式绿地、4 871.3 m2绿色屋顶以及6 647.8 m2透水铺装等5类LID设施;外源雨水地块以储蓄利用为目的,末端构建4 189 m3雨水调蓄池,最终均达到设计目标要求。

    (2) 低影响开发设施对雨洪问题具有良好的调控效果,可以减少径流总量、峰值流量,推迟峰现时间,但随着时间的推迟削减能力逐渐减弱。由此可知,低影响开发系统的雨洪调控能力具有上限。

    (3) 根据北京市2017年全年降雨量日值统计,外源雨水地块雨水调蓄池中径流收集的利用率为43.65%,有30周(210 d)雨水调蓄池空置率为100%,较为浪费。因此在进行低影响开发系统设计时,应综合考虑成本造价等因素。

  • 图  1   研究树种分布省份

    Figure  1.   Distribution provinces of studied tree species

    图  2   自主设计生物质燃烧系统

    Figure  2.   Self-designed biomass combustion system

    图  3   不同树种枝叶的碳排放因子

    不同小写字母代表不同树种间(共19种)同一部位具有显著性差异(P < 0.05)。Different lowercase letters represent significant differences in the same position among different tree species (19 species in total) (P < 0.05).

    Figure  3.   Carbon emission factors of branches and leaves of different tree species

    图  4   不同林区的树种类型枝与叶的碳排放因子

    Figure  4.   Carbon emission factors of branches and leaves of different tree species in varied forest regions

    表  1   不同林区树种的排放物含量

    Table  1   Emission contents of tree species in different forest areas g/kg

    林区 Forest region树种 Tree speciesCO2COCxHyPM2.5ECOC
    东北林区
    Northeastern
    forest
    region
    落叶松 Larix gmelinii (LG) 1 155.32 ± 24.04b 202.80 ± 12.89c 35.55 ± 6.43ab 5.25 ± 1.46d 0.62 ± 0.07e 2.73 ± 0.44d
    樟子松 Pinus syvestris (PS) 875.07 ± 38.16e 201.80 ± 16.39c 42.16 ± 6.27a 12.47 ± 2.21b 1.77 ± 0.20c 6.29 ± 0.64c
    白桦 Betula platyphylla (BP) 1 197.98 ± 64.78b 186.22 ± 17.51c 28.58 ± 6.30bc 11.96 ± 0.52b 0.60 ± 0.23e 2.55 ± 0.47d
    蒙古栎 Quercus mongolica (QM) 729.51 ± 37.75f 196.01 ± 14.33c 36.70 ± 8.85ab 6.07 ± 2.93d 0.61 ± 0.17e 3.53 ± 0.68d
    毛白杨 Populus tomentosa (PT) 1 320.35 ± 130.15b 221.45 ± 20.75bc 45.10 ± 4.50a 7.15 ± 1.10d 0.95 ± 0.10d 5.65 ± 0.45c
    南方林区
    Southern
    forest
    region
    马尾松 Pinus massoniana (PM) 1 588.00 ± 104.43a 324.80 ± 11.60a 26.59 ± 4.68c 28.45 ± 4.12a 3.42 ± 0.58a 12.03 ± 1.46a
    杉木 Cunninghamia lanceolata (CL) 1 372.85 ± 86.83b 297.25 ± 13.58ab 21.81 ± 2.43cd 15.62 ± 2.54b 2.04 ± 0.32bc 6.86 ± 1.31c
    樟树 Cinnamomum bodinieri (CB) 1 428.52 ± 55.82ab 254.18 ± 20.75b 20.62 ± 3.69cd 11.32 ± 2.56bc 1.80 ± 0.54c 5.14 ± 1.33c
    桉树 Eucalyptus robusta (ER) 1 577.68 ± 61.55a 226.08 ± 18.93b 15.86 ± 4.24d 9.15 ± 1.87c 1.09 ± 0.30d 4.43 ± 1.24c
    闽楠 Phoebe bournei (PB) 1 006.07 ± 22.33d 228.46 ± 7.10b 16.23 ± 5.25d 17.76 ± 3.97ab 2.15 ± 0.30bc 8.60 ± 0.18b
    油杉 Keteleeria fortunei (KF) 1 093.79 ± 36.05c 225.62 ± 15.30b 22.60 ± 5.07cd 23.21 ± 3.68a 2.57 ± 0.37b 10.70 ± 0.32a
    西南林区
    Southwestern
    forest
    region
    光叶石栎 Lithocarpus mairei (LM) 1 130.71 ± 110.25c 212.62 ± 43.65b 31.66 ± 4.28bc 19.45 ± 3.38ab 0.75 ± 0.11de 8.18 ± 1.68b
    旱冬瓜 Alnus nepalensis (AN) 1 194.90 ± 111.10bc 222.96 ± 42.80bc 35.18 ± 4.02b 10.68 ± 3.58c 1.39 ± 0.37c 6.28 ± 1.79c
    滇青冈 Cyclobalanpsis glaucoides (CG) 1 144.20 ± 129.40bc 190.77 ± 46.02c 43.08 ± 8.65a 18.02 ± 4.79b 1.71 ± 0.43c 7.83 ± 1.44b
    金合欢 Acacia farnesiana (AF) 902.59 ± 117.40c 166.38 ± 29.33c 31.17 ± 4.56bc 19.38 ± 5.33ab 0.91 ± 0.10d 5.25 ± 1.02c
    栓皮栎 Quercus variabilis (QV) 1 065.60 ± 117.40c 208.89 ± 38.98bc 33.12 ± 5.13b 18.01 ± 6.48ab 1.63 ± 0.23c 7.89 ± 1.00b
    华山松 Pinus armandii (PA) 1 125.42 ± 129.10c 239.19 ± 49.94b 48.17 ± 6.07a 27.17 ± 9.50a 0.87 ± 0.10d 6.37 ± 1.05c
    云南油杉 Keteleeria evelyniana (KE) 1 389.40 ± 158.90ab 261.06 ± 49.89b 49.61 ± 10.33a 23.59 ± 5.13a 0.84 ± 0.12d 4.86 ± 0.71c
    麻栎 Quercus acutissima (QA) 1 189.50 ± 133.90bc 205.98 ± 33.09bc 38.55 ± 6.23ab 17.31 ± 4.50ab 1.85 ± 0.27c 5.01 ± 0.25c
    注:不同小写字母代表不同树种间(共19种)同一污染物具有显著性差异(P < 0.05),OC、EC分别为有机碳、元素碳。下同。Notes: different lowercase
    letters represent significant differences in the same pollutant among different tree species (19 species in total) (P < 0.05). OC, EC represent organic carbon and elemental carbon,respectively. Same as below.
    下载: 导出CSV

    表  2   不同林区不同树种类型碳排放因子

    Table  2   Carbon emission factors of different tree species in varied forest regions g/kg

    树种类型
    Tree species type
    林区 Forest regionCO2COCxHyPM2.5ECOC
    针叶树
    Conifer
    东北林区
    Northeastern forest region
    1 015.20 ± 31.10Ab 202.32 ± 14.64Ab 38.86 ± 6.35Aa 8.86 ± 2.33Ab 1.20 ± 0.14Ab 4.51 ± 0.54Ac
    南方林区
    Southern forest region
    1 351.55 ± 75.77Aa 282.55 ± 13.49Aa 23.67 ± 4.06Ac 22.43 ± 4.45Aa 2.68 ± 0.43Aa 9.87 ± 1.03Aa
    西南林区
    Southwestern forest region
    1 323.70 ± 73.62Aa 250.12 ± 16.33Aab 26.39 ± 9.93Ab 25.38 ± 4.58Aa 1.37 ± 0.53Ab 6.73 ± 1.30Ab
    阔叶树
    Broadleaved tree
    东北林区
    Northeastern forest region
    1 082.61 ± 77.56Ab 201.23 ± 17.53Ab 36.79 ± 6.55Aa 5.06 ± 1.52Ab 0.72 ± 0.17Bb 3.91 ± 0.53Ab
    南方林区
    Southern forest region
    1 337.42 ± 46.57Aa 236.24 ± 15.59Ba 17.57 ± 4.39Ab 12.74 ± 2.80Aa 1.68 ± 0.38Aa 6.06 ± 0.92Ba
    西南林区
    Southwestern forest region
    1 104.62 ± 44.17Ab 201.26 ± 24.08Ab 38.82 ± 6.73Aa 17.14 ± 3.23Aa 0.85 ± 0.51Aab 5.61 ± 5.61Aa
    注:不同大写字母代表在同一林区下针、阔叶树的碳排放因子具有显著性差异(P < 0.05);不同小写字母代表在不同林区间同一树种类型的碳排放因子具有显著性差异(P < 0.05)。Notes: different capital letters represent significant differences in carbon emission factors of coniferous and broadleaved trees in the same forest region (P < 0.05); different lowercase letters represent significant differences in carbon emission factors of same tree species type in different forest regions (P < 0.05).
    下载: 导出CSV

    表  3   不同林区树种平均碳排放因子

    Table  3   Average carbon emission factors of tree species in different forest regions g/kg

    林区
    Forest region
    CO2COCxHyPM2.5ECOC
    东北林区 Northeastern forest region 1 055.65 ± 58.97b 201.66 ± 16.37b 37.62 ± 16.47a 6.58 ± 2.64c 0.91 ± 0.16b 4.15 ± 0.54b
    南方林区 Southern forest region 1 344.48 ± 61.18a 259.40 ± 14.54a 20.62 ± 4.180b 17.58 ± 3.62b 2.18 ± 0.41a 7.96 ± 0.98a
    西南林区 Southwestern forest region 1 190.27 ± 294.70a 207.37 ± 63.96ab 31.58 ± 10.50ab 21.00 ± 6.32a 1.25 ± 0.53b 6.43 ± 1.20ab
    注:不同小写字母代表不同林区间具有显著性差异(P < 0.05)。 Note: different lowercase letters represent significant differences among different forest regions (P < 0.05).
    下载: 导出CSV
  • [1]

    Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest eco-systems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185

    [2]

    Brown S, Sathaye J, Cannell M, et al. Management of forests for mitigation of greenhouse gas emissions, climate change 1995-impacts, adaptations and mitigation of climate change: scientific-technical analyses [M]. Cambridge: Cambridge University Press, 1996: 773−797.

    [3]

    Chen L D, Fu B J. Ecological significance, characteristics and types of disturbance[J]. Acta Ecologica Sinica, 2000, 20(4): 581−586.

    [4] 单延龙, 王淑群, 曾超, 等. 吉林省主要林型森林火灾的碳量释放[J]. 生态学报, 2010, 30(9): 2254−2260.

    Shan Y L, Wang S Q, Zeng C, et al. Carbon emission from forest fires of main forest types in Jilin Province[J]. Acta Ecologica Sinica, 2010, 30(9): 2254−2260.

    [5]

    Ito A, Penner J E. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870−2000[J]. Global Biogeochemical Cycles, 2005, 19(2): 1−14.

    [6]

    Mike F, Brian S, Merritt T, et al. Impacts of climate change on fire activity and fire management in the circumboreal forest[J]. Global Change Biology, 2010, 15(3): 549−560.

    [7]

    Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2001, 409: 695−697. doi: 10.1038/35055518

    [8]

    Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297: 2250−2253. doi: 10.1126/science.1075159

    [9]

    Werf G R, Randerson J T, Giglio L, et al. Global fire emissions estimates during 1997−2016[J]. Earth System Science Data, 2017, 9(2): 697−720. doi: 10.5194/essd-9-697-2017

    [10]

    Jayarathne T, Stockwell C E, Gilbert A A, et al. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 25−85.

    [11]

    Echalar F, Gaudichet A, Cachier H, et al. Aerosol emissions by tropical forest and savanna biomass burning: characteristic trace elements and fluxes[J]. Geophysical Research Letters, 1995, 22(22): 3039−3042. doi: 10.1029/95GL03170

    [12] 胡海清, 郭福涛. 大兴安岭森林火灾中主要乔木树种含碳气体释放总量的估算[J]. 应用生态学报, 2008, 19(9): 1884−1890.

    Hu H Q, Guo F T. Estimation of total carbon-containing gas emission from main tree species in forest fires in Daxing’an Mountains[J]. Chinese Journal of Applied Ecology, 2008, 19(9): 1884−1890.

    [13] 王明玉. 气候变化背景下中国林火响应特征及趋势 [D]. 北京: 中国林业科学研究院, 2009.

    Wang M Y. Characteristics of forest fire response and trend under the scenarios of climate change in China [D]. Beijing: Chinese Academy of Forestry, 2009.

    [14] 王开德, 邓璐莹. 基于森林清查资料的福建森林植被碳储量及其动态变化[J]. 福建农林大学学报, 2014, 34(2): 145−151.

    Wang K D, Deng L Y. Dynamics of forest vegetation carbon stock in Fujian Province based on national forest inventories[J]. Journal of Fujian Agriculture and Forestry University, 2014, 34(2): 145−151.

    [15]

    Tian X R, Zhao F J, Shu L F, et al. Distribution characteristics and the influence factors of forest fires in China[J]. Forest Ecology & Management, 2013, 310(1): 460−467.

    [16] 李红旭, 马玉春. 滇池面山森林植被生态修复研究[M]. 昆明: 云南科技出版社, 2017.

    Li H X, Ma Y C. Study on ecological restoration of forest vegetation in Dianchi Mountain[M]. Kunming: Yunnan Science and Technology Press, 2017.

    [17] 胡海清, 李敖彬. 小兴安岭主要乔、灌木燃烧过程的烟气释放特征[J]. 应用生态学报, 2008, 19(7): 1431−1436.

    Hu H Q, Li A B. Characteristics of gas release during combustion of main arbor and shrub species in Xiaoxing’an Mountain[J]. Journal of Applied Ecology, 2008, 19(7): 1431−1436.

    [18]

    Cereceda B F, Toledo M, Vidal V, et al. Emission factors for PM2.5, CO, CO2, NOx, SO2, and particle sizedistributions from the combustion of wood species using a new controlled combustion chamber 3CE[J]. Science of the Total Environment, 2017, 584/585: 901−910. doi: 10.1016/j.scitotenv.2017.01.136

    [19]

    Fernandes A P, Alves C A, Goncalves C, et al. Emission factors from residential combustion appliances burning Portuguese biomass fuels[J]. Journal of Environmental Monitoring, 2011, 13(11): 101−109.

    [20]

    Arinto Y P W, Lidia M, Zoran D R, et al. CO2 emissions from the combustion of native Australian trees[J]. International Journal of Basic and Applied Sciences, 2011, 11(4): 70−77.

    [21]

    Lobert J M, Scharfe D H, Hao W, et al. Experimental evaluation of biomass burning emissions: nitrogen and carbon containing compounds global biomass burning[M]. Cambridge: MIT Press, 1991.

    [22]

    Schmidl C, Bauer H, Dattler A, et al. Chemical characterisation of particle emissions from burning leaves[J]. Atmo Spheric Environment, 2008, 42(40): 9070−9079. doi: 10.1016/j.atmosenv.2008.09.010

    [23]

    Fine P M, Cass G R, Simoneit B R T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States[J]. Environmental Science & Technology, 2001, 35(13): 2665−2675.

    [24] 吴志伟, 常 禹, 贺红士, 等. 大兴安岭呼中林区林火时空分布特征分析[J]. 广东农业科学, 2011, 38(5): 189−193. doi: 10.3969/j.issn.1004-874X.2011.05.065

    Wu Z W, Chang Y, He H S, et al. Analyzing the spatial and temporal distribution characteristics of forest fires in Huzhong Area in the Great Xing’an Mountains[J]. Guangdong Agricultural Sciences, 2011, 38(5): 189−193. doi: 10.3969/j.issn.1004-874X.2011.05.065

    [25] 郭福涛, 苏漳文, 王文辉, 等. 一种模拟野外生物质燃烧的停留室装置: 中国, 201621119781 [P]. 2017−03−01.

    Guo F T, Su Z W, Wang W H, et al. A residence chamber device for simulating biomass combustion in the field: China, 201621119781 [P]. 2017−03−01.

    [26] 靳全锋, 王文辉, 郭福涛, 等. 福建省 2000—2010 年林火排放污染物时空动态变化[J]. 中国环境科学, 2017, 37(2): 476−485. doi: 10.3969/j.issn.1000-6923.2017.02.010

    Jin Q F, Wang W H, Guo F T, et al. Spatio-temporal dynamic changes of forest fire emission pollutants in Fujian Province from 2000 to 2010[J]. China Environmental Science, 2017, 37(2): 476−485. doi: 10.3969/j.issn.1000-6923.2017.02.010

    [27] 陈锋, 林向东, 牛树奎, 等. 气候变化对云南省森林火灾的影响[J]. 北京林业大学学报, 2012, 34(6): 7−15.

    Chen F, Lin X D, Niu S K, et al. Influence of climate change on forest fire in Yunnan Province, southwestern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 7−15.

    [28]

    Mcmeeking G R, Kpeidenweis S M, Baker S, et al. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D19): 210−230.

    [29]

    Akagi S K, Yokelson R J, Wiedinmyer C, et al. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry & Physics, 2011, 11(9): 27523−27602.

    [30]

    Wei S J, Hu H Q, Sun L, et al. Situation on our country's forest fire prevention under the background of climate and its countermeasures[J]. Forest Fire Prevention, 2011, 6(2): 1−4.

    [31] 胡海清, 魏书精, 孙 龙. 大兴安岭2001—2010年森林火灾碳排放的计量估算[J]. 生态学报, 2012, 32(17): 5373−5386.

    Hu H Q, Wei S J, Sun L. Estimating carbon emissions from forest during 2001 to 2010 in Daxing’anling Mountain[J]. Acta Ecologica Sinica, 2012, 32(17): 5373−5386.

    [32] 郭林飞, 马远帆, 郭福涛, 等. 大兴安岭4种乔木枝叶燃烧碳排放因子分析[J]. 环境科学与技术, 2019, 42(11): 193−200.

    Guo L F, Ma Y F, Guo F T, et al. Carbon emission factors analysis of branches and leaves of four tree species in Grearer Khingan Range[J]. Environmental Science & Technology, 2019, 42(11): 193−200.

    [33] 楚旭, 邸雪颖, 杨光. 林火对兴安落叶松根生物量及碳氮养分浓度的影响[J]. 北京林业大学学报, 2013, 35(2): 10−16.

    Chu X, Di X Y, Yang G. Impacts of forest fire on root biomass, carbon and nitrogen concentration of Larix gmelinii[j]. Journal of Beijing Forestry University, 2013, 35(2): 10−16.

    [34]

    Groot W J, Pritchard J M, Lynham T J. Forest floor fuel consumption and carbon emissions in Canadian boreal forest fires[J]. Canadian Journal of Forest Research, 2009, 39(2): 367−382. doi: 10.1139/X08-192

    [35]

    Fernandes A P, Alves C A, Goncalves C, et al. Emission factors from residential combustion appliances burning Portuguese biomass fuel[J]. Journal of Environmental Monitoring, 2011, 13(11): 3196−3206. doi: 10.1039/c1em10500k

    [36]

    Ito A, Penner J E. Global estimates of biomass burning emissions based on satellite imagery for the year 2000[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D14): 839−856.

    [37]

    Korontzi S, Justtce C O, Scholes R J. Influence of timing and spatial extent of savanna fires in southern Africa on atmospheric emissions[J]. Journal of Arid Environments, 2003, 54(2): 395−404. doi: 10.1006/jare.2002.1098

    [38]

    Akagi S K, Yokelson R J, Wiedinmyer C, et al. Emission factors for open and domestic biomass burning for use in atmospheric models[J]. Atmospheric Chemistry and Physics, 2011, 11(230): 4039−4072.

    [39]

    Guo F T, Ju Y H, Wang G Y, et al. Inorganic chemical composition of PM 2.5 emissions from the combustion of six main tree species in subtropical China[J]. Atmospheric Environment, 2018, 189: 107−115. doi: 10.1016/j.atmosenv.2018.06.044

    [40]

    Xu W R, He H S, Zhu Z L, et al. Estimating burn severity and carbon emissions from a historic megafirein boreal forests of China[J]. Science of the Total Environment, 2020, 22(2): 716−735.

    [41]

    Reidangela M, Robertsonkevin M, Hmielowskitracy L. Predicting litter and live herb fuel consumption during prescribed fires in native and old-field upland pine communities of the southeastern United States[J]. Canadian Journal of Forest Research, 2012, 42(8): 1611−1622. doi: 10.1139/x2012-096

    [42]

    Reid A M, Robertson K M. Energy content of common fuels in upland pine savannas of the southeastern US and their application to fire behavior modeling[J]. International Journal of Wildland Fire, 2012, 21(5): 591−595. doi: 10.1071/WF10139

    [43]

    Bongsang B, Boissard C, Cloqrec M, et al. Methane, carbon monoxide and light nonmethane hydrocarbon emissions from African savanna burnings during the FOS/DECAFE experiment[J]. Journal of Atmospheic Chemistry, 1955, 22(1): 149−162.

    [44]

    Kauffman J B, Cummings D L, Ward D E. Relationships of fire, biomass and nutrient dynamics along avegetation gradient in the Brazilian[J]. Journal of Ecology, 1994, 82: 519−530. doi: 10.2307/2261261

    [45] 王俊鸿, 马祥庆. 不同产区杉木人工林生物生产力及其与环境因子的关系研究[D]. 福州: 福建农林大学, 2014.

    Wang J H, Ma X Q. Research on the relationship between biological productivity and the environmental factors of Chinese fir plantation in different areas[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.

    [46] 刘刚, 黄柯, 李久海, 等. 树木模拟燃烧排放烟尘中水溶性离子的组成[J]. 环境科学, 2016, 37(10): 3737−3742.

    Liu G, Huang K, Li J H, et al. Chemical composition of water-soluble ions in smoke emitted from tree branch combustion[J]. Environmental Science, 2016, 37(10): 3737−3742.

  • 期刊类型引用(6)

    1. 莫崇杏,董明亮,李荣生,余纽,郑显澄,杨锦昌. 米老排杂交子代苗期生长性状遗传变异及选择. 森林与环境学报. 2023(05): 555-560 . 百度学术
    2. Shuchun Li,Jiaqi Li,Yanyan Pan,Xiange Hu,Xuesong Nan,Dan Liu,Yue Li. Variation analyses of controlled pollinated families and parental combining ability of Pinus koraiensis. Journal of Forestry Research. 2021(03): 1005-1011 . 必应学术
    3. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 . 百度学术
    4. 秦光华,宋玉民,乔玉玲,于振旭,彭琳. 旱柳苗高年生长与气象因子的灰色关联度. 东北林业大学学报. 2019(05): 42-45+51 . 百度学术
    5. 李峰卿,陈焕伟,周志春,楚秀丽,徐肇友,肖纪军. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选. 植物资源与环境学报. 2018(02): 57-65 . 百度学术
    6. 张素芳,张磊,赵佳丽,张莉,张含国. 长白落叶松小RNA测序和其靶基因预测. 北京林业大学学报. 2016(12): 64-72 . 本站查看

    其他类型引用(6)

图(4)  /  表(3)
计量
  • 文章访问数:  952
  • HTML全文浏览量:  273
  • PDF下载量:  98
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-02-28
  • 网络出版日期:  2022-01-11
  • 发布日期:  2022-02-24

目录

/

返回文章
返回