高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽窄行栽植模式下三倍体毛白杨–小麦复合系统的细根分布及形态特征

邹松言 付婧懿 邸楠 王烨 席本野

邹松言, 付婧懿, 邸楠, 王烨, 席本野. 宽窄行栽植模式下三倍体毛白杨–小麦复合系统的细根分布及形态特征[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200420
引用本文: 邹松言, 付婧懿, 邸楠, 王烨, 席本野. 宽窄行栽植模式下三倍体毛白杨–小麦复合系统的细根分布及形态特征[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200420
Zou Songyan, Fu Jingyi, Di Nan, Wang Ye, Xi Benye. Fine roots spatial distribution and morphology of triploid Populus tomentosa–Wheat agroforestry system under wide- and narrow-row spacing planting schemes[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200420
Citation: Zou Songyan, Fu Jingyi, Di Nan, Wang Ye, Xi Benye. Fine roots spatial distribution and morphology of triploid Populus tomentosa–Wheat agroforestry system under wide- and narrow-row spacing planting schemes[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200420

宽窄行栽植模式下三倍体毛白杨–小麦复合系统的细根分布及形态特征

doi: 10.12171/j.1000-1522.20200420
基金项目: 国家科学自然基金项目(31872702)
详细信息
    作者简介:

    邹松言。主要研究方向:人工林水分关系和根系生态学。Email:songyanzou@bjfu.edu.cn 地址:100093 北京市农林科学院林业果树研究所

    责任作者:

    王烨,博士,助理研究员。主要研究方向:园林植物栽培生理。Email:240737994@qq.com 地址:同上

Fine roots spatial distribution and morphology of triploid Populus tomentosa–Wheat agroforestry system under wide- and narrow-row spacing planting schemes

  • 摘要:   目的  为给优化宽窄行栽植模式下毛白杨–小麦复合系统的集约栽培措施提供理论依据,本文探讨了该系统中的细根根长密度(FRLD)分布及形态特征。  方法  在宽窄行栽植模式下的4年生三倍体毛白杨–小麦复合系统中,于小麦收获后,采取根钻法在3株平均标准木周围进行根系取样,取样位点为窄行距树75 cm、树行距树75 cm、宽行距树100、200、300、400 cm,取样深度为80 cm,共取得根样288个。然后,对所有样品进行形态扫描和烘干称质量,得到不同深度、位点处的毛白杨和小麦细根的分布及形态数据。  结果  垂直方向上,毛白杨和小麦的细根均主要聚集在0 ~ 20 cm的浅土层,其中的FRLD分别占总根长密度的68%和45%。毛白杨(R2 = 0.679 3,P < 0.05)和小麦(R2 = 0.922 9,P < 0.05)细根均随土层指数递减;两个物种的FRLD在浅土层没有显著差异(P > 0.05),在深土层中则表现出小麦的FRLD显著高于毛白杨的特征(P < 0.05)。水平方向上,毛白杨细根主要聚集在窄行的浅土层中,而小麦细根则在宽行中大量分布。二维根系分布结果显示,毛白杨和小麦有各自的细根密集分布区域且总体上互不干涉。毛白杨的平均细根直径显著高于小麦(P < 0.05),其比根长则显著低于小麦(P < 0.05)。  结论  在宽窄行栽植模式下的三倍体毛白杨–小麦复合系统中,毛白杨和小麦的细根分布产生了空间分离,密集分布区域重叠较少;此外,为了更有效地吸收土壤资源以占据竞争优势,小麦会生产更多吸收效率更高的细根。以上结果可为优化该栽植模式下农林复合系统的集约经营技术提供理论支撑。

     

  • 图  1  根系取样示意图

    Figure  1.  Schematic diagram of root sampling

    图  2  整个根区范围内毛白杨–小麦复合系统细根根长密度的垂直分布

    *表示同一土层内物种间差异显著(P < 0.05),检验方法为T检验。* indicate significant difference between species (p < 0.05), according to the T–test.

    Figure  2.  Vertical distribution of FRLD of P. tomentosa–wheat in the whole root zone

    图  3  整个根区范围内毛白杨–小麦复合系统的D50D95

    不同的小写字母表示物种间差异显著(P < 0.05),检验方法为T检验。Different letters indicate significant difference between species (p < 0.05), according to the T–test.

    Figure  3.  D50 and D95 of P. tomentosa–wheat in the whole root zone

    图  4  毛白杨–小麦复合系统细根根长密度的水平分布

    不同位点上的不同小写字母表示位点间差异显著(P < 0.05),同一位点的不同大写字母表示物种间差异显著(P < 0.05),检验方法为分别Tukey检验和T检验。Different small letters in different location indicate significant difference between locations (P < 0.05), different capital letters in the same location indicate significant difference between species (P < 0.05), according to the Tukey test and T–test, respectively.

    Figure  4.  Horizontal distribution of FRLD of P. tomentosa–wheat

    图  5  毛白杨细根根长密度二维分布(a)和小麦细根根长密度二维分布(b)

    虚线为宽窄行分界,即树体位置。Dotted lines indicate the boundary of wide– and narrow–row, i. e. the tree position.

    Figure  5.  Two–dimensional distribution of FRLD of P. tomentosa (a) and wheat (b)

    图  6  毛白杨和小麦细根的直径和比根长

    不同小写字母表示物种间差异显著(P < 0.05),检验方法为T检验。Different letters indicate significant difference between species (p < 0.05), according to the T–test.

    Figure  6.  MRD and SRL of P. tomentosa and wheat.

    图  7  毛白杨和小麦细根比根长与直径的关系

    Figure  7.  Relationship between SRL and MRD of P. tomentosa and wheat

  • [1] Izac A M N, Sanchez P A. Towards a natural resource management paradigm for international agriculture: the example of agroforestry research[J]. Agricultural Systems, 2001, 69(1): 5−25.
    [2] Pandey D N. Carbon sequestration in agroforestry systems[J]. Climate Policy, 2002, 2(4): 367−377. doi: 10.3763/cpol.2002.0240
    [3] 邹鑫, 朱习爱, 陈春峰, 等. 农林复合系统的水土保持效益[J]. 云南大学学报, 2020, 42(2):382−392.

    Zou X, Zhu X A, Chen C F, et al. Soil and water conservation benefits of agroforestry systems[J]. Journal of Yunnan University, 2020, 42(2): 382−392.
    [4] 云雷, 毕华兴, 马雯静, 等. 晋西黄土区林草复合界面雨后土壤水分空间变异规律研究[J]. 东北林业大学学报, 2010, 38(7):67−40. doi: 10.3969/j.issn.1000-5382.2010.07.022

    Yun L, Bi H X, Ma W J, et al. Spatial distribution characteristics of root system of walnut trees in the Walnut peanut intercropping system in the Loess Region of Western Shanxi[J]. Journal of Northeast Forestry University, 2010, 38(7): 67−40. doi: 10.3969/j.issn.1000-5382.2010.07.022
    [5] Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents[J]. Ecology, 1997, 94(14): 7362−7366.
    [6] Gordon W S, Jackson R B. Nutrient concentrations in fine roots[J]. Ecology, 2000, 81(1): 275−280. doi: 10.1890/0012-9658(2000)081[0275:NCIFR]2.0.CO;2
    [7] Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty–three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673−683. doi: 10.1111/j.1469-8137.2008.02573.x
    [8] Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes[J]. Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes[J]. New Phytologist, 2015, 207(3): 505−518. doi: 10.1111/nph.13363
    [9] 云雷, 毕华兴, 任怡, 等. 黄土区果农复合系统种间水分关系研究[J]. 水土保持通报, 2008, 28(6):110−114.

    Yun L, Bi HX, Ren Y, et al. Research on soil moisture relations among types of agroforestry system in the Loess Region[J]. Bulletin of Soil and Water Conservation, 2008, 28(6): 110−114.
    [10] Fitter A. Characteristics and functions of root systems[M]//Eshel A, Beeckman T. Plant roots. Boca Raton: CRC Press, 2002: 49–78.
    [11] Liu L P, Gan Y T, Bueckerta R, et al. Rooting systems of oilseed and pulse crops (II.): vertical distribution patterns across the soil profile[J]. Field Crops Research, 2011, 122(3): 248−255. doi: 10.1016/j.fcr.2011.04.003
    [12] 马理辉, 吴普特, 汪有科. 黄土丘陵半干旱区密植枣林随树龄变化的根系空间分布特征[J]. 植物生态学报, 2012, 36(4):292−301.

    Ma L H, Wu P T, Wang Y K. Spatial pattern of root systems of dense jujube plantation with jujube age in the semiarid loess hilly region of China[J]. Chinese Journal of Plant Ecology, 2012, 36(4): 292−301.
    [13] Huxley P A, Pinney A, Akunda E, et al. A tree/crop interface orientation experiment with a Grevillea robusta hedgerow and maize[J]. Agroforestry Systems, 1994, 26(1): 23−45. doi: 10.1007/BF00705150
    [14] Schroth G, Lehmann J. Contrasting effects of roots and mulch from three agroforestry tree species on yields of alley cropped maize[J]. Agriculture Ecosystems & Environment, 1995, 54(1–2): 89−101.
    [15] Burgess P J, Stephens W, Anderson G, et al. Water use by a poplar–wheat agroforestry system[J]. Aspects of Applied Biology, 1996, 44: 129−136.
    [16] Swamy S L, Mishra A, Puri S. Comparison of growth, biomass and nutrient distribution in five promising clones of Populus deltoides under an agrisilviculture system[J]. Bioresource Technology, 2006, 97(1): 57−68. doi: 10.1016/j.biortech.2005.02.032
    [17] 马秀玲, 陆光明, 徐祝龄, 等. 农林复合系统中林带和作物的根系分布特征[J]. 中国农业大学学报, 1997, 2(1):109−116.

    Ma X L, Lu G M, Xu Z L, et al. Distribution characteristic of the root system of forest belt and crop within the composite system of agriculture and forestry[J]. Journal of China Agriculture University, 1997, 2(1): 109−116.
    [18] 王长伟, 刘勇, 李国雷, 等. 不同林农复合模式对造林1年后毛白杨幼林根系的影响[J]. 北京林业大学学报, 2019, 41(1):32−41.

    Wang C W, Liu Y, Li G L, et al. Effects of different agro–forestry models on seedling root system of Populus tomentosa after one year of afforestation[J]. Journal of Beijing Forestry University, 2019, 41(1): 32−41.
    [19] Mulia R, Dupraz C. Unusual fine root distributions of two deciduous tree species in southern france: what consequences for modelling of tree root dynamics?[J]. Plant & Soil, 2006, 281(1–2): 71−85.
    [20] Upson M A, Burgess P J. Soil organic carbon and root distribution in a temperate arable agroforestry system[J]. Plant & Soil, 2013, 373(1): 43−58.
    [21] 邸楠, 席本野, 王烨, 等. 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应[J]. 植物生态学报, 2013, 37(10):961−971.

    Di N, Xi B Y, Wang Y, et al. Root biomass distribution of triploid Populus tomentosa under wide– and narrow –row spacing planting schemes and its responses to soil nutrients[J]. Chinese Journal of Plant Ecology, 2013, 37(10): 961−971.
    [22] Xi B Y, Wang Y, Jia L M, et al. Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: Implications for irrigation water management[J]. Agricultural Water Management, 2013, 117: 83−92. doi: 10.1016/j.agwat.2012.11.006
    [23] 康向阳, 朱之悌. 三倍体毛白杨在我国纸浆生产中的地位与作用[J]. 北京林业大学学报, 2002, 24(S1):51−56.

    Kang X Y, Zhu Z T. Status and role of triploid Populus tomentosa in pulp production in China[J]. Journal of Beijing Forestry University, 2002, 24(S1): 51−56.
    [24] Silva J S, Rego F C. Root distribution of a Mediterranean shrub land in Portugal[J]. Plant and Soil, 2003, 255(2): 529−540. doi: 10.1023/A:1026029031005
    [25] Coleman M. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization[J]. Plant and Soil, 2007, 299(1–2): 195−213.
    [26] Ma L H, Liu X L, Wang Y K, et al. Effects of drip irrigation on deep root distribution, rooting depth, and soil water profile of jujube in a semiarid region[J]. Plant & Soil, 2013, 373(1): 995−1006.
    [27] 邹松言, 李豆豆, 汪金松, 等. 毛白杨幼林根系对梯度土壤水分的响应[J]. 林业科学, 2019, 55(10):125−138.

    Zou S Y, Li D D, Wang J S, et al. Response of fine root to soil moisture of different gradients in young Populus tomentosa plantation[J]. Scientia Silvae Sinicae, 2019, 55(10): 125−138.
    [28] 席本野. 杨树根系形态、分布、动态特征及其吸水特性[J]. 北京林业大学学报, 2019, 41(12):37−49. doi: 10.12171/j.1000-1522.20190400

    Xi B Y. Morphology, distribution, dynamic characteristics of poplar roots and its water uptake habits[J]. Journal of Beijing Forestry University, 2019, 41(12): 37−49. doi: 10.12171/j.1000-1522.20190400
    [29] 白永飞. 降水量季节分配对克氏针茅草原群落初级生产力的影响[J]. 植物生态学报, 1999, 23(2):155−160. doi: 10.3321/j.issn:1005-264X.1999.02.007

    Bai Y F. Influence of seasonal distribution of precipitation on primary productivity of Stipa Krylovii community[J]. Chinese Journal of Plant Ecology, 1999, 23(2): 155−160. doi: 10.3321/j.issn:1005-264X.1999.02.007
    [30] Adriano E, Laclau J P, Rodrigues J D. Deep rooting of rainfed and irrigated orange trees in Brazil[J]. Trees, 2017, 31(1): 285−297. doi: 10.1007/s00468-016-1483-5
    [31] Bakker M R, Augusto L, Achat D L. Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites[J]. Plant & Soil, 2006, 286(1–2): 37−51.
    [32] 李盼盼. 杨树人工林细根的空间分布特征及其季节动态[D]. 泰安: 山东农业大学, 2012.

    Li P P. Fine root distribution patterns and seasonal dynamics of poplar plantation[D]. Taian: Shandong Agricultural University, 2012.
    [33] Steele S J, Gower S T, Vogel J G, et al. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada[J]. Tree Physiology, 1997, 17(8–9): 577−587.
    [34] Barber K R, Leeds–Harrison P B, Lawson C S, et al. Soil aeration status in a lowland wet grassland[J]. Hydrological Processes, 2004, 18(2): 329−341. doi: 10.1002/hyp.1378
    [35] Schenk H J. The Shallowest Possible Water Extraction Profile: a null model for global root distributions[J]. Vadose Zone Journal, 2008, 7(3): 1119−1124. doi: 10.2136/vzj2007.0119
    [36] 席本野, 邸楠, 刘金强, 等. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9):885−905. doi: 10.17521/cjpe.2018.0083

    Xi B Y, Di N, Liu J Q, et al. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees[J]. Chinese Journal of Plant Ecology, 2018, 42(9): 885−905. doi: 10.17521/cjpe.2018.0083
    [37] Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia, 1996, 108(3): 389−411. doi: 10.1007/BF00333714
    [38] Douglas G B, McIvor I R, Potter J F, et al. Root distribution of poplar at varying densities on pastoral hill country[J]. Plant and Soil, 2010, 333(1–2): 147−161.
    [39] 马长明, 翟明普, 刘春鹏. 单作与间作条件下核桃根系分布特征研究[J]. 北京林业大学学报, 2009, 31(6):181−186.

    Ma C M, Zhai M P, Liu C P. Root distribution characteristics of Juglans regia in monoculture and intercropping[J]. Journal of Beijing Forestry University, 2009, 31(6): 181−186.
    [40] Lubo G, Huasen X, Huaxing B, et al. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China[J/OL]. Plos One, 2013, 8(7): e70739[2020-11-12]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070739.
    [41] 王来, 高鹏翔, 仲崇高, 等. 核桃–小麦复合系统中细根生长动态及竞争策略[J]. 生态学报, 2018, 38(21):7762−7771.

    Wang L, Gao P X, Zhong C G, et al. Growth dynamics and competitive strategies of fine roots in a walnut– wheat agroforestry system[J]. Acta Ecologica Sinica, 2018, 38(21): 7762−7771.
    [42] Hendrick R L, Pregitzer K S. The relationship between fine root demography and the soil environment in northern hardwood forests[J]. Ecoscience, 1997, 4(1): 99−105. doi: 10.1080/11956860.1997.11682383
    [43] 耿玉清, 单宏臣, 谭笑, 等. 人工针叶林林冠空隙土壤的研究[J]. 北京林业大学学报, 2002, 24(4):16−19. doi: 10.3321/j.issn:1000-1522.2002.04.004

    Geng Y Q, Shan H C, Tan X, et al. Soils in forest gaps in artificial coniferous forests[J]. Journal of Beijing Forestry University, 2002, 24(4): 16−19. doi: 10.3321/j.issn:1000-1522.2002.04.004
    [44] 杨秀云, 韩有志, 张芸香. 距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化[J]. 植物生态学报, 2008, 32(6):1277−1284. doi: 10.3773/j.issn.1005-264x.2008.06.008

    Yang X Y, Han Y Z, Zhang Y X. Effects of horizontal distance on fine root biomass and seasonal dynamic in Larix Principis–rupprechitii plantation[J]. Chinese Journal of Plant Ecology, 2008, 32(6): 1277−1284. doi: 10.3773/j.issn.1005-264x.2008.06.008
    [45] Fransen B, Berendse K F. Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availability[J]. Oecologia, 1998, 115(3): 351−358. doi: 10.1007/s004420050527
    [46] Dhiman I, Bilheux H, De Carlo K, et al. Quantifying root water extraction after drought recovery using sub–mm in situ empirical data[J]. Plant and Soil, 2017, 424(1–2): 73−89.
    [47] Grégoire, T, Fresche, et al. Sampling roots to capture plant and soil functions[J]. Functional Ecology, 2017, 31(8): 1506−1518. doi: 10.1111/1365-2435.12883
    [48] Reich P B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto[J]. Journal of Ecology, 2014, 102(2): 275−301. doi: 10.1111/1365-2745.12211
    [49] Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional roots[J]. Nature, 2018, 555: 94−97.
  • 加载中
图(7)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  85
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-01-23

目录

    /

    返回文章
    返回