高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺钾胁迫对核桃幼苗生长及生理特性的影响

黄小辉 吴焦焦 冯大兰 孙向阳

黄小辉, 吴焦焦, 冯大兰, 孙向阳. 缺钾胁迫对核桃幼苗生长及生理特性的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210020
引用本文: 黄小辉, 吴焦焦, 冯大兰, 孙向阳. 缺钾胁迫对核桃幼苗生长及生理特性的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210020
Huang Xiaohui, Wu Jiaojiao, Feng Dalan, Sun Xiangyang. Effects of potassium deficient stress on growth and physiological characteristics of walnut seedlings[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210020
Citation: Huang Xiaohui, Wu Jiaojiao, Feng Dalan, Sun Xiangyang. Effects of potassium deficient stress on growth and physiological characteristics of walnut seedlings[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210020

缺钾胁迫对核桃幼苗生长及生理特性的影响

doi: 10.12171/j.1000-1522.20210020
基金项目: 重庆市科研院所绩效激励引导专项(cstc2018jxjl20001),重庆市科技兴林项目(cstd2019-6)
详细信息
    作者简介:

    黄小辉,博士研究生。主要研究方向:植物营养与植物生理。Email: huangxiaohui4260@163.com 地址:重庆市沙坪坝区歌乐山镇高店子106号重庆市林业科学研究院

    责任作者:

    孙向阳,教授,博士生导师。主要研究方向:土壤与植物营养。Email: sunxy@bjfu.edu.cn 地址:北京市海淀区清华东路35号北京林业大学林学院

  • 中图分类号: S687.9

Effects of potassium deficient stress on growth and physiological characteristics of walnut seedlings

  • 摘要:   目的  探讨核桃在短期缺钾胁迫下的适应机理。  方法  以核桃幼苗为研究对象,设置为期75 d不同程度的缺钾处理:对照(CK)、中度缺钾(MK)和重度缺钾(SK),每隔15 d进行相关指标测定,分析缺钾胁迫对核桃幼苗生长和生理特性的影响。  结果  (1)在缺钾胁迫下,核桃幼苗地上部分生物量、根系生物量、叶绿素a、叶绿素b和类胡萝卜素含量均显著低于CK,且总体上随着缺钾程度的加重和处理时间的延长下降更明显;(2)相比于CK处理,MK和SK处理后期(60 ~ 75 d)核桃幼苗的最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)、电子传递速率(ETR)和光化学猝灭系数(qP)显著下降;(3)随着处理时间的延长,不同缺钾处理下的核桃幼苗中过氧化氢酶(CAT)先上升后下降,MK、SK和CK处理中分别在30、45和60 d时出现最大值;MK和SK处理使超氧化物歧化酶(SOD)活性增加,而SK处理降低了过氧化物酶(POD)活性;处理中期(30 d)后,核桃幼苗中丙二醛(MDA)含量随胁迫程度加深而升高。  结论  核桃受到缺钾胁迫后,根系和地上部分生长以及光合色素的合成均受到明显影响,但核桃能通过自身调节,加大对根部的投入,以提高吸收能力;并通过增加热耗散来消耗PSⅡ反应中心的过剩激发能,减少胁迫对光合机构的损害,调动体内的酶促抗氧化系统,对缺钾胁迫的伤害产生一定的抵抗能力。

     

  • 图  1  不同缺钾处理核桃幼苗根系形态

    不同小写字母表示同一时间不同处理之间差异显著(P < 0.05)。下同。Different lowercase letters indicate significant differences between varied treatments under the same time ( P < 0.05). The same below.

    Figure  1.  Root morphology of walnut seedlings under different potassium deficiency treatments

    图  2  不同缺钾处理核桃幼苗叶片光合色素含量

    Figure  2.  Photosynthetic pigment contents in leaf of walnut seedlings under different potassium deficiency treatments

    图  3  不同缺钾处理核桃幼苗叶绿素荧光参数的变化

    Fv/Fm. 最大光化学效率 Maximal photochemical efficiency;ΦPSⅡ. 实际光化学速率 Actual photochemical efficiency;ETR. 电子传递速率 Electron transport rate;qP. 光化学猝灭系数 Photochemical quenching;NPQ. 非光化学猝灭系数 Non-photochemical quenching.

    Figure  3.  Chlorophyll fluorescence parameters of walnut seedlings under different potassium deficiency treatments

    图  4  不同缺钾处理核桃幼苗抗氧化系统的变化

    CAT. 过氧化氢酶 Catalase;SOD. 超氧化物歧化酶 Superoxide dismutase;POD. 过氧化物酶 Peroxidase;PRO. 脯氨酸 Peroxidase;MDA. 丙二醛 Malondialdehyde;SS. 可溶性糖含量 Soluble sugar content

    Figure  4.  Changes of antioxidant system of walnut seedlings under different potassium deficiency treatments

    表  1  核桃幼苗缺素试验处理方案

    Table  1.   Test treatment scheme of element deficiency of walnut seedlings

    营养条件
    Nutrient condition
    处理 Treatment
    CKMKSK
    大量元素
    Macro element/(mg·L−1)
    Ca(NO3)2·4H2O 945 945 945
    KNO3 607.0 303.5 0
    NaNO3 0 255.4 510.8
    NH4H2PO4 115 115 115
    MgSO4 493 493 493
    铁盐(pH = 5.5)
    Iron salt (pH = 5.5)/(g·L−1)
    FeSO4·7H2O 5.56 5.56 5.56
    Na2EDTA 7.46 7.46 7.46
    微量元素(pH = 6.0) Micro element (pH = 6.0)/(mg·L−1) KI 0.83 0.83 0.83
    MnSO4 22.3 22.3 22.3
    Na2MoO4 0.25 0.25 0.25
    CuSO4 0.025 0.025 0.025
    CoCl2 0.025 0.025 0.025
    H3BO3 6.2 6.2 6.2
    ZnSO4 8.6 8.6 8.6
    注:CK. 对照组;MK. 中度缺钾组;SK. 重度缺钾组。下同。Notes: CK, control group; MK, moderate K deficiency group; SK, severe K deficiency group. The same below.
    下载: 导出CSV

    表  2  不同供钾水平核桃的生长情况

    Table  2.   Growth situation of walnut seedlings under different potassium supply levels

    指标
    Index
    处理
    Treatment
    处理时间 Treatment time/d
    01530456075
    地上部分生物量
    Above-ground biomass/g
    CK 1.58 ± 0.12 Fa 3.13 ± 0.27 Ea 5.95 ± 0.62 Da 11.38 ± 1.05 Ca 17.43 ± 1.95 Ba 24.61 ± 3.75 Aa
    MK 1.56 ± 0.23 Ea 2.76 ± 0.33 Db 5.25 ± 0.59 Ca 10.52 ± 1.16 Bb 13.67 ± 1.54 Ab 14.93 ± 2.15 Ab
    SK 1.62 ± 0.17 Ca 1.90 ± 0.16 Cc 4.09 ± 0.53 Bb 10.00 ± 0.88 Ab 10.87 ± 1.25 Ac 11.68 ± 2.02 Ac
    根生物量
    Root biomass/g
    CK 1.12 ± 0.13Ea 3.17 ± 0.32Da 3.76 ± 0.40Da 8.84 ± 0.79Ca 16.34 ± 1.51 Ba 23.97 ± 1.89 Aa
    MK 1.10 ± 0.14 Fa 2.31 ± 0.28Eb 3.43 ± 0.36Da 8.19 ± 0.83Ca 15.65 ± 1.58Ba 18.87 ± 1.76 Ab
    SK 1.24 ± 0.10Fa 2.12 ± 0.27Eb 3.22 ± 0.28Da 7.49 ± 0.69Cba 14.43 ± 1.35Bb 18.18 ± 1.62 Ab
    根冠比
    Root-shoot ratio
    CK 0.71 ± 0.06 Ba 1.01 ± 0.10Aa 0.63 ± 0.05Bb 0.78 ± 0.08Ba 0.94 ± 0.08Ac 0.97 ± 0.09Ac
    MK 0.71 ± 0.05Ca 0.84 ± 0.09Cb 0.65 ± 0.07Db 0.78 ± 0.06Ca 1.14 ± 0.09 Bb 1.26 ± 0.12Ab
    SK 0.77 ± 0.06Da 1.12 ± 0.13Ca 0.79 ± 0.08Da 0.75 ± 0.05Da 1.33 ± 0.12 Ba 1.56 ± 0.14Aa
    注:不同大写字母表示同一处理不同时间之间差异显著(P < 0.05),不同小写字母表示同一时间不同处理之间差异显著(P < 0.05)。Notes: different capital letters indicate significant difference between varied time under the same treatment (P < 0.05). Different lowercase letters indicate significant difference between varied treatments under the same time ( P < 0.05).
    下载: 导出CSV
  • [1] 陈光, 高振宇, 徐国华. 植物响应缺钾胁迫的机制及提高钾利用效率的策略[J]. 植物学报, 2017, 52(1): 89−101.

    Chen G, Gao Z Y, Xu G H. Adaption of plants to potassium deficiency and strategies to improve potassium use efficiency[J]. Bulletin of Botany, 2017, 52(1): 89−101.
    [2] 董艳红, 王火焰, 周健民, 等. 不同土壤钾素淋溶特性的初步研究[J]. 土壤, 2014, 46(2): 225−231.

    Dong Y H, Wang H Y, Zhou J M, et al. Preliminary study on potassium leaching characteristics of different soils[J]. Soils, 2014, 46(2): 225−231.
    [3] Battie-Laclau P, Laclau J P, Beri C, et al. Photosynthetic and anatomical responses of Eucalyptus Grandis leaves to potassium and sodium supply in a field experiment[J]. Plant Cell and Environment, 2014, 37(1): 70−81. doi: 10.1111/pce.12131
    [4] Hafsi C, Debez A, Abdelly C. Potassium deficiency in plants: effects and signaling cascades[J]. Acta Physiologiae Plantarum, 2014, 36(5): 1055−1070. doi: 10.1007/s11738-014-1491-2
    [5] 华含白, 李召虎, 田晓莉. 辽棉18与新棉99B苗期耐低钾能力的差异及其机制[J]. 作物学报, 2009, 35(3): 475−482.

    Hua H B, Li Z H, Tian X L. Difference and its mechanism in tolerance to low-potassium between Liaomian 18 and NuCOTN99B at seedling stage[J]. Acta Agronomica Sinica, 2009, 35(3): 475−482.
    [6] Zorb C, Senbayram M, Peiter E. Potassium in agriculture-status and perspectives[J]. Journal of Plant Physiology, 2014, 171(9): 656−669. doi: 10.1016/j.jplph.2013.08.008
    [7] 徐新翔, 侯昕, 王芬, 等. 低钾胁迫对苹果砧木M9T337幼苗光合荧光特性及13C吸收分配的影响[J]. 园艺学报, 2020, 47(3): 529−540.

    Xu X X, Hou X, Wang F, et al. Effects of low potassium stress on photosynthetic fluorescence characteristics and 13C absorption and distribution of M9T337 seedlings[J]. Acta Horticulturae Sinica, 2020, 47(3): 529−540.
    [8] 刘芳, 林李华, 张立丹, 等. 缺钾对香蕉苗期地上部、根系生长及氮磷钾吸收的影响[J]. 华南农业大学学报, 2018, 39(2): 47−53.

    Liu F, Lin L H, Zhang L D, et al. Effects of potassium deficiency on growth and N, P and K balance of banana shoots and roots[J]. Journal of South China Agricultural University, 2018, 39(2): 47−53.
    [9] 刘智强, Cao Yuying, 赵正雄. 田间烤烟叶片缺钾症状与钾积累及土壤供钾水平关系[J]. 土壤学报, 2020, 57(1): 195−205.

    Liu Z Q, Cao Y Y, Zhao Z X. Relationships of potassium deficiency symptoms and potassium accumulation in flue-cured tobacco leaves with soil potassium supply capacity[J]. Acta Pedologica Sinica, 2020, 57(1): 195−205.
    [10] 孙萌, 刘洋, 李保国, 等. 核桃园行内地面覆盖的土壤微域生态效应[J]. 生态学报, 2017, 37(13): 4434−4443.

    Sun M, Liu Y, Li B G, et al. Ecological effects of within-row mulching on soil microsites in walnut orchards[J]. Acta Ecologica Sinica, 2017, 37(13): 4434−4443.
    [11] 袁玲, 方德华, 汪智慧, 等. 钾对外生菌根真菌的分泌作用及氮、磷、钾含量的影响[J]. 生态学报, 2001, 21(2): 254−258. doi: 10.3321/j.issn:1000-0933.2001.02.013

    Yuan L, Fang D H, Wang Z H, et al. Effects of potassium on the secretion of proton and oxalate by ectomycorrhizal fungi and the concentrations of nitrogen, phosphorus and potassium in their hyphae[J]. Acta Ecologica Sinica, 2001, 21(2): 254−258. doi: 10.3321/j.issn:1000-0933.2001.02.013
    [12] 林郑和, 钟秋生, 陈常颂, 等. 缺钾对茶树幼苗叶片叶绿素荧光特性的影响[J]. 植物营养与肥料学报, 2012, 18(4): 974−980. doi: 10.11674/zwyf.2012.11390

    Lin Z H, Zhong Q S, Chen C S, et al. Effects of potassium deficiency on chlorophyll fluorescence in leaves of tea seedlings[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 974−980. doi: 10.11674/zwyf.2012.11390
    [13] 蒋光华, 母少东, 李浩, 等. 不同植烟区土壤对中上部烟叶抗氧化系统及部分质量指标的影响[J]. 土壤, 2014, 46(6): 1157−1163.

    Jiang G H, Mu S D, Li H, et al. Study of different tobacco-planting soils on antioxidant system and partial quality indexes in middle and upper tobacco leaves[J]. Soils, 2014, 46(6): 1157−1163.
    [14] Trankner M, Tavakol E, Jakli B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection[J]. Physiol Plant, 2018, 163(3): 414−431. doi: 10.1111/ppl.12747
    [15] Finér L, Ohashi M, Noguchi K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. Forest Ecology and Management, 2010, 261(2): 265−277.
    [16] 郭泽, 李子绅, 代晓燕, 等. 低钾胁迫下外源生长素对烟草根系生长及钾吸收的影响[J]. 植物营养与肥料学报, 2019, 25(7): 1173−1184. doi: 10.11674/zwyf.18321

    Guo Z, Li Z S, Dai X Y, et al. Effects of auxin on tobacco root growth and potassium uptake under low potassium stress[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1173−1184. doi: 10.11674/zwyf.18321
    [17] 赵泽群, 师赵康, 王雯, 等. 低氮胁迫下玉米幼苗氮素和蔗糖分配特性[J]. 植物营养与肥料学报, 2020, 26(4): 783−796. doi: 10.11674/zwyf.19226

    Zhao Z Q, Shi Z K, Wang W, et al. Allocation of nitrogen and sucrose in maize seedling under low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 783−796. doi: 10.11674/zwyf.19226
    [18] Roscioli J D, Ghosh S, Lafountain A M, et al. Quantum coherent excitation energy transfer by carotenoids in photosynthetic light harvesting[J]. Journal of Physical Chemistry Letters, 2017, 8(20): 5141−5147. doi: 10.1021/acs.jpclett.7b01791
    [19] 沙建川, 陈倩, 王芬, 等. 钾水平对富士苹果果实膨大期13C同化物向果实转运的影响[J]. 应用生态学报, 2020, 31(6): 1859−1866.

    Sha J C, Chen Q, Wang F, et al. Effects of potassium levels on translocation of 13C-photoassimilates to fruit in‘Fuji’ apple during fruit expanding period[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1859−1866.
    [20] Perez-Bueno M L, Pineda M, Baron M. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging[J]. Frontiers in Plant Science, 2019, 10: 1135. doi: 10.3389/fpls.2019.01135
    [21] 吴甘霖, 段仁燕, 王志高, 等. 干旱和复水对草莓叶片叶绿素荧光特性的影响[J]. 生态学报, 2010, 30(14): 3941−3946.

    Wu G L, Duan R Y, Wang Z G, et al. Effects of drought stress and rehydration on chlorophyll fluorescence characteristics in Fragaria ×ananassa Duch[J]. Acta Ecologica Sinica, 2010, 30(14): 3941−3946.
    [22] 张玉玉, 王进鑫, 马戌, 等. 土壤干旱及复水对侧柏叶绿素荧光参数的影响[J]. 水土保持研究, 2021, 28(2): 242−247.

    Zhang Y Y, Wang J X, Ma X, et al. Effects of drought and rewatering on chlorophyll fluorescence parameters of Platycladus orientalis[J]. Research of Soil and Water Conservation, 2021, 28(2): 242−247.
    [23] Zubik M, Luchowski R, Kluczyk D, et al. Recycling of energy dissipated as heat accounts for high activity of photosystem Ⅱ[J]. Journal of Physical Chemistry Letters, 2020, 11(9): 3242−3248. doi: 10.1021/acs.jpclett.0c00486
    [24] 田秋玲, 乐佳兴, 吴焦焦, 等. 西南丘陵地区紫色土酸性对无患子幼树生长和光合特性的影响[J]. 生态学报, 2020, 40(11): 3756−3763.

    Tian Q L, Yue J X, Wu J J, et al. Effects of southwest hilly areas’s purple soil acidity on the growth and photosynthetic characteristics of Sapindus mukorossi Gaertn saplings[J]. Acta Ecologica Sinica, 2020, 40(11): 3756−3763.
    [25] Yusuf M A, Kumar D, Rajwanshi R, et al. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica Juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements[J]. Biochim Biophys Acta, 2010, 1797(8): 1428−1438. doi: 10.1016/j.bbabio.2010.02.002
    [26] Park S, Fischer A L, Steen C J, et al. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(38): 11965−11973. doi: 10.1021/jacs.8b04844
    [27] Wang M, Zheng Q, Shen Q, et al. The critical role of potassium in plant stress response[J]. International Journal of Molecular Sciences, 2013, 14(4): 7370−7390. doi: 10.3390/ijms14047370
    [28] Gao X, Zhang S, Zhao X, et al. Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes[J]. PLoS One, 2018, 13(7): e200903.
    [29] Ahmad S, Kamran M, Ding R, et al. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings[J]. PeerJ, 2019, 7: e7793. doi: 10.7717/peerj.7793
    [30] Laxa M, Liebthal M, Telman W, et al. The role of the plant antioxidant system in drought tolerance[J]. Antioxidants (Basel), 2019, 8(4): 94. doi: 10.3390/antiox8040094
    [31] Zhang Z, Xu Y, Xie Z, et al. Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate intracellular H2O2 levels[J]. Molecular Plant, 2016, 9(5): 737−748. doi: 10.1016/j.molp.2016.02.002
    [32] Du Q, Zhao X H, Xia L, et al. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.)[J]. Journal of Integrative Agriculture, 2019, 18(2): 395−406. doi: 10.1016/S2095-3119(18)61953-7
    [33] Chapman J M, Muhlemann J K, Gayomba S R, et al. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses[J]. Chemical Research in Toxicology, 2019, 32(3): 370−396. doi: 10.1021/acs.chemrestox.9b00028
    [34] 林艳, 郭伟珍, 徐振华, 等. 大叶女贞抗寒性及冬季叶片丙二醛和可溶性糖含量的变化[J]. 中国农学通报, 2012, 28(25): 68−72. doi: 10.3969/j.issn.1000-6850.2012.25.013

    Lin Y, Guo W Z, Xu Z H, et al. Cold resistance and changes on MDA and soluble sugar of leaves of Ligustrunlucidum ait in winter[J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 68−72. doi: 10.3969/j.issn.1000-6850.2012.25.013
    [35] 葛体达, 隋方功, 白莉萍, 等. 长期水分胁迫对夏玉米根叶保护酶活性及膜脂过氧化作用的影响[J]. 干旱地区农业研究, 2005(3): 18−23. doi: 10.3321/j.issn:1000-7601.2005.03.004

    Ge T D, Sui F G, Bai L P, et al. Effects of long-term water stress on protective enzyme activities and lipid peroxidation in summer maize roots and leaves[J]. Agricultural Research in the Arid Areas, 2005(3): 18−23. doi: 10.3321/j.issn:1000-7601.2005.03.004
    [36] 刘政波, 张春阁, 刘宁, 等. 钾水平对人参根叶保护酶、活性氧代谢及膜脂过氧化作用的影响[J]. 东北农业科学, 2017, 42(3): 9−13.

    Liu Z B, Zhang C G, Liu N, et al. Effects of potassium levels on the protective enzyme activities, active oxy-gen metabolism and lipid peroxidation in roots and leaves of Panax ginsneg C. A. Meyer[J]. Journal of Northeast Agricultural Sciences, 2017, 42(3): 9−13.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  14
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 录用日期:  2022-05-19
  • 修回日期:  2021-04-13
  • 网络出版日期:  2022-05-26

目录

    /

    返回文章
    返回