Effects of potassium deficient stress on growth and physiological characteristics of walnut seedlings
-
摘要:
目的 探讨核桃在短期缺钾胁迫下的适应机理。 方法 以核桃幼苗为研究对象,设置为期75 d不同程度的缺钾处理:对照(CK)、中度缺钾(MK)和重度缺钾(SK),每隔15 d进行相关指标测定,分析缺钾胁迫对核桃幼苗生长和生理特性的影响。 结果 (1)在缺钾胁迫下,核桃幼苗地上部分生物量、根系生物量、叶绿素a、叶绿素b和类胡萝卜素含量均显著低于CK,且总体上随着缺钾程度的加重和处理时间的延长下降更明显;(2)相比于CK处理,MK和SK处理后期(60 ~ 75 d)核桃幼苗的最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)、电子传递速率(ETR)和光化学猝灭系数(qP)显著下降;(3)随着处理时间的延长,不同缺钾处理下的核桃幼苗中过氧化氢酶(CAT)先上升后下降,MK、SK和CK处理中分别在30、45和60 d时出现最大值;MK和SK处理使超氧化物歧化酶(SOD)活性增加,而SK处理降低了过氧化物酶(POD)活性;处理中期(30 d)后,核桃幼苗中丙二醛(MDA)含量随胁迫程度加深而升高。 结论 核桃受到缺钾胁迫后,根系和地上部分生长以及光合色素的合成均受到明显影响,但核桃能通过自身调节,加大对根部的投入,以提高吸收能力;并通过增加热耗散来消耗PSⅡ反应中心的过剩激发能,减少胁迫对光合机构的损害,调动体内的酶促抗氧化系统,对缺钾胁迫的伤害产生一定的抵抗能力。 Abstract:Objective The adaptive mechanism of walnut was explored under short-term potassium stress. Method Walnut seedlings were treated with different levels of potassium deficiency for 75 d: control (CK), moderate potassium deficiency (MK) and severe potassium deficiency (SK), respectively. The related indexes were measured every 15 d, and the effects of potassium deficiency stress on the growth and physiology of walnut seedlings were analyzed. Result (1) Under K deficiency stress, the aboveground biomass, root biomass, chlorophyll a, chlorophyll b and carotenoid contents of walnut seedlings were significantly lower than those of CK (control treatment), and the overall decrease was more obvious with the aggravation of K deficiency degree and the extension of treatment time. (2) Compared with CK treatment, Fv/Fm, ΦPSⅡ, ETR and qP of walnut seedlings decreased significantly at the late stage of MK and SK (60−75 d). (3) As the processing time increased, CAT of walnut seedlings increased at first and then decreased under different K deficiency treatments. MK, SK and CK treatments reached the maximum at 30, 45 and 60 d, respectively. SOD activity of MK and SK increased, but POD activity decreased under severe K deficiency. From the middle stage of treatment (30 d) , the content of MDA in walnut seedlings increased with the increase of stress degree. Conclusion The growth of root and aboveground parts, and the synthesis of photosynthetic pigments of walnut are significantly affected by potassium deficiency stress. However, the walnut could increase the input to root system through self-regulation to improve its absorption capacity, and consume the excess excitation energy of PSⅡ reaction center by increasing heat dissipation, in order to reduce the damage of stress on photosynthetic apparatus. Furtherly, the walnut could mobilize its enzymatic antioxidant system, and produce certain resistance to potassium deficiency stress. -
Key words:
- potassium deficiency /
- walnut /
- chlorophyll fluorescence parameter /
- antioxidant system
-
图 3 不同缺钾处理核桃幼苗叶绿素荧光参数的变化
Fv/Fm. 最大光化学效率 Maximal photochemical efficiency;ΦPSⅡ. 实际光化学速率 Actual photochemical efficiency;ETR. 电子传递速率 Electron transport rate;qP. 光化学猝灭系数 Photochemical quenching;NPQ. 非光化学猝灭系数 Non-photochemical quenching.
Figure 3. Chlorophyll fluorescence parameters of walnut seedlings under different potassium deficiency treatments
表 1 核桃幼苗缺素试验处理方案
Table 1. Test treatment scheme of element deficiency of walnut seedlings
营养条件
Nutrient condition处理 Treatment CK MK SK 大量元素
Macro element/(mg·L−1)Ca(NO3)2·4H2O 945 945 945 KNO3 607.0 303.5 0 NaNO3 0 255.4 510.8 NH4H2PO4 115 115 115 MgSO4 493 493 493 铁盐(pH = 5.5)
Iron salt (pH = 5.5)/(g·L−1)FeSO4·7H2O 5.56 5.56 5.56 Na2EDTA 7.46 7.46 7.46 微量元素(pH = 6.0) Micro element (pH = 6.0)/(mg·L−1) KI 0.83 0.83 0.83 MnSO4 22.3 22.3 22.3 Na2MoO4 0.25 0.25 0.25 CuSO4 0.025 0.025 0.025 CoCl2 0.025 0.025 0.025 H3BO3 6.2 6.2 6.2 ZnSO4 8.6 8.6 8.6 注:CK. 对照组;MK. 中度缺钾组;SK. 重度缺钾组。下同。Notes: CK, control group; MK, moderate K deficiency group; SK, severe K deficiency group. The same below. 表 2 不同供钾水平核桃的生长情况
Table 2. Growth situation of walnut seedlings under different potassium supply levels
指标
Index处理
Treatment处理时间 Treatment time/d 0 15 30 45 60 75 地上部分生物量
Above-ground biomass/gCK 1.58 ± 0.12 Fa 3.13 ± 0.27 Ea 5.95 ± 0.62 Da 11.38 ± 1.05 Ca 17.43 ± 1.95 Ba 24.61 ± 3.75 Aa MK 1.56 ± 0.23 Ea 2.76 ± 0.33 Db 5.25 ± 0.59 Ca 10.52 ± 1.16 Bb 13.67 ± 1.54 Ab 14.93 ± 2.15 Ab SK 1.62 ± 0.17 Ca 1.90 ± 0.16 Cc 4.09 ± 0.53 Bb 10.00 ± 0.88 Ab 10.87 ± 1.25 Ac 11.68 ± 2.02 Ac 根生物量
Root biomass/gCK 1.12 ± 0.13Ea 3.17 ± 0.32Da 3.76 ± 0.40Da 8.84 ± 0.79Ca 16.34 ± 1.51 Ba 23.97 ± 1.89 Aa MK 1.10 ± 0.14 Fa 2.31 ± 0.28Eb 3.43 ± 0.36Da 8.19 ± 0.83Ca 15.65 ± 1.58Ba 18.87 ± 1.76 Ab SK 1.24 ± 0.10Fa 2.12 ± 0.27Eb 3.22 ± 0.28Da 7.49 ± 0.69Cba 14.43 ± 1.35Bb 18.18 ± 1.62 Ab 根冠比
Root-shoot ratioCK 0.71 ± 0.06 Ba 1.01 ± 0.10Aa 0.63 ± 0.05Bb 0.78 ± 0.08Ba 0.94 ± 0.08Ac 0.97 ± 0.09Ac MK 0.71 ± 0.05Ca 0.84 ± 0.09Cb 0.65 ± 0.07Db 0.78 ± 0.06Ca 1.14 ± 0.09 Bb 1.26 ± 0.12Ab SK 0.77 ± 0.06Da 1.12 ± 0.13Ca 0.79 ± 0.08Da 0.75 ± 0.05Da 1.33 ± 0.12 Ba 1.56 ± 0.14Aa 注:不同大写字母表示同一处理不同时间之间差异显著(P < 0.05),不同小写字母表示同一时间不同处理之间差异显著(P < 0.05)。Notes: different capital letters indicate significant difference between varied time under the same treatment (P < 0.05). Different lowercase letters indicate significant difference between varied treatments under the same time ( P < 0.05). -
[1] 陈光, 高振宇, 徐国华. 植物响应缺钾胁迫的机制及提高钾利用效率的策略[J]. 植物学报, 2017, 52(1): 89−101.Chen G, Gao Z Y, Xu G H. Adaption of plants to potassium deficiency and strategies to improve potassium use efficiency[J]. Bulletin of Botany, 2017, 52(1): 89−101. [2] 董艳红, 王火焰, 周健民, 等. 不同土壤钾素淋溶特性的初步研究[J]. 土壤, 2014, 46(2): 225−231.Dong Y H, Wang H Y, Zhou J M, et al. Preliminary study on potassium leaching characteristics of different soils[J]. Soils, 2014, 46(2): 225−231. [3] Battie-Laclau P, Laclau J P, Beri C, et al. Photosynthetic and anatomical responses of Eucalyptus Grandis leaves to potassium and sodium supply in a field experiment[J]. Plant Cell and Environment, 2014, 37(1): 70−81. doi: 10.1111/pce.12131 [4] Hafsi C, Debez A, Abdelly C. Potassium deficiency in plants: effects and signaling cascades[J]. Acta Physiologiae Plantarum, 2014, 36(5): 1055−1070. doi: 10.1007/s11738-014-1491-2 [5] 华含白, 李召虎, 田晓莉. 辽棉18与新棉99B苗期耐低钾能力的差异及其机制[J]. 作物学报, 2009, 35(3): 475−482.Hua H B, Li Z H, Tian X L. Difference and its mechanism in tolerance to low-potassium between Liaomian 18 and NuCOTN99B at seedling stage[J]. Acta Agronomica Sinica, 2009, 35(3): 475−482. [6] Zorb C, Senbayram M, Peiter E. Potassium in agriculture-status and perspectives[J]. Journal of Plant Physiology, 2014, 171(9): 656−669. doi: 10.1016/j.jplph.2013.08.008 [7] 徐新翔, 侯昕, 王芬, 等. 低钾胁迫对苹果砧木M9T337幼苗光合荧光特性及13C吸收分配的影响[J]. 园艺学报, 2020, 47(3): 529−540.Xu X X, Hou X, Wang F, et al. Effects of low potassium stress on photosynthetic fluorescence characteristics and 13C absorption and distribution of M9T337 seedlings[J]. Acta Horticulturae Sinica, 2020, 47(3): 529−540. [8] 刘芳, 林李华, 张立丹, 等. 缺钾对香蕉苗期地上部、根系生长及氮磷钾吸收的影响[J]. 华南农业大学学报, 2018, 39(2): 47−53.Liu F, Lin L H, Zhang L D, et al. Effects of potassium deficiency on growth and N, P and K balance of banana shoots and roots[J]. Journal of South China Agricultural University, 2018, 39(2): 47−53. [9] 刘智强, Cao Yuying, 赵正雄. 田间烤烟叶片缺钾症状与钾积累及土壤供钾水平关系[J]. 土壤学报, 2020, 57(1): 195−205.Liu Z Q, Cao Y Y, Zhao Z X. Relationships of potassium deficiency symptoms and potassium accumulation in flue-cured tobacco leaves with soil potassium supply capacity[J]. Acta Pedologica Sinica, 2020, 57(1): 195−205. [10] 孙萌, 刘洋, 李保国, 等. 核桃园行内地面覆盖的土壤微域生态效应[J]. 生态学报, 2017, 37(13): 4434−4443.Sun M, Liu Y, Li B G, et al. Ecological effects of within-row mulching on soil microsites in walnut orchards[J]. Acta Ecologica Sinica, 2017, 37(13): 4434−4443. [11] 袁玲, 方德华, 汪智慧, 等. 钾对外生菌根真菌的分泌作用及氮、磷、钾含量的影响[J]. 生态学报, 2001, 21(2): 254−258. doi: 10.3321/j.issn:1000-0933.2001.02.013Yuan L, Fang D H, Wang Z H, et al. Effects of potassium on the secretion of proton and oxalate by ectomycorrhizal fungi and the concentrations of nitrogen, phosphorus and potassium in their hyphae[J]. Acta Ecologica Sinica, 2001, 21(2): 254−258. doi: 10.3321/j.issn:1000-0933.2001.02.013 [12] 林郑和, 钟秋生, 陈常颂, 等. 缺钾对茶树幼苗叶片叶绿素荧光特性的影响[J]. 植物营养与肥料学报, 2012, 18(4): 974−980. doi: 10.11674/zwyf.2012.11390Lin Z H, Zhong Q S, Chen C S, et al. Effects of potassium deficiency on chlorophyll fluorescence in leaves of tea seedlings[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 974−980. doi: 10.11674/zwyf.2012.11390 [13] 蒋光华, 母少东, 李浩, 等. 不同植烟区土壤对中上部烟叶抗氧化系统及部分质量指标的影响[J]. 土壤, 2014, 46(6): 1157−1163.Jiang G H, Mu S D, Li H, et al. Study of different tobacco-planting soils on antioxidant system and partial quality indexes in middle and upper tobacco leaves[J]. Soils, 2014, 46(6): 1157−1163. [14] Trankner M, Tavakol E, Jakli B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection[J]. Physiol Plant, 2018, 163(3): 414−431. doi: 10.1111/ppl.12747 [15] Finér L, Ohashi M, Noguchi K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. Forest Ecology and Management, 2010, 261(2): 265−277. [16] 郭泽, 李子绅, 代晓燕, 等. 低钾胁迫下外源生长素对烟草根系生长及钾吸收的影响[J]. 植物营养与肥料学报, 2019, 25(7): 1173−1184. doi: 10.11674/zwyf.18321Guo Z, Li Z S, Dai X Y, et al. Effects of auxin on tobacco root growth and potassium uptake under low potassium stress[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1173−1184. doi: 10.11674/zwyf.18321 [17] 赵泽群, 师赵康, 王雯, 等. 低氮胁迫下玉米幼苗氮素和蔗糖分配特性[J]. 植物营养与肥料学报, 2020, 26(4): 783−796. doi: 10.11674/zwyf.19226Zhao Z Q, Shi Z K, Wang W, et al. Allocation of nitrogen and sucrose in maize seedling under low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 783−796. doi: 10.11674/zwyf.19226 [18] Roscioli J D, Ghosh S, Lafountain A M, et al. Quantum coherent excitation energy transfer by carotenoids in photosynthetic light harvesting[J]. Journal of Physical Chemistry Letters, 2017, 8(20): 5141−5147. doi: 10.1021/acs.jpclett.7b01791 [19] 沙建川, 陈倩, 王芬, 等. 钾水平对富士苹果果实膨大期13C同化物向果实转运的影响[J]. 应用生态学报, 2020, 31(6): 1859−1866.Sha J C, Chen Q, Wang F, et al. Effects of potassium levels on translocation of 13C-photoassimilates to fruit in‘Fuji’ apple during fruit expanding period[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1859−1866. [20] Perez-Bueno M L, Pineda M, Baron M. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging[J]. Frontiers in Plant Science, 2019, 10: 1135. doi: 10.3389/fpls.2019.01135 [21] 吴甘霖, 段仁燕, 王志高, 等. 干旱和复水对草莓叶片叶绿素荧光特性的影响[J]. 生态学报, 2010, 30(14): 3941−3946.Wu G L, Duan R Y, Wang Z G, et al. Effects of drought stress and rehydration on chlorophyll fluorescence characteristics in Fragaria ×ananassa Duch[J]. Acta Ecologica Sinica, 2010, 30(14): 3941−3946. [22] 张玉玉, 王进鑫, 马戌, 等. 土壤干旱及复水对侧柏叶绿素荧光参数的影响[J]. 水土保持研究, 2021, 28(2): 242−247.Zhang Y Y, Wang J X, Ma X, et al. Effects of drought and rewatering on chlorophyll fluorescence parameters of Platycladus orientalis[J]. Research of Soil and Water Conservation, 2021, 28(2): 242−247. [23] Zubik M, Luchowski R, Kluczyk D, et al. Recycling of energy dissipated as heat accounts for high activity of photosystem Ⅱ[J]. Journal of Physical Chemistry Letters, 2020, 11(9): 3242−3248. doi: 10.1021/acs.jpclett.0c00486 [24] 田秋玲, 乐佳兴, 吴焦焦, 等. 西南丘陵地区紫色土酸性对无患子幼树生长和光合特性的影响[J]. 生态学报, 2020, 40(11): 3756−3763.Tian Q L, Yue J X, Wu J J, et al. Effects of southwest hilly areas’s purple soil acidity on the growth and photosynthetic characteristics of Sapindus mukorossi Gaertn saplings[J]. Acta Ecologica Sinica, 2020, 40(11): 3756−3763. [25] Yusuf M A, Kumar D, Rajwanshi R, et al. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica Juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements[J]. Biochim Biophys Acta, 2010, 1797(8): 1428−1438. doi: 10.1016/j.bbabio.2010.02.002 [26] Park S, Fischer A L, Steen C J, et al. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(38): 11965−11973. doi: 10.1021/jacs.8b04844 [27] Wang M, Zheng Q, Shen Q, et al. The critical role of potassium in plant stress response[J]. International Journal of Molecular Sciences, 2013, 14(4): 7370−7390. doi: 10.3390/ijms14047370 [28] Gao X, Zhang S, Zhao X, et al. Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes[J]. PLoS One, 2018, 13(7): e200903. [29] Ahmad S, Kamran M, Ding R, et al. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings[J]. PeerJ, 2019, 7: e7793. doi: 10.7717/peerj.7793 [30] Laxa M, Liebthal M, Telman W, et al. The role of the plant antioxidant system in drought tolerance[J]. Antioxidants (Basel), 2019, 8(4): 94. doi: 10.3390/antiox8040094 [31] Zhang Z, Xu Y, Xie Z, et al. Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate intracellular H2O2 levels[J]. Molecular Plant, 2016, 9(5): 737−748. doi: 10.1016/j.molp.2016.02.002 [32] Du Q, Zhao X H, Xia L, et al. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.)[J]. Journal of Integrative Agriculture, 2019, 18(2): 395−406. doi: 10.1016/S2095-3119(18)61953-7 [33] Chapman J M, Muhlemann J K, Gayomba S R, et al. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses[J]. Chemical Research in Toxicology, 2019, 32(3): 370−396. doi: 10.1021/acs.chemrestox.9b00028 [34] 林艳, 郭伟珍, 徐振华, 等. 大叶女贞抗寒性及冬季叶片丙二醛和可溶性糖含量的变化[J]. 中国农学通报, 2012, 28(25): 68−72. doi: 10.3969/j.issn.1000-6850.2012.25.013Lin Y, Guo W Z, Xu Z H, et al. Cold resistance and changes on MDA and soluble sugar of leaves of Ligustrunlucidum ait in winter[J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 68−72. doi: 10.3969/j.issn.1000-6850.2012.25.013 [35] 葛体达, 隋方功, 白莉萍, 等. 长期水分胁迫对夏玉米根叶保护酶活性及膜脂过氧化作用的影响[J]. 干旱地区农业研究, 2005(3): 18−23. doi: 10.3321/j.issn:1000-7601.2005.03.004Ge T D, Sui F G, Bai L P, et al. Effects of long-term water stress on protective enzyme activities and lipid peroxidation in summer maize roots and leaves[J]. Agricultural Research in the Arid Areas, 2005(3): 18−23. doi: 10.3321/j.issn:1000-7601.2005.03.004 [36] 刘政波, 张春阁, 刘宁, 等. 钾水平对人参根叶保护酶、活性氧代谢及膜脂过氧化作用的影响[J]. 东北农业科学, 2017, 42(3): 9−13.Liu Z B, Zhang C G, Liu N, et al. Effects of potassium levels on the protective enzyme activities, active oxy-gen metabolism and lipid peroxidation in roots and leaves of Panax ginsneg C. A. Meyer[J]. Journal of Northeast Agricultural Sciences, 2017, 42(3): 9−13. -