高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褐腐初期南方松木材微观形貌与化学成分分析

王玉娇 彭尧 曹金珍

王玉娇, 彭尧, 曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析[J]. 北京林业大学学报, 2021, 43(3): 138-144. doi: 10.12171/j.1000-1522.20210024
引用本文: 王玉娇, 彭尧, 曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析[J]. 北京林业大学学报, 2021, 43(3): 138-144. doi: 10.12171/j.1000-1522.20210024
Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. doi: 10.12171/j.1000-1522.20210024
Citation: Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. doi: 10.12171/j.1000-1522.20210024

褐腐初期南方松木材微观形貌与化学成分分析

doi: 10.12171/j.1000-1522.20210024
基金项目: 国家自然科学基金青年基金项目(31901245)
详细信息
    作者简介:

    王玉娇。主要研究方向:木材保护与改性。Email:wyj1996@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    彭尧,博士,讲师。主要研究方向:木材保护与改性。Email:pengy@bjfu.edu.cn 地址:同上

  • 中图分类号: S781

Analysis of microstructure and chemical components of southern pine during initial brown-rot decay

  • 摘要:   目的  探究褐腐初期,腐朽菌定植对木材颜色、微观形貌以及化学成分的影响,为进一步探究木材褐腐初期降解机理提供理论基础。  方法  对南方松边材进行不同时长的密黏褶菌腐朽处理,利用场发射扫描电子显微镜对腐朽材的微观结构进行表征,探究褐腐菌进入木材内部的通道。同时,利用色差仪、傅里叶红外光谱、X射线能谱表征木材在不同腐朽阶段的质量损失、颜色变化、化学成分、官能团变化和结晶度变化等。  结果  腐朽过程中木材明度降低,总色差增加,整体上有偏红褐色的趋势。菌丝通过射线薄壁细胞、纹孔和管胞等细胞结构进入木材内部,并于褐腐20 d内基本完成初期定植。褐腐初期质量损失主要是由半纤维素降解导致,而纤维素降解缓慢。此时,纤维素结晶区的晶格间距降低(3.962 Å),相对结晶度增至最大(47.02%),阻碍了对褐腐菌的降解,因而此后木材质量损失增速减缓。  结论  在南方松木材的褐腐初期,菌丝通过纹孔、射线薄壁细胞和管胞等结构进入木材,细胞壁中的半纤维素优先严重降解,结晶纤维素的晶格间距减小且相对结晶度增加,这一理论研究有助于进一步探究木材的初期褐腐降解机理,同时为木材防腐保护提供理论基础。

     

  • 图  1  不同腐朽时间后木材的颜色变化

    Figure  1.  Color changes of wood samples at different decay times

    图  2  不同腐朽时间后木材的弦切面微观结构图片

    Figure  2.  FE-SEM images of samples at tangential section at different decay times

    图  3  不同腐朽时间后木材的横切面微观结构图片

    Figure  3.  FE-SEM images of samples at cross section at different decay times

    图  4  不同腐朽时间后木材的质量损失率和细胞壁厚度变化

    Figure  4.  Changes in mass loss rate and cell wall thickness of wood samples at different decay times

    图  5  不同腐朽时间后木材的FTIR图谱

    Figure  5.  FTIR spectra of samples at different decay times

    表  1  不同腐朽时间后木材的质量损失及化学成分变化

    Table  1.   Mass loss and chemical composition of wood samples at different decay times

    腐朽时间
    Decay
    time/d
    质量损失率
    Mass loss
    rate/%
    抽提物质量分数
    Extract mass
    fraction/%
    木质素质量分数
    Lignin mass
    fraction/%
    综纤维素质量分数
    Holocellulose mass
    fraction/%
    纤维素质量分数
    Cellulose mass
    fraction/%
    半纤维素质量分数
    Hemicellulose mass
    fraction/%
    0 0 3.26 28.07 68.67 50.05 18.62
    10 2.77 1.71 28.11 60.12 50.66 9.46
    20 16.60 2.77 31.29 50.91 48.28 2.63
    40 20.35 3.04 32.58 48.91 46.68 2.23
    下载: 导出CSV

    表  2  不同腐朽时间后木材的微晶尺寸和相对结晶度变化

    Table  2.   Changes in crystallite sizes and relative crystallinity of wood samples at different decay times

    腐朽时间
    Decay
    time/d
    2θ/(°)晶格间距
    Lattice distance
    (d200)/Å
    微晶尺寸
    Crystallite size
    (Cs)/Å
    相对结晶度
    Relative crystallinity
    (Cr)/%
    0 22.31 3.982 75.29 38.63
    10 22.33 3.979 78.97 39.61
    20 22.42 3.962 80.79 47.02
    40 22.37 3.972 81.93 44.21
    下载: 导出CSV
  • [1] 戴玉成, 徐梅卿, 杨忠, 等. 中国储木及建筑木材腐朽菌(Ⅰ)[J]. 林业科学研究, 2008, 21(1):49−54.

    Dai Y C, Xu M Q, Yang Z, et al. Wood-decaying fungi on timber or wooden constructions in China[J]. Forest Research, 2008, 21(1): 49−54.
    [2] Curling S F, Clausen C A, Windandy J E. Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay (solid wood products)[J]. Forest Products Journal, 2002, 52(7): 34−37.
    [3] Schwarze F W M R, Mattheck C, Engels J. Fungal strategies of wood decay in trees[M]. Heidelberg: Springer, 2000.
    [4] Schwarze F W M R. Wood decay under the microscope[J]. Fungal Biology Reviews, 2007, 21(4): 133−170. doi: 10.1016/j.fbr.2007.09.001
    [5] 葛晓雯, 王立海, 侯捷建, 等. 褐腐杨木微观结构, 力学性能与化学成分的关系研究[J]. 北京林业大学学报, 2016, 38(10):112−122.

    Ge X W, Wang L H, Hou J J, et al. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay[J]. Journal of Beijing Forestry University, 2016, 38(10): 112−122.
    [6] Huang X, Kocaefe D, Kocaefe Y, et al. Combined effect of acetylation and heat treatment on the physical, mechanical and biological behavior of Jack pine (Pinus banksiana) wood[J]. European Journal of Wood and Wood Products, 2018, 76(2): 525−540. doi: 10.1007/s00107-017-1232-5
    [7] 程献宝. 初期褐腐对杉木宏观和组织力学性能的影响[D]. 北京: 中国林业科学研究院, 2011.

    Cheng X B. The influence of incipient brown rot on the properties of Chinese fir at macroscopic and tissue level[D]. Beijing: Chinese Academy of Forestry, 2011.
    [8] Kirk T K, Highley T L. Quantitative changes in structural components of conifer woods during decay by white-and brown-rot fungi[J]. Phytopathology, 1973, 63(11): 1338. doi: 10.1094/Phyto-63-1338
    [9] Highley T L. Changes in chemical-components of hardwood and softwood by brown-rot fungi[J]. Material and Organismen, 1987, 22(1): 39−45.
    [10] 李改云, 江泽慧, 任海青, 等. 木材褐腐过程中化学组成对其液化的影响[J]. 北京林业大学学报, 2009, 31(1):113−119.

    Li G Y, Jiang Z H, Ren H Q, et al. Relation of chemical components of brown-rotted wood and its liquefaction characteristics[J]. Journal of Beijing Forestry University, 2009, 31(1): 113−119.
    [11] Witomski P, Radomski A, Zawadzki J, et al. Variation in cellulose properties in the common pine (Pinus sylvestris L.) wood during white- and brown-rot decay induced by Coniophora puteana and Trametes versicolor fungi[J]. Wood Research, 2013, 58(2): 165−172.
    [12] Wilcox W W. Review of literature on the effects of early stages of decay on wood strength[J]. Wood and Fiber, 1978, 9(4): 252−257.
    [13] Janzen S, Nicholas D D. Relation of transverse compression properties and the degree of brown rot biodeterioration of Pinus glabra in the soil block test[J]. Holzforschung, 2016, 70(11): 1067−1071. doi: 10.1515/hf-2016-0004
    [14] 国家质量监督检验检疫总局, 国家标准化管理委员会. 木材耐久性能第一部分: 天然耐腐性实验室试验方法: GB/T 13942.1—2009[S]. 北京: 中国标准出版社, 2009.

    AQSIQ, SAC. Durability of wood (part 1): method for laboratory test of natural decay resistance: GB/T 13942.1—2009[S]. Beijing: Standards Press of China, 2009.
    [15] 国家技术监督局. 造纸原料有机溶剂抽出物含量的测定: GB/T 2677.6—1994[S]. 北京: 中国标准出版社, 1994.

    SQSB. Fibrous raw material-determination of solvent extractives: GB/T 2677.6—1994[S]. Beijing: Standards Press of China, 1994.
    [16] ASTM Standards. Standard test method for acid-insoluble lignin in wood: D 1106—96[S]. West Conshohocken PA: ASTM International, 1996.
    [17] Browning B L. Methods of wood chemistry [M]. Vol. II. New York: Wiley InterScience, 1967.
    [18] 任世学, 姜贵全, 屈红军. 植物纤维化学实验教程[M]. 哈尔滨: 东北林业大学出版社, 2008: 53−54.

    Ren S X, Jiang G Q, Qu H J. Plant fiber chemistry experiment tutorial[M]. Harbin: Northeast Forestry University Press, 2008: 53−54.
    [19] Nam S, French A D, Condon B D, et al. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II[J]. Carbohydrate Polymers, 2016, 135: 1−9. doi: 10.1016/j.carbpol.2015.08.035
    [20] Segal L, Creely J J, Martin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29: 786−794. doi: 10.1177/004051755902901003
    [21] 李坚. 木材科学[M]. 北京: 高等教育出版社, 2002: 434−439.

    Li J. Wood science[M]. Beijing: Higher Education Press, 2002: 434−439.
    [22] 金重为, 邰瓞生, 尤纪雪. 天然耐腐木材的抗腐力及其在腐朽过程中化学成分的变化[J]. 林业科学, 1989, 25(5):447−452.

    Jin Z W, Tai D S, You J X. Decay resistance of natural durable species and the changes in amounts of major components during decay of wood by Coriolus versicolor and Gloeophyllum trabeum[J]. Scientia Silvae Sinicae, 1989, 25(5): 447−452.
    [23] Popescu C M, Popescu M C, Vasile C. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy[J]. Microchemical Journal, 2010, 95(2): 377−387. doi: 10.1016/j.microc.2010.02.021
    [24] Li G Y, Huang L H, Hse C Y, et al. Chemical compositions, infrared spectroscopy, and X-ray diffractometry study on brown-rotted woods[J]. Carbohydrate Polymers, 2011, 85(3): 560−564. doi: 10.1016/j.carbpol.2011.03.014
    [25] Rowell R M. Handbook of wood chemistry and wood composites[M]. Florida: CRC Press, 2012.
    [26] Fackler K, Stevanic J S, Ters T, et al. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy[J]. Enzyme and Microbial Technology, 2010, 47(6): 257−267. doi: 10.1016/j.enzmictec.2010.07.009
    [27] Popescu C M, Popescu M C, Vasile C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy[J]. International Journal of Biological Macromolecules, 2011, 48(4): 667−675. doi: 10.1016/j.ijbiomac.2011.02.009
    [28] Howell C, Hastrup A C S, Jara R, et al. Effects of hot water extraction and fungal decay on wood crystalline cellulose structure[J]. Cellulose, 2011, 18: 1179−1190. doi: 10.1007/s10570-011-9569-0
    [29] Zhu Y, Mahaney J, Jellison J, et al. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(3): 329−338.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  146
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-23
  • 修回日期:  2021-02-25
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回