高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于杉木模板的Zn2+掺杂TiO2的光催化性能研究

杨天宇 孙爽 夏广达 袁弟亮 宋秀明 刘玉

杨天宇, 孙爽, 夏广达, 袁弟亮, 宋秀明, 刘玉. 基于杉木模板的Zn2+掺杂TiO2的光催化性能研究[J]. 北京林业大学学报, 2021, 43(4): 141-149. doi: 10.12171/j.1000-1522.20210025
引用本文: 杨天宇, 孙爽, 夏广达, 袁弟亮, 宋秀明, 刘玉. 基于杉木模板的Zn2+掺杂TiO2的光催化性能研究[J]. 北京林业大学学报, 2021, 43(4): 141-149. doi: 10.12171/j.1000-1522.20210025
Yang Tianyu, Sun Shuang, Xia Guangda, Yuan Diliang, Song Xiuming, Liu Yu. Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template[J]. Journal of Beijing Forestry University, 2021, 43(4): 141-149. doi: 10.12171/j.1000-1522.20210025
Citation: Yang Tianyu, Sun Shuang, Xia Guangda, Yuan Diliang, Song Xiuming, Liu Yu. Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template[J]. Journal of Beijing Forestry University, 2021, 43(4): 141-149. doi: 10.12171/j.1000-1522.20210025

基于杉木模板的Zn2+掺杂TiO2的光催化性能研究

doi: 10.12171/j.1000-1522.20210025
基金项目: 黑龙江省自然科学基金项目(C2017002)
详细信息
    作者简介:

    杨天宇。主要研究方向:木材科学与技术。Email:654234557@qq.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学材料科学与工程学院

    责任作者:

    刘玉,博士,副教授。主要研究方向:人造板VOC释放控制技术。Email:liuyu820524@qq.com 地址:同上

  • 中图分类号: TS69

Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template

  • 摘要:   目的  针对木材加工行业带来的加工剩余物浪费问题,本研究以杉木为模板,通过浸渍–煅烧的方法,制备具有木材分级多孔结构的Zn2+掺杂TiO2复合光催化剂,利用木材加工剩余物的高值化利用的方式提高光催化材料的性能。  方法  以亚甲基蓝溶液为降解对象,探讨了不同的Zn2+掺杂对木材模板TiO2的光催化活性的影响,并结合XRD、SEM、XPS、BET、TEM和UV-vis等表征分析探讨模板二氧化钛的光催化降解机制。  结果  以杉木为模板的Zn-TiO2具有良好的孔隙结构,其晶型为锐钛矿型和少量的金红石型的混晶结构,平均晶粒尺寸为22.0 nm。掺杂的Zn2+取代了Ti4+的晶格的位置,使TiO2吸收波长在可见光区发生红移。在紫外光照射条件下,杉木模板1.0%Zn-TiO2对亚甲基蓝的降解效率最高,达到了99.31%,相比无模板TiO2提升了27%,同时其禁带宽度相比于无模板TiO2从3.08 eV减小至2.41 eV。在循环降解亚甲基蓝的实验中,5次降解效率均达到90%以上。  结论  采用木材模板法制备的Zn-TiO2光催化降解有机污染物性能优异,具有良好的稳定性。木材独特的孔隙结构有利于光的吸收和传质,较高的比表面积为光催化提供了更多的活性位点。Zn2+与被替代的Ti4+由于半径和价态差异使晶格内产生晶格缺陷,抑制了光生电子–空穴的复合,增加了载流子的运输,从而提高光催化性能。将木材剩余物的加工与多孔无机材料领域相结合,对木材加工剩余物的功能化转变具有潜在的应用前景。

     

  • 图  1  光催化降解亚甲基蓝效率图

    Figure  1.  Efficiency of photocatalytic degradation of methylene blue

    图  2  杉木模板1.0%Zn-TiO2的SEM图分析和EDS元素分析

    Figure  2.  SEM and EDS analysis of Chinese fir template 1.0% Zn-TiO2

    图  3  杉木模板1.0%Zn-TiO2 TEM图分析

    Figure  3.  TEM analysis of Chinese fir template 1.0% Zn-TiO2

    图  4  杉木模板1.0%Zn-TiO2 孔隙结构分析

    Figure  4.  Pore structure analysis of Chinese fir template 1.0% Zn-TiO2

    图  5  不同比例Zn2+掺杂杉木模板TiO2的XRD谱图

    Figure  5.  TiO2 XRD spectra of Chinese fir template doped with different proportions of Zn2+

    图  6  杉木模板1.0%Zn-TiO2和无模板TiO2的XPS谱图

    Figure  6.  XPS spectra of Chinese fir template 1.0% Zn-TiO2 and template free TiO2

    图  7  不同催化剂的紫外–可见漫反射光谱分析

    Figure  7.  UV-vis diffuse reflectance spectra of different catalysts

    表  1  不同比例催化剂的平均质量增长率和烧得率

    Table  1.   Average mass gain and burning rates of catalysts with different proportions %

    组别
    Group
    质量增长率
    Mass gain rate (W1)
    烧得率
    Burning rate (W2)
    TiO222.54 ± 1.97 9.61 ± 0.74
    0.5%Zn-TiO223.24 ± 1.15 9.89 ± 0.46
    1.0%Zn-TiO224.12 ± 0.6210.92 ± 0.31
    1.5%Zn-TiO224.39 ± 0.9512.23 ± 0.54
    下载: 导出CSV
  • [1] 沈和定, 石峰, 英犁, 等. 基于循环经济的木材工业可持续发展研究[J]. 林产工业, 2020, 57(9):53−55.

    Shen H D, Shi F, Ying L, et al. Study on sustainable development of wood industry based on circular economy[J]. China Forest Products Industry, 2020, 57(9): 53−55.
    [2] 周浩, 汤端科. 建筑装饰材料与室内空气污染[J]. 四川水泥, 2015(1):279−279. doi: 10.3969/j.issn.1007-6344.2015.01.271

    Zhou H, Tang D K. Building decoration materials and indoor air pollution[J]. Sichuan Cement, 2015(1): 279−279. doi: 10.3969/j.issn.1007-6344.2015.01.271
    [3] 吴泳, 张辉, 刘明兴, 等. 几种空气净化技术对室内甲醛污染净化效果对比研究[J]. 现代预防医学, 2007, 34(4):754−756. doi: 10.3969/j.issn.1003-8507.2007.04.034

    Wu Y, Zhang H, Liu M X, et al. Comparative study on purification effect of several air purification technologies on indoor formaldehyde pollution[J]. Modern Preventive Medicine, 2007, 34(4): 754−756. doi: 10.3969/j.issn.1003-8507.2007.04.034
    [4] Haarstrick A, Kut O M, Heinzle E, et al. TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor[J]. Environmental Science and Technology, 2015, 30(3): 817−824.
    [5] 孙亚秋, 邓国志, 田欣, 等. TiO2纳米光催化材料的研究进展[J]. 天津师范大学学报(自然科学版), 2019, 39(5):1−6.

    Sun Y Q, Deng G Z, Tian X, et al. Research progress of TiO2 nanophotocatalytic materials[J]. Journal of Tianjin Normal University (Natural Science Edition), 2019, 39(5): 1−6.
    [6] 徐杨, 杜祥哲, 齐英杰, 等. 浅析木材加工剩余物的利用途径[J]. 林产工业, 2015, 42(5):40−44. doi: 10.3969/j.issn.1001-5299.2015.05.010

    Xu Y, Du X Z, Qi Y J, et al. Utilization of wood processing residues[J]. China Forest Products Industry, 2015, 42(5): 40−44. doi: 10.3969/j.issn.1001-5299.2015.05.010
    [7] 袁弟亮, 刘玉, 王巍聪, 等. 基于杨木模板的二氧化钛制备及其甲醛降解性能研究[J]. 林业工程学报, 2020, 5(1):34−40.

    Yuan D L, Liu Y, Wang W C, et al. Preparation of titanium dioxide based on poplar template and its application on formaldehyde degradation[J]. Journal of Forestry Engineering, 2020, 5(1): 34−40.
    [8] Ohko Y, Fujishima A, Hashimoto K. Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst[J]. Journal of Physical Chemistry B, 2016, 102(10): 1724−1729.
    [9] 刘振兴. 提高二氧化钛光催化性能的途径[J]. 西部皮革, 2017, 39(14):7. doi: 10.3969/j.issn.1671-1602.2017.14.008

    Liu Z X. Ways to improve the photocatalytic performance of titanium dioxide[J]. Western Leather, 2017, 39(14): 7. doi: 10.3969/j.issn.1671-1602.2017.14.008
    [10] 张新亚, 宋子健, 周府治, 等. 氟氮共掺杂二氧化钛/还原氧化石墨稀复合光催化剂的制备及其可见光催化性能[J]. 硅酸盐学报, 2015, 43(7):919−925.

    Zhang X Y, Song Z J, Zhou F Z, et al. Synthesis of F, N co-doped TiO2 decorated reduced graphene oxide and its visible light photocatalytic properties[J]. Journal of the Chinese Ceramic Society, 2015, 43(7): 919−925.
    [11] Kambe S, Nakade S, Kitamura T, et al. Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems[J]. Journal of Physical Chemistry B, 2002, 106(11): 2967−2972. doi: 10.1021/jp013397h
    [12] Chen J R, Qiu F X, Xu W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials[J]. Applied Catalysis A: General, 2015, 495: 131−140. doi: 10.1016/j.apcata.2015.02.013
    [13] 冯诗乐, 黄梦玲, 施玮, 等. Zn掺杂TiO2光阳极对染料敏化太阳电池性能影响[J]. 陶瓷学报, 2019, 40(1):18−23.

    Feng S L, Huang M L, Shi W, et al. Influence of Zn-doped TiO2 photoanode on the performance of dyesensitized solar cells[J]. Journal of Ceramics, 2019, 40(1): 18−23.
    [14] Bathla A, Pal B. Bimetallic Cu(core)@Zn(shell) co-catalyst impregnated TiO2 nanosheets (001 faceted) for the selective hydrogenation of quinoline under visible light irradiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 314−325. doi: 10.1016/j.jiec.2019.07.007
    [15] 卢辛成, 蒋剑春, 孙康, 等. 掺杂型Zn2+-TiO2/AC光催化剂制备及光催化活性研究[C]//第22届炭–石墨材料学术会议论文集. 宁波: 中国电工技术学会, 2010: 7.

    Lu X C, Jiang J C, Sun K, et al. Preparation and photocatalytic activity of doped Zn2+-TiO2/AC[C]//Proceedings of the 22nd Symposium on Carbon Graphite Materials. Ningbo: The Specific Committee on Carbon-Graphite Materials of the China Electrotechnical Society, 2010: 7.
    [16] Zhao Y, Li C, Liu X, et al. Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen-oxygen diffusion flame[J]. Applied Catalysis B Environmental, 2008, 79(3): 208−215. doi: 10.1016/j.apcatb.2007.09.044
    [17] 张宏忠, 李丽, 王明花, 等. 自组装模板法制备多孔纳米TiO2的研究进展[J]. 广州化工, 2010, 38(5):3−5. doi: 10.3969/j.issn.1001-9677.2010.05.002

    Zhang H Z, Li L, Wang M H, et al. Progress of researches on the self-assembly of porous nanostructured TiO2 by template methods[J]. Guangzhou Chemical Industry, 2010, 38(5): 3−5. doi: 10.3969/j.issn.1001-9677.2010.05.002
    [18] 孙文会, 岳琳, 段二红, 等. 酵母菌生物模板法制备TiO2[J]. 实验技术与管理, 2017, 34(3):68−72.

    Sun W H, Yue L, Duan E H, et al. Preparation of TiO2 by using yeast bio-template method[J]. Experimental Technology and Management, 2017, 34(3): 68−72.
    [19] Ma H, Liu W W, Zhu S W, et al. Biotemplated hierarchical TiO2 derived from banana leaf and its adsorption-photocatalytic performance[J]. Acta Chimica Sinica, 2012, 70(70): 2353−2358.
    [20] 潘峰, 张旺, 张荻, 等. 模板法制备TiO2的研究进展[J]. 材料导报, 2015, 29(1):22−30. doi: 10.11896/j.issn.1005-023X.2015.01.004

    Pan F, Zhang W, Zhang D, et al. Research advances in template-assisted synthesis of TiO2[J]. Materials Reports, 2015, 29(1): 22−30. doi: 10.11896/j.issn.1005-023X.2015.01.004
    [21] 何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(2):157−162.

    He S, Xu J, Wu Z X, et al. Compare of porous structure of moso bamboo and Pinus sylvestris L. lumber[J]. Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 157−162.
    [22] 王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123−133.

    Wang Z, Wang X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123−133.
    [23] 费本华, 赵勇, 侯祝强, 等. 干燥过程中木材内部孔隙度变化的初步研究[J]. 北京林业大学学报, 2005, 27(增刊 1):1−4.

    Fei B H, Zhao Y, Hou Z Q, et al. Changes of wood interior porosity during the drying process[J]. Journal of Beijing Forestry University, 2005, 27(Suppl. 1): 1−4.
    [24] Hao R, Jiang B J, Li M X, et al. Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production[J]. Science China Materials, 2015, 58(5): 363−369. doi: 10.1007/s40843-015-0052-3
    [25] 张晓, 解英娟, 马佩军, 等. 物理混合法制备分级混晶TiO2微纳米材料及其光催化性能[J]. 高等学校化学学报, 2015, 36(10):1977−1983.

    Zhang X, Xie Y J, Ma P J, et al. Photocatalytic performances for mixed-phase hierarchical structure TiO2 prepared by physical mixing[J]. Chemical Journal of Chinese Universities, 2015, 36(10): 1977−1983.
    [26] Yu Y, Wang J, Li W, et al. Doping mechanism of Zn2+ ions in Zn-doped TiO2 prepared by sol-gel method[J]. Crystengcomm, 2015, 17(27): 5074−5080. doi: 10.1039/C5CE00933B
    [27] Nair R G, Mazumdar S, Modak B, et al. The role of surface O-vacancies in the photocatalytic oxidation of methylene blue by Zn-doped TiO2: a mechanistic approach[J/OL]. Journal of Photochemistry and Photobiology A: Chemistry, 2017: S1010603017303167 [2018−12−02]. http://DOI:10.1016/j.jphotochem.2017.05.016" target="_blank">10.1016/j.jphotochem.2017.05.016">http://DOI:10.1016/j.jphotochem.2017.05.016.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  186
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 修回日期:  2021-02-25
  • 网络出版日期:  2021-04-17
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回