Processing math: 66%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

故宫养心殿墙体木柱缺陷状况无损检测研究

张典, 于永柱, 管成, 王辉, 张厚江, 辛振波

张典, 于永柱, 管成, 王辉, 张厚江, 辛振波. 故宫养心殿墙体木柱缺陷状况无损检测研究[J]. 北京林业大学学报, 2021, 43(5): 127-139. DOI: 10.12171/j.1000-1522.20210028
引用本文: 张典, 于永柱, 管成, 王辉, 张厚江, 辛振波. 故宫养心殿墙体木柱缺陷状况无损检测研究[J]. 北京林业大学学报, 2021, 43(5): 127-139. DOI: 10.12171/j.1000-1522.20210028
Zhang Dian, Yu Yongzhu, Guan Cheng, Wang Hui, Zhang Houjiang, Xin Zhenbo. Nondestructive testing of defect condition of wall wood columns in Yangxin Hall of the Palace Museum, Beijing[J]. Journal of Beijing Forestry University, 2021, 43(5): 127-139. DOI: 10.12171/j.1000-1522.20210028
Citation: Zhang Dian, Yu Yongzhu, Guan Cheng, Wang Hui, Zhang Houjiang, Xin Zhenbo. Nondestructive testing of defect condition of wall wood columns in Yangxin Hall of the Palace Museum, Beijing[J]. Journal of Beijing Forestry University, 2021, 43(5): 127-139. DOI: 10.12171/j.1000-1522.20210028

故宫养心殿墙体木柱缺陷状况无损检测研究

基金项目: 中国博士后科学基金面上资助项目(2018M641225),北京市科学计划公益应用类项目(Z090506016609002),故宫博物院横向项目(2020HXFWGXY007)
详细信息
    作者简介:

    张典,高级工程师。主要研究方向:古建筑研究与保护。Email:zhangdian126@126.com 地址:100001 北京市东城区景山前街4号故宫博物院

    责任作者:

    管成,博士,讲师。主要研究方向:木材无损检测技术。Email:648911029@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学工学院

  • 中图分类号: TU366.2;TS67;K928.71

Nondestructive testing of defect condition of wall wood columns in Yangxin Hall of the Palace Museum, Beijing

  • 摘要:
      目的  古建筑墙体木柱部分或全部被墙体包裹,木柱与墙体接触部分易腐朽,检测操作空间差。通过对故宫养心殿墙体木柱缺陷状况的无损检测研究,探索墙体木柱缺陷状况无损检测评估方法,揭示墙体木柱腐朽存在的规律,为养心殿木柱修缮工作提供依据,也为其他木结构古建筑墙体木柱的无损检测和缺陷评估提供借鉴。
      方法  以养心殿正殿、梅坞、东配殿、西配殿4座建筑中的68根墙体木柱为研究对象,首先利用木柱的外露面、透风口或拆口,进行现场检测,内容包括外部缺陷检测、敲击检测、内部缺陷检测、含水率检测和树种取样;然后对现场检测获得的木柱尺寸、缺陷类型和尺寸、微钻阻力曲线等数据资料进行汇总分析,评估每根被测木柱的缺陷情况,总结墙体木柱腐朽分布规律。
      结果  养心殿墙体木柱整体保存状况较好;养心殿墙体木柱外部和内部缺陷的形式是不同的,外部缺陷的主要形式为外部腐朽和材料缺失,内部缺陷的主要形式为内部腐朽和空洞,而这两种缺陷的次要形式均为裂纹;对单根木柱而言,在横向截面上腐朽主要发生在木柱与墙体接触的区域,在纵向上腐朽主要发生在木柱底部,自下而上腐朽程度逐渐减轻;对全体木柱而言,双面外露木柱发生腐朽的概率较低,单面外露木柱发生腐朽的概率较高,完全被墙体包裹的木柱最容易发生腐朽。
      结论  本研究所采用的方法用于墙体木柱缺陷状况无损检测评估是可行的,墙体木柱的位置、被包裹程度和树种对其缺陷状况均有影响。
    Abstract:
      Objective  The wall wood columns of ancient building are partly or completely wrapped by the wall. It is easy to decay for the contact part between the wood column and the wall, and the detection operation space is narrow. Through the study on the nondestructive testing for defect status of the wall wood columns in Yangxin Hall of the Palace Museum of Beijing, the nondestructive testing method of the defect status and the existence law of the decay for the wall wood columns were explored and revealed, respectively, which provides the basis for the repair work of the wall wood columns in Yangxin Hall, and also provides reference for the nondestructive testing and defect evaluation for the wall wood columns in other ancient wooden buildings.
      Method  68 wall wood columns in the Main Hall, Meiwu Hall, East Hall and West Hall of Yangxin Hall were used as the research objects. First of all, the exposed face, air vent and opening of wood columns were used for field detection, including external defect detection, knocking detection, internal defect detection, moisture content detection and tree species sampling. Then, the data of wood column size, defect types and size, micro drill resistance curve and so on were collected and analyzed to evaluate the defect status of each wood column tested, and the decay distribution law of the wall wood columns was summed.
      Result  The wall wood columns in Yangxin Hall were relatively complete. The results showed that there were different forms for the external and internal defects of the wall wood columns in Yangxin Hall. The main forms of external defects were external decay and material missing, and the main forms of internal defects were internal decay and cavity, and the secondary forms of these two main defects were cracks. For a single wood column, the decay mainly occurred in the area where the wood columns were in contact with the wall at the cross section. In the longitudinal, decay mainly occurred in the bottom of wood column, and the decay decreased with the height. The probability of decay for two-sided exposed wood columns was the lowest and followed by the single-sided exposed wood columns, and the completely wrapped wood columns were the highest.
      Conclusion  The method used in this study is feasible for nondestructive testing and evaluation for defect status of the wall wood columns, and the position, wrapping degree and tree species of wall wood columns have influence on their defect status.
  • 我国水果生产和消费能力均排名世界第一,但多数果园种植在丘陵山地,果树修整枝、疏花疏果、果实套袋和采收等作业主要依靠人工架梯来完成,劳动强度大、作业效率低、安全风险高[1-3],采摘器等辅助人工摘果装备同样存在作业效率低的问题[4-5]。丘陵山地地形地貌变化大,普通车辆很难进入,为了克服地形的影响,农业车辆多采用调平的方式来应对[6-9]。因此,设计研发一款可调平的果园升降作业平台对于提高果园机械化水平和作业效率,降低工作风险具有重要意义。

    国外果园机械研究起步较早,北美自20世纪50年代开始把高空作业平台应用到果园中,发展至今已具有较高水平[10];意大利N.P.SEYMOUR公司生产的Windegger Picking Platform系列可全轮转向,工作台两级升降、角度可调,适用性较广[11];韩国SUNGBOO公司生产的SB系列采用纯电力能源,工作台可调角度10°,可满足缓丘陵作业需求[12-13]

    国内对于果园升降机械的研究起步较晚,主要因为果园种植模式以家庭分散种植为主,规模小,不利于果园机械的发展[14]。近些年,果园的主要种植模式为矮砧和密植,为果园机械化发展提供了前提条件。刘西宁等[15]研发了国内第一台果园升降平台,但不具备调平功能,不适合在丘陵山地作业。崔志超等[16]针对温室果蔬机械化低,传统燃油作业平台污染大等问题,设计制造了一款小型电动履带作业平台,采用电能作为动力,绿色环保,使用远程和在线的双操作系统。樊桂菊等[17-18]以拖拉机为载体加装工作台来实现调平,通过融合卡尔曼滤波的模糊PID控制系统实现自动调平,最大载荷150 kg,举升高度1.5 m,但是工作平台较小,在大规模果园作业时效率偏低。刘大为等[19-20]以南方丘陵山区柑橘园为对象研制了小型果园升降平台,通过“二次调平”方法,由液压缸伸缩进行调平,使用履带底盘,转向半径小、稳定性高、结构紧凑、操作简单,但调平方式为人工手动调平,调平精度低,而且作业效率不高。邱威等[21]根据中国南方果园多丘陵山区及果园作业的特点研制了一款折臂升降可调平平台,通过理论计算,仿真分析及样机试验分析验证了在丘陵山区的倾翻稳定性,并且利用正交试验分析了极限静态侧翻角的影响因子权重占比,在作业操作及相关机械的设计中有一定的借鉴意义。

    国内公司现有果园产品多,但均不具备调平功能,无法适应丘陵山地果园作业,形成了“有机不好用”的局面,丘陵果园综合机械化水平仅为5.75%[2]。因此,针对丘陵山地矮砧密植苹果园地形与种植模式特点,研究升降平台调平机理,设计一款可调平的果园自走式升降作业平台,以期满足丘陵山地作业需求。

    丘陵果园因地形特点,其种植模式主要有依山就势的缓坡模式和“坡改梯”的梯田模式两种。在这类果园中作业和转场对农业车辆的动力底盘要求很高,应具备良好的通过性和爬坡能力,本机选用越障能力强、转弯半径小的履带底盘。经查阅文献[22]和实地观测,苹果园一般株距1.0 ~ 1.5 m,行距3.5 ~ 4.0 m,树高不超过3.5 m。结合实际生产过程,可调平平台具体设计要求如表1所示。

    表  1  果园作业平台设计参数
    Table  1.  Design parameters of orchard operating platform
    参数 Parameter数值 Value
    整机尺寸 Overall size 1 900 mm × 1 400 mm × 2 000 mm
    整机质量 Overall mass/kg 1 200
    最大载质量 Maximum load/kg 300
    升降高度 Lifting height/mm 0 ~ 1 150
    转弯半径 Turning radius/m 3
    行驶速度 Drving speed/(km·h−1) 0 ~ 5
    下载: 导出CSV 
    | 显示表格

    整机结构主要包括护栏、工作台、俯仰调平机构、机架、侧倾调平机构、履带底盘、操作台、剪叉机构和动力集成(图1)。动力集成安装在机架上,由电机、电池、液压管道和液压阀组成,为平台的升降、调平和行走等动作提供动力,并通过操作台控制平台升降和行走。工作台两侧可扩展,以增加工作平台面积,方便果农采摘套袋等作业。以下对平台的升降和调平机理做详细阐述。

    图  1  果园作业平台结构示意图
    1. 护栏 Guardrail,2. 工作台 Work platform,3. 俯仰调平机构 Pitch leveling mechanism,4. 机架 Frame,5. 侧倾调平机构 Roll leveling mechanism,6. 履带底盘Tracked chassis,7. 操作台 Control panel,8. 剪叉机构Scissor mechanism,9. 动力集成 Integrated power.
    Figure  1.  Diagram of the structure of orchard operating platform

    因剪叉式升降机构具有较高的稳定性和承载能力[23-24],同时考虑到缓丘陵果园地形特点(坡度 ≤ 15°),以及矮砧密植型苹果树高一般不超过3.5 m,结合GB10000—1988《中国成年人人体尺寸标准》[25]可知平台升降高度达2 m即可满足果园作业要求,故选择单级剪叉升降机构,并在此基础上改进为折臂剪叉式俯仰调平机构(图2)。升降液压缸PQ伸长,工作台随之上升,反之工作台下降;俯仰液压缸MN伸长,俯仰臂O1DO1点旋转,工作台DE仰起一定角度θ(如图2中红色部分),反之工作台俯下一定角度−θ,达到俯仰调平目的。该调平方式没有额外增加过多机构,节省空间、简单可靠。

    图  2  升降及俯仰调平机构原理
    OO1分别为升降、俯仰调平机构坐标系原点;DE为工作台,PQ为升降液压缸,MN为俯仰液压缸;ODEH为剪叉臂,其中OBBDEBBH长度相等(mm);AC两点为升降液压缸上下两端与剪叉臂的连接点,且APEH垂直,CQ与OB垂直;OE分别为剪叉臂与机架、工作台的铰接点;DH两点为铰接滑轮,滑轮与机架、工作台的滑轨相切,B点是两剪叉臂铰接点;h为工作台升起高度(mm);G为工作台和被载物体的总重(N);α为剪叉臂与水平面夹角(°);βMO1O1B的夹角(°);φ为俯仰臂O1DO1点转动的角度(°);θ为工作台与水平面夹角,即平台俯仰角(°);F1为升降液压缸推力(N);F2为俯仰液压缸推力(N)。O is the origin of lifting coordinate system, and O1 is the origin of pitch leveling mechanism coordinate system. DE is the platform, PQ is lifting hydraulic cylinder, MN is pitch hydraulic cylinder; OD and EH are scissor arms, and the lengths of OB, BD, EB and BH are equal (mm). A is the connection point between the upper end of lifting hydraulic cylinder and scissor arm, C is connection point between the lower end of lifting hydraulic cylinder and scissor arm, and AP is perpendicular to EH, and CQ is perpendicular to OB. O is hinge point between scissor arm and frame, E is the hinge point of scissor arm and platform; D and H are hinged pulleys, the pulley is tangent to slide rail of the rack and platform, B is hinge point of two scissor arms. h is lifting height of platform (mm). G is total mass of platform and the loaded object (N). α is the angle between scissor arm and horizontal plane (°). β is the angle between MO1 and O1B (°). φ is the angle that tilt arm O1D rotates around O1 point (°). θ is platform pitch angle between platform and horizontal plane (°). F1 is the thrust of lifting hydraulic cylinder (N). F2 is thrust of pitch hydraulic cylinder (N).
    Figure  2.  Principles of lifting and pitch leveling mechanism

    根据图2建立液压缸推力、俯仰液压缸位移量和平台角度关系式,以确定优化液压缸所需推力和平台尺寸。由图2可知相关量的几何关系:

    {xPQ=lCQsinα+lBCcosαlABcosα+lAPsinαyPQ=lCQcosα+lBCsinα+lABsinα+lAPcosαlPQ=xPQ2+yPQ2h=lEHsinα (1)

    式中:xPQyPQ分别为升降液压缸PQOXOY轴上的投影长度(mm);lCQlBClABlAP分别为升降机构部分CQBCABAP的长度(mm);lPQ为升降液压缸PQ的长度(mm);lEH为剪叉臂EH的长度(mm);α为剪叉臂与水平面夹角(°)。

    根据虚位移原理[26]

    F1dlPQdα=Gdhdα (2)

    得到:

    F1=G2lEHcosαasin2α+bsin2α+ccos2α(ac)sin2α+2bcos2α (3)

    式中:F1为升降液压缸推力(N);a=(lAB+lBC)2+(lAPlCQ)2b=2(lABlCQ+lBClAP)c=(lBClAB)2+(lAP+lCQ)2

    由式(3)可知:F1不仅与lEHlPQlBClABlAP有关,还与平台升降高度α有关,并且随着α的减小,液压缸所需推力随之增大。在工作台降到最低位置时,液压缸所需推力最大。

    同理,在图2中以X1O1Y1为坐标系,根据虚位移原理可知:

    F2=GlO1Dcos(α+φ)lO1M2+lO1N2+2lO1MlO1Ncos(φβ)2lO1MlO1Nsin(βφ) (4)

    式中:F2为俯仰液压缸推力(N);lO1DlO1MlO1N分别为俯仰调平机构部分O1DO1MO1N的长度(mm);βMO1O1B的夹角(°);φ 为俯仰臂O1DO1点转动的角度(°)。

    由式(4)可知:俯仰液压缸所需推力和平台俯仰角及平台升降高度有关,平台高度越低,俯仰角越大,所需推力越大,在平台降到最低且俯仰液压缸完全伸出时所需推力最大。考虑到工作台不能与底部动力集成干涉以及对升降高度的要求,对参数值选取合适的值。详细尺寸数据见表2

    表  2  升降及俯仰调平机构尺寸
    Table  2.  Dimensions of lifting and pitch leveling structures
    参数 Parameter数值 Value
    lAB/mm 220
    lBC/mm 702
    lAP/mm 70
    lCQ/mm 97
    lEH/mm 1 722
    lO1N/mm 411
    lO1M/mm 163
    lO1D/mm 561
    β/(°) 88
    注:lABlBClAPlCQ分别为升降机构ABBCAPCQ的长度;lEH为剪叉臂EH的长度;lO1NlO1MlO1D分别为俯仰调平机构部分O1NO1MO1D的长度;βMO1O1B的夹角。Notes:lAB, lBC, lAP and lCQ are length of lifting mechanism AB, BC, AP and CQ, respectively. lEH is the length of scissor arm EH. lO1N, lO1M and lO1D are length of pitch leveling mechanism O1N, O1M and O1D, respectively. β is angle between MO1 and O1B.
    下载: 导出CSV 
    | 显示表格

    XOY坐标中:

    {xOD1=lOO1cosα+lO1D1cos(α+φ)yOD1=lOO1sinα+lO1D1sin(α+φ) (5)

    式中:xOD1yOD1分别为剪叉臂OD1OYOX轴上的投影长度(mm),lOO1lO1D1分别为剪叉臂OO1O1D1的长度(mm)。

    因为tanθ=yOD1hxOD1,可以得到:

    θ=arctan(lOO1lEH)sinα+lO1D1sin(α+φ)lOO1cosα+lO1D1cos(α+φ) (6)

    其中:

    φ=arccoslO1M2+lO1N2(lMNy)22lO1MlO1N (7)

    式中:y为俯仰液压缸活塞杆位移量(mm),lMN为俯仰液压缸MN的长度(mm),θ为工作台与水平面夹角,即平台俯仰角(°)。

    由式(6)和式(7)可知折臂剪叉俯仰调平机构可调角度与升降液压缸、俯仰液压缸的位移量有关。当平台降到最低点位置时,俯仰液压缸不能缩短,只能伸长。即平台只能进行仰调平,不能进行俯调平,否则工作台会与机架干涉。随着工作台的升起,工作台既能仰也能俯,可调角度均为10°。但工作台升到最高点时仰调平角度降至6.5°。

    在履带底盘和机架之间设计了侧倾调平机构,起到连接和调平作用,机构简图如图3。液压缸I1J1IJ做相反运动,机架O3J1JO3点旋转,工作台侧倾一定角度θ1,达到侧倾调平目的。

    图  3  侧倾调平机构原理
    I1J1IJ为侧倾液压缸;α1为侧倾液压缸I1J1与水平面的夹角(°);β1为侧倾液压缸IJ与水平面的夹角(°);θ1为平台与水平面的夹角,即平台侧倾角(°);O2为原点,II1O3为底盘上的固定点;O3J1J为机架;O3R1与侧倾液压缸I1J1垂直,O3R与侧倾液压缸IJ垂直;e为机架上方总重G1X2轴平行方向上与O2的距离,(mm);F3F4为侧倾液压缸的推力(N)。I1J1 and IJ are the roll hydraulic cylinders, α1 is angle between roll hydraulic cylinder I1J1 and the horizontal plane (°). β1 is angle between roll hydraulic cylinder IJ and horizontal plane (°). θ1 is the angle between platform and horizontal plane, i.e. the platform roll angle (°). O2 is the origin, I,I1 and O3 are the fixed points on chassis, O3J1J is frame. O3R1 is perpendicular to the roll cylinder I1J1, O3R is perpendicular to roll cylinder IJ. e is the distance between total mass G1 and O2 in the direction parallel to X2 axis. F3 and F4 are thrust of roll hydraulic cylinder (N).
    Figure  3.  Principle of roll leveling mechanism

    图3可知:

    {IO3R=β1IO3O2lO3R=lIO3cosIO3RI1O3R1=α1I1O3O2lO3R1=lI1O3cosI1O3R1F3lO3R+F4lO3R1=G1e (8)

    式中:lO3RlIO3lO3R1lI1O3分别为侧倾调平机构部分O3R、IO3O3R1I1O3的长度(mm);F3F4为侧倾液压缸的推力(N);∠IO3RIO3O3R的夹角(°);∠IO3O2IO3O3O2的夹角(°);∠I1O3R1I1O3O3R1的夹角(°);∠I1O3O2I1O3O3O2的夹角(°);G1为机架上方总重(N);eG1X2轴平行方向上与O2的距离(mm)。

    根据选用的启创液压科技公司HSG-40系列工程油缸得1.45F3 = F4,则:

    F4=G10.6elIO3cos(β1IO3O2)+lI1O3cos(α1I1O3O2) (9)

    从式(9)中可以看出G1的增加及因G1升高引起的e增加会导致液压缸推力的增加,在设计中对工作台零部件轻量化,降低重心,以减小液压缸所需推力,同时也能增加平台的侧倾稳定性。

    图3中关系可知:

    θ1=arctanlIJsinβ1lI1J1sinα1lI1J1cosα1+lI1I+lIJcosβ1 (10)

    式中:lIJlI1J1lI1I分别为IJI1J1I1I的长度(mm);α1为侧倾液压缸I1J1与水平面的夹角(°);β1为侧倾液压缸IJ与水平面的夹角(°);θ1为平台与水平面的夹角,即平台侧倾角(°)

    从式(10)中可以看出侧倾液压缸的长度和安装位置是影响平台调平角度的主要因素。结合设计要求与结构特点选取合适的尺寸,侧倾角度达 ± 8°。具体尺寸数据见表3

    表  3  侧倾调平结构尺寸
    Table  3.  Dimensions of roll leveling structures
    参数 Parameter数值 Value
    α1/(°) 28 ~ 70.5
    lIO3/mm 264
    lIJ/mm 320 ~ 390
    lI1I/mm 373
    注:α1为侧倾液压缸I1J1与水平面的夹角;lIO3为侧倾调平机构部分IO3的长度;lIJlI1I分别为IJI1I的长度。Notes: α1 is the angle between roll hydraulic cylinder I1J1 and horizontal plane. lIO3 is length of tilting leveling mechanism IO3. lIJ and lI1I are the lengths of IJ and I1I, respectively.
    下载: 导出CSV 
    | 显示表格

    升降、俯仰和侧倾3个控制回路组成整个系统,且具有相似的结构形式。因升降部分需手动控制,故只分析俯仰、侧倾控制系统。控制系统由控制器、放大器、电液比例阀、液压缸、倾角传感器等组成。

    电路部分看作时间常数很小的放大器,可以作为比例环节[27],所以放大器传递函数为

    G1(s)=I(s)Θ(s)=Ke1 (11)
    G2(s)=I(s)Θ(s)=Ke2 (12)

    式中:I为电流(A),Θ为平台角度与目标角度差值(°),Ke1Ke2分别为俯仰、侧倾部分放大器比例系数,G1(s)和G2(s)分别为俯仰、侧倾调平机构的放大器传递函数,s代表时间函数经拉普拉斯变换为复变函数(下同)。

    选用北京尚泰合力液压科技公司生产固有角频率69 rad/s的STPLS系列电液比例阀。建立电液比例阀的传递函数时,如果系统中存在固有角频率较大的动力元件选用二阶震荡环节[28-29]。所以电液比例阀的传递函数为:

    G3(s)=Xv(s)I(s)=Kvs2ωv2+2ξvωvs+1 (13)

    式中:ωv为比例阀固有角频率(rad/s),ξv 为比例阀阻尼比,Xv为比例阀芯位移(m),Kv比例阀增益。

    选用启创液压科技公司的HSG-40系列工程油缸,属于阀控非对称缸,其传递函数[30]为:

    G4(s)=Xp(s)Xv(s)=KqAps(s2ωh2+2ξhωhs+1) (14)

    式中:液压固有角频率ωh=4βeAp2Vtm(rad/s);液压阻尼比ξh=KceApβemVtm为活塞及其负载总质量(kg);Kq为流量增益系数;Ap为无杆腔活塞有效面积(m2);Kce为总流量压力系数;Vt为阀腔、液压缸和管道总容积(m3);βe 为有效体积弹性模量(Pa);Xp为液压缸活塞位移量(m)。

    根据式(6)、(7)、(10)可知俯仰、侧倾调平机构中液压缸位移量和平台角度可以看做线性关系。所以调平机构的传递函数为:

    G5(s)=θ(s)Xp(s)=Kl1 (15)
    G6(s)=θ(s)Xp(s)=Kl2 (16)

    式中:G5(s)、G6(s)分别为俯仰、侧倾调平机构的传递函数,Kl1Kl2分别为俯仰、侧倾部分液压缸位移角度系数。

    由经典控制理论[31]可知,要使系统输出稳定,幅值裕度和相位裕度须满足如下条件:

    {Kg (17)

    将确定的液压系统元件参数带入俯仰、侧倾系统开环传递函数,令开环增益K = 1,绘制其Bode图。此时,俯仰系统幅值裕度Kg = 39.3 dB,相位裕度γ = 88.9°;侧倾系统Kg = 38.1 dB,γ =88.8°。可见系统不满足稳定性要求。利用公式(18)对开环增益校正,取Kg = 10 dB,则俯仰系统K = 29.2,γ = 54.6°,侧倾系统K = 25.3,γ = 58.4°,此时系统满足稳定性要求。可反推放大器比例系数Ke1Ke2以设计电路部分。

    20\lg \! K = {K_{{\rm{g}}1}} - {K_{\rm{g}}} (18)

    式中:Kg1为原系统幅值裕度,Kg为系统期望幅值裕度。

    则俯仰系统的开环传递函数:

    \begin{aligned} & {G_f}(s) = \frac{{\theta (s)}}{{\Theta (s)}} = \\ & \frac{{29.2}}{{8.4 \! \times \! {{10}^{ - 10}}{s^5} \! + \! 9.68 \times {{10}^{ - 8}}{s^4} \! + \! 2.16 \! \times \! {{10}^{ - 4}}{s^3} \! + \! 2 \! \times \! {{10}^{ - 2}}{s^2} \! + \! s}} \end{aligned} (19)

    侧倾系统的开环传递函数:

    \begin{aligned} & {G_{\rm{c}}}(s) = \frac{{\theta (s)}}{{\Theta (s)}} =\\ & \frac{{25.3}}{{5.25 \! \times \! {{10}^{ - 9}}{s^5} \! + \! 6.17 \! \times \! {{10}^{ - 7}}{s^4} \! + \! 2.46 \! \times \! {{10}^{ - 4}}{s^3} \! + \! 2.06 \! \times \! {{10}^{ - 2}}{s^2} \! + \! s}} \end{aligned} (20)

    调平系统的控制流程是控制器根据反馈的工作台角度差值计算输出电流控制电液比例阀的开口开度,进而控制液压缸伸缩运动,使平台角度始终维持在0°附近。同时,安装在工作台上的倾角传感器把实时角度发送给控制器,形成闭环反馈控制。控制框图如图4所示。

    图  4  控制系统框图
    Figure  4.  Block diagram of control system

    采用增量式PID控制器,优点是当计算机故障时,系统仍能保持原值,平台不会发生危险情况[32]。计算公式为:

    \begin{aligned} u(k) = \; & u(k - 1) + {K_{\rm{p}}}(e(k) - e(k - 1)) + {K_{\rm{i}}}e(k) +\\ & {K_{\rm{d}}}(e(k) - 2e(k - 1) + e(k - 2)) \end{aligned} (21)

    式中:u(k)为k时刻控制器输出的电流大小,e(k)为k时刻的控制偏差;KpKiKd分别为比例、积分和微分的调节系数。

    在Simulink建立调平平台仿真模型,使用零阶保持器,采样时间0.02 s;通过试验法确定俯仰系统比例、积分和微分调节系数分别为0.65、0.04、0,侧倾系统比例、积分和微分调节系数分别为0.85、0.04、0。丘陵山地果园坡度变化平缓,因此干扰选择5°的阶跃信号模拟路面凹坑等突变;因最大工作台俯仰和侧倾调平角度分别为10°、8°,调平角速度0.07 rad/s;确定频率0.1 Hz,幅值为10和8的正弦信号模拟连续坡度变化,此时处于平台极限工作状态。仿真结果如图5图6所示。

    图  5  俯仰系统不同干扰下工作台角度变化
    Figure  5.  Changes of platform angle under different interferences of pitch system
    图  6  侧倾系统不同干扰下工作台角度变化
    Figure  6.  Platform angle changes under different disturbances of roll system

    从图5、图6中可以看出:俯仰、侧倾控制系统在阶跃干扰信号下能使工作台很快回到水平位置,调平时间分别为1.6、2.1 s,超调量均为0;俯仰、侧倾控制系统在正弦干扰信号下能使工作台始终保持在0°附近,波动范围分别在0.15°、0.19°内。仿真验证了平台调平的可行性,并且在不同干扰下调平性能较好,工作台角度变化较平稳,满足调平平台设计要求。

    为测试平台的安全性和工作台调平对倾翻坡度的影响,根据结构和参数在SolidWorks中建立调平平台三维模型,导入Adams并建立倾翻实验台(图7)。实验台以一定角速度转动,平台以纵向、斜向、横向这3种不同姿态,以0、220、440、660、880、1 100 mm不同升降高度和不同载质量情况下进行仿真。当履带所受支持力为0时,实验台倾角δ记为极限倾翻角度(°),仿真结果如图8

    图  7  不同姿态下的倾翻仿真图
    实验台倾角δ记为极限倾翻角度。Tilt angle δ of experimental platform is recorded as limit tilt angle.
    Figure  7.  Tilting simulation diagram under different postures
    图  8  不同姿态下倾翻仿真结果
    Figure  8.  Tilting simulation results under different postures

    图8中可以看出:升降高度和载质量一定时,平台在纵向、斜向和横向这3种姿态时的极限倾翻角度逐渐减小;且3种姿态下,升降高度和载质量增加后,平台极限倾翻角度都会减小。有调平时纵向、斜向和横向3姿态下最小倾翻角度相较于无调平时(26.36°、22.35°、20.27°)分别增加了2.47%、19.20%和24.77%,最大倾翻角度相较于无调平时无明显变化。但不同姿态、升降高度和载质量下,平台调平后对其极限倾翻角度的影响又有所不同。比如纵向时,有调平时极限倾翻角度相对于无调平时在分界线以上略有减小,分界线以下略有增加。这是因为剪叉折臂式调平方式会举升工作台,使平台重心沿坡面上移;当升降高度和载质量增加时(超过分界线时),重心位移量在平行坡面方向的投影占比会大于其在垂直坡面方向的占比,故有利于提高平台纵向上的抗倾翻能力。而在斜向和横向姿态时,有调平时极限倾翻角度较无调平时有所增加;当升降高度和载质量两个因素中的一个因素确定时,平台极限倾翻角度增量均随另一因素增加而增大。因为斜向和横向姿态调平时,均需要侧倾调平机构参与其中,使得平台重心在水平面上的投影会靠近上坡方向移动,且平台纵向尺寸大、横向小,重心移动量在横向上的占比大于纵向上占比,从而提升了平台的抗侧倾能力。

    总体来说,无调平时最大和最小极限倾翻角度分别为49.85°和20.27°;有调平时最大极限倾翻角度为48.78°,最小为25.29°。整体来讲,最大极限倾翻角度(纵向、升降高度0 mm、载质量0 kg时)降低了2.15%,最小极限倾翻角度(当横向、升降高度1 100 mm、载质量300 kg时)增加了24.77%,平台安全性明显提高。

    (1)根据丘陵山地果园机械化发展现状设计了一款基于剪叉折臂式的自动调平平台,结构简单可靠;通过公式计算结合设计要求验证调平可行性,确定了平台各个部分的尺寸参数、液压缸位移量和平台角度的关系,计算出液压缸所需推力,建立了三维模型。对控制系统数学建模,在Simulink中采用增量式PID控制器对控制系统进行仿真,结果表明此平台有较好的抗阶跃和正弦干扰信号的能力,在极限工作状态下能始终保持在0°附近。

    (2)使用Adams对在不同状态、不同举升高度和不同载质量情况下的平台极限倾翻坡度进行仿真。在仿真条件下,果园高位作业平台在调平状态下极限倾翻坡度最小值为25.29°,相较于无调平时增加了24.77%。这说明本文提出的调平机构可有效提高平台的抗倾翻能力。设计的高位调平平台能够满足丘陵山区果园的使用需求。

  • 图  1   墙体木柱类型示意图

    Figure  1.   Schematic diagram of types of wall wood columns

    图  2   微钻阻力检测路径示意图

    Figure  2.   Schematic diagram of micro-drilling resistance detection path

    图  3   基于微钻阻力曲线的木柱内部缺陷推测示意图

    Figure  3.   Conjecture schematic diagram of wood column’s internal defects based on micro drilling resistance curve

    图  4   养心殿墙体木柱外部缺陷

    Figure  4.   External defects of the wall wood columns in Yangxin Hall

    图  5   不同等级木柱在养心殿中的位置分布

    Figure  5.   Position distribution of different grades of wood columns in Yangxin Hall

    图  6   不同等级木柱在养心殿中的数量分布

    Figure  6.   Quantity distribution of different grades of wood columns in Yangxin Hall

    图  7   檐柱外观图

    Figure  7.   Appearance photo of eave column

    图  8   微钻阻力检测曲线

    Figure  8.   Micro-drilling resistance detection curve

    图  9   检测位置及缺陷示意图

    Figure  9.   Schematic diagram of detection location and defect situation

    图  10   檐柱外观图

    Figure  10.   Appearance photos of eave column

    图  11   微钻阻力检测曲线

    Figure  11.   Micro-drilling resistance detection curves

    图  12   检测位置及缺陷情况示意图

    Figure  12.   Schematic diagram of detection location and defect situation

    图  13   墙体拆口和柱面情况

    Figure  13.   Wall opening and cylinder situation

    图  14   微钻阻力检测曲线

    Figure  14.   Micro-drilling resistance detection curve

    图  15   检测位置和缺陷情况示意图

    Figure  15.   Schematic diagram of detection location and defect situation

    图  16   单面外露木柱腐朽规律示意图

    Figure  16.   Schematic diagram of decay law of single exposed wood columns

    图  17   不同包裹程度对木柱等级的影响

    Figure  17.   Effects of different wrapping degree on the grade of wood columns

    图  18   不同位置对木柱等级的影响

    Figure  18.   Effects of different position on the grade of wood columns

    表  1   养心殿墙体木柱类型和根数

    Table  1   Type and quantity of wall wood columns

    建筑名称
    Building
    name
    双面外露
    Two exposed
    faces
    单面外露有透风口
    One exposed face
    with air vent
    单面外露无透风口
    One exposed face
    without air vent
    完全包裹有透风口
    Full coverage
    with air vent
    完全包裹无透风口
    Full coverage
    without air vent
    合计
    Total
    正殿 Main Hall8014 7130
    梅坞 Meiwu Hall01131 6
    东配殿 East Side Hall4460216
    西配殿 West Side Hall4460216
    合计 Total16 927 10 668
    下载: 导出CSV

    表  2   木柱分等标准

    Table  2   Classification standard of wood column

    缺陷类型 Defect typeA等 Grade AB1、B2等 Grade B1 and B2C等 Grade C
    外部缺陷 External defectk < 0.050.05 < k < 0.45k > 0.45
    内部缺陷 Internal defectp = 00 < p < 0.15p > 0.15
    裂纹缺陷 Crack defectm ≤ 0.1, n ≤ 0.10.1 < m < 0.8, 0.1 < n < 0.8m > 0.8, n > 0.8
    注:k为外部缺陷面积比例系数;p为内部缺陷面积比例系数;m为裂纹长度比例系数;n为裂纹深度比例系数。Notes: k is the proportion coefficient of external defect area; p is the proportion coefficient of internal defect area; m is the proportional coefficient of crack length; n is the proportional coefficient of crack depth.
    下载: 导出CSV

    表  3   养心殿墙体木柱分等结果

    Table  3   Grading results of the wall wood columns in Yangxin Hall

    建筑名称 Building nameA等 Grade AB1等 Grade B1B2等 Grade B2C等 Grade C
    正殿 Main Hall171120
    梅坞 Meiwu Hall1230
    东配殿 East Side Hall5470
    西配殿 West Side Hall8512
    共计 Total3122132
    比例 Proportion45.5%32.4%19.2%2.9%
    下载: 导出CSV
  • [1] 郭开龙, 张厚江, 管成, 等. 木构件局部敲击信号的时域分析与研究[J]. 林业机械与木工设备, 2019, 47(2):42−46. doi: 10.3969/j.issn.2095-2953.2019.02.009

    Guo K L, Zhang H J, Guan C, et al. Time domain analysis and research on local coin-tap signals of wood members[J]. Forestry Machinery & Working Equipment, 2019, 47(2): 42−46. doi: 10.3969/j.issn.2095-2953.2019.02.009

    [2] 王玄. 损伤木柱的力学性能退化研究[D]. 西安: 西安建筑科技大学, 2017.

    Wang X. Analysis on the degradation of mechanical properties of damaged timber columns[D]. Xi’an: Xi’an University of Architecture and Technology, 2017.

    [3] 段新芳, 李玉栋, 王平. 无损检测技术在木材保护中的应用[J]. 木材工业, 2002, 16(5):14−16.

    Duan X F, Li Y D, Wang P. Review of NDE technology as applied to wood preservation[J]. China Wood Industry, 2002, 16(5): 14−16.

    [4] 张厚江, 管成, 文剑. 木质材料无损检测的应用与研究进展[J]. 林业工程学报, 2016, 1(6):1−9.

    Zhang H J, Guan C, Wen J. Applications and research development of nondestructive testing of wood based materials[J]. Journal of Forestry Engineering, 2016, 1(6): 1−9.

    [5] 朱磊, 张厚江, 孙燕良, 等. 古建筑木构件无损检测技术国内外研究现状[J]. 林业机械与木工设备, 2011, 39(3):24−27. doi: 10.3969/j.issn.2095-2953.2011.03.005

    Zhu L, Zhang H J, Sun Y L, et al. Research status of non-destructive testing technology for wooden components of ancient architectures[J]. Forestry Machinery & Working Equipment, 2011, 39(3): 24−27. doi: 10.3969/j.issn.2095-2953.2011.03.005

    [6] 张晓芳. 阻力仪在古建筑木构件勘查中的应用研究[D]. 北京: 北京林业大学, 2007.

    Zhang X F. Research on application of resistograph for wood component checking of the ancient architecture[D]. Beijing: Beijing Forestry University, 2007.

    [7] 陈勇平, 王天龙, 李华, 等. 宁波保国寺大殿瓜棱柱内部构造初探[J]. 林业科学, 2011, 47(4):135−140. doi: 10.11707/j.1001-7488.20110421

    Chen Y P, Wang T L, Li H, et al. Preliminary study on the melon-shaped column structure in the Grand Hall of Ningbo Baoguo Temple[J]. Scientia Silvae Sinicae, 2011, 47(4): 135−140. doi: 10.11707/j.1001-7488.20110421

    [8] 孙强, 程马亮. 徽州古民居无损检测技术与方法研究[J]. 安徽建筑工业学院学报(自然科学版), 2013, 21(5):90−92.

    Sun Q, Cheng M L. The research on non-destructive testing technology and methods of ancient dwellings in Huizhou[J]. Journal of Anhui Institute of Architecture & Industry, 2013, 21(5): 90−92.

    [9] 刘佳, 申克常, 高炜, 等. 古建筑木结构内部缺陷与损伤现场检测技术探讨[C]//上海市建筑学会地下空间与工程专业委员会. 2015城市地下空间综合开发技术交流会论文集. 上海: 建筑结构, 2015: 504−508.

    Liu J, Shen K C, Gao W, et al. Study on in situ testing technology of inner defect and injury for ancient timber structures[C] // Underground space and engineering committee of the Architectural Society of Shanghai, China. 2015 symposium on comprehensive development of urban underground space. Shanghai: Building Structure, 2015: 504−508.

    [10] 王晓丽. 古建木结构承重构件残损状态快速普查及鉴定方法研究[D]. 北京: 北京交通大学, 2017.

    Wang X L. Study on the rapid general damage state survey method and appraisal of load-bearing members of ancient timber structure[D]. Beijing: Beijing Jiaotong University, 2017.

    [11] 马宏林, 相建凯, 张刚, 等. 超声CT方法检测古建筑木构件缺陷研究[J]. 文物保护与考古科学, 2018, 30(6):74−81.

    Ma H L, Xiang J K, Zhang G, et al. Study on the defect detection of ancient building wood members by ultrasonic CT method[J]. Sciences of Conservation and Archaeology, 2018, 30(6): 74−81.

    [12] 张艳霞, 王彦, 张国军, 等. 应力波和阻抗仪技术在古建筑木结构检测中的应用[J]. 工程抗震与加固改造, 2019, 41(1):145−151, 157.

    Zhang Y X, Wang Y, Zhang G J, et al. Application of stress wave and resistograph techniques in the wood structure inspection of ancient buildings[J]. Earthquake Resistant Engineering and Retrofitting, 2019, 41(1): 145−151, 157.

    [13] 全国木材标准化技术委员会. 古建筑木构件内部腐朽与弹性模量应力波无损检测规程: GB/T 28990—2012[S]. 北京: 中国标准出版社, 2012.

    National Technical Committee 41 on Timber of Standardization Adminidtrator of China. Code for non-destructive evaluation of interior decay and modulus of elasticity of historic building wood members by stress wave methods: GB/T 28990–2012[S]. Beijing: Standards Press of China, 2012.

    [14] 张典. 养心殿修缮二三事[J]. 紫禁城, 2019(12):54−61.

    Zhang D. The story of the renovation of Yangxin Hall[J]. Forbidden City, 2019(12): 54−61.

    [15] 中华人民共和国建设部. 古建筑木结构维护与加固技术规范: GB/T 50165—2020[S]. 北京: 中国建筑工业出版社, 2020.

    Ministry of Development of the People’s Republic of China. Technical code for maintenance and strengthening of ancient timber buildings: GB/T 50165–2020[S]. Beijing: China Architecture & Building Press, 2020.

    [16] 全国木材标准化技术委员会. 木材耐久性能第2部分天然耐久性野外试验方法: GB/T 13942.2—2009[S]. 北京: 中国标准出版社, 2009.

    National Technical Committee 41 on Timber of Standardization Administrator of China. Durability of wood-part 2 method for field test of natural durability: GB/T 13942.2–2009[S]. Beijing: Standards Press of China, 2009.

    [17] 北京市文物局. 古建筑结构安全性鉴定技术规范第1部分木结构: DB11/T 1190.1—2015[S]. 北京: 北京市质量技术监督局, 2015.

    Beijing Municipal Administration of Cultural Heritage. Technical code for appraiser of structural safety of ancient building Part 1 timber structure: DB11/T 1190.1–2015[S]. Beijing: Beijing Quality Technology Control Office, 2015.

    [18] 朱磊, 张厚江, 孙燕良, 等. 基于应力波和微钻阻力的红松类木构件力学性能的无损检测[J]. 南京林业大学学报(自然科学版), 2013, 37(2):156−158.

    Zhu L, Zhang H J, Sun Y L, et al. Mechanical properties non-destructive testing of wooden components of Korean pine based on stress wave and micro-drilling resistance[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(2): 156−158.

图(18)  /  表(3)
计量
  • 文章访问数:  2261
  • HTML全文浏览量:  504
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-03-15
  • 网络出版日期:  2021-04-04
  • 发布日期:  2021-05-26

目录

/

返回文章
返回
x 关闭 永久关闭