高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

园林绿化废弃物堆肥对土壤有机碳组分影响

冯小杰 刘国梁 张伟 孙向阳 李素艳 闫苏波

冯小杰, 刘国梁, 张伟, 孙向阳, 李素艳, 闫苏波. 园林绿化废弃物堆肥对土壤有机碳组分影响[J]. 北京林业大学学报, 2021, 43(7): 120-127. doi: 10.12171/j.1000-1522.20210035
引用本文: 冯小杰, 刘国梁, 张伟, 孙向阳, 李素艳, 闫苏波. 园林绿化废弃物堆肥对土壤有机碳组分影响[J]. 北京林业大学学报, 2021, 43(7): 120-127. doi: 10.12171/j.1000-1522.20210035
Feng Xiaojie, Liu Guoliang, Zhang Wei, Sun Xiangyang, Li Suyan, Yan Subo. Effects of green waste compost on soil organic carbon fractions[J]. Journal of Beijing Forestry University, 2021, 43(7): 120-127. doi: 10.12171/j.1000-1522.20210035
Citation: Feng Xiaojie, Liu Guoliang, Zhang Wei, Sun Xiangyang, Li Suyan, Yan Subo. Effects of green waste compost on soil organic carbon fractions[J]. Journal of Beijing Forestry University, 2021, 43(7): 120-127. doi: 10.12171/j.1000-1522.20210035

园林绿化废弃物堆肥对土壤有机碳组分影响

doi: 10.12171/j.1000-1522.20210035
基金项目: 北京市自然科学基金项目(6202021)
详细信息
    作者简介:

    冯小杰,博士生。主要研究方向:森林土壤生态。Email:FengXJ2016@163.com  地址:100083 北京市海淀区清华东路35号 北京林业大学林学院

    责任作者:

    孙向阳,教授,博士生导师。主要研究方向:森林土壤生态。Email:sunxy@bjfu.edu.cn  地址:同上

  • 中图分类号: S714.5

Effects of green waste compost on soil organic carbon fractions

  • 摘要:   目的  研究园林绿化废弃物堆肥对土壤有机碳组分影响,为精准提升土壤肥力质量提供一定理论基础。  方法  以北京市副中心林地土壤为研究对象,设置4种施肥方案,即不施肥(NF)、氮磷钾单施(MF)、园林绿化废弃物堆肥单施(GF)、氮磷钾和园林绿化废弃物堆肥混施(MF+GF),每种施肥方案氮磷钾施入量均为N 10 g/kg、P2O5 1.5 g/kg、K2O 5 g/kg,分别在施肥后1、3、6、9、12个月采集土壤样品,进行土壤有机碳组分研究。  结果  不同施肥方案下,土壤富里酸碳、胡敏素碳和球囊霉素碳含量均呈现先增高后降低的趋势,在施肥后1个月达到最高,分别为0.98、5.03 g/kg和215.48 mg/kg。施肥1年后,土壤富里酸碳、胡敏酸碳、可溶性碳、碳水化合物和球囊霉素碳含量均表现为在GF和MF+GF方案下最高,而土壤胡敏素碳含量则表现出在MF方案下最高。施肥对球囊霉素碳的敏感性显著高于其他有机碳组分,敏感性指数4.80% ~ 229.03%。MF方案对土壤有机碳组分最不敏感,GF方案显著提高了土壤胡敏酸碳,胡敏素碳和球囊霉素碳敏感系数,MF+GF方案提高了土壤可溶性碳,富里酸碳和碳水化合物敏感系数。土壤球囊霉素碳与全氮和有效磷含量线性相关系数最高,分别为0.703 8和0.867 6。土壤碳水化合物与硝态氮和速效钾线性相关性系数最高,分别为0.524 6和0.586 9。  结论  不同施肥方案对土壤碳组分均有影响,球囊霉素是有机碳组分最敏感指标,且与土壤全氮、有效磷含量线性相关性较强,可作为苗木施肥管理过程中衡量土壤肥力的指标。

     

  • 图  1  不同施肥方案土壤腐殖质碳组分变化特征

    NF表示不施肥,MF表示氮磷钾单施,GF表示园林绿化废弃物堆肥单施,MF+GF表示氮磷钾和园林绿化废弃物堆肥混施。不同小写字母表示施肥方案间差异显著,不同大写字母表示在不同采样时间下差异显著。下同。NF represents no fertilizer; MF represents NPK fertilizer; GF represents green waste compost fertilization; MF+GF represents NPK fertilizer and green waste compost fertilization. Values followed by different lowercase letters indicate significant difference at 0.05 level at different fertilization schedules, and different capital letters indicate significant difference at 0.05 level at different sampling time after fertilization. The same below.

    Figure  1.  Dynamic variation characteristics of soil humus fractions under different fertilization schedules

    图  2  不同施肥方案土壤非腐殖质碳组分变化特征

    Figure  2.  Dynamic variation characteristics of soil non-humus fractions under different fertilization schedules

    图  3  不同施肥方案土壤有机碳组分敏感系数

    Figure  3.  Sensitivity coefficient of soil organic carbon fractions under different fertilization schedules

    图  4  不同施肥方案下土壤pH,全氮,铵态氮,硝态氮,有效磷,速效钾与土壤有机碳组分相关关系

    **表示在P < 0.01水平上极显著相关;*表示在P < 0.05水平上显著相关。** means significant correlation at P < 0.01 level; * means significant correlation at P < 0.05 level.

    Figure  4.  Relationship between soil pH, TN, NH4 +-N, NO3 -N, AP, AK and soil organic carbon fractions under different fertilization schedules

    表  1  不同施肥方案肥料种类和施肥量

    Table  1.   Fertilizer types and fertilizing amounts under different fertilization schedules

    施肥方案
    Fertilization schedule
    肥料种类 Fertilizer type
    尿素
    Urea/g
    过磷酸钙
    Superphosphate/g
    氯化钾
    Kalium chloratum/g
    园林绿化废弃物堆肥
    Green waste compost fertilizer/kg
    不施肥 None fertilizer (NF) 0 0 0 0
    化肥单施 Mineral fertilizer (MF) 22.0 12.5 7.8 0
    园林绿化废弃物堆肥单施
    Green waste compost fertilizer (GF)
    0 0 0 0.66
    化肥园林绿化废弃物堆肥混施
    Mineral fertilizer + green waste compost fertilizer (MF+GF)
    11.0 6.2 3.6 0.33
    下载: 导出CSV

    表  2  不同施肥方案土壤化学性质变化特征

    Table  2.   Dynamic variation characteristics of soil chemical properties under different fertilization schedules

    化学性质
    Chemical property
    方案
    Schedule
    施肥后采样时间/月 Sampling time after fertilization/month
    0136912
    pH NF 8.17 ± 0.01Aa 8.14 ± 0.02Ba 8.14 ± 0.0Ba 8.15 ± 0.00Ba 8.13 ± 0.00Ca 8.11 ± 0.00Da
    MF 8.17 ± 0.01Aa 7.69 ± 0.03Cd 8.01 ± 0.01Bb 8.01 ± 0.00Bb 8.02 ± 0.01Bc 8.02 ± 0.01Bd
    GF 8.17 ± 0.01Aa 8.05 ± 0.03Db 8.12 ± 0.01Ba 8.13 ± 0.03Ba 8.10 ± 0.00Cb 8.06 ± 0.01Db
    MF+GF 8.17 ± 0.01Aa 7.91 ± 0.01Fc 8.12 ± 0.01Ca 8.14 ± 0.01Ba 8.09 ± 0.01Db 8.04 ± 0.00Ec
    全氮
    Total nitrogen
    (TN)/(g·kg−1)
    NF 0.96 ± 0.02Ba 1.02 ± 0.00Ad 0.99 ± 0.07ABc 0.84 ± 0.01Cc 0.60 ± 0.01Db 0.63 ± 0.01Db
    MF 0.96 ± 0.02Ba 1.19 ± 0.06Ac 1.04 ± 0.06Bc 0.85 ± 0.01Cc 0.66 ± 0.03Db 0.68 ± 0.02Db
    GF 0.96 ± 0.02Da 1.48 ± 0.10Aa 1.47 ± 0.04Aa 1.48 ± 0.01Aa 1.24 ± 0.00Ba 1.09 ± 0.01Ca
    MF+GF 0.96 ± 0.02Ca 1.27 ± 0.07Ab 1.16 ± 0.09Bb 1.25 ± 0.01Ab 1.24 ± 0.01Aa 1.13 ± 0.02Ba
    铵态氮
    Ammonium nitrogen
    (NH4 +-N)/(mg·kg−1)
    NF 6.38 ± 0.42Aa 4.15 ± 0.30Bd 2.38 ± 0.18Cc 2.54 ± 0.10Cc 2.43 ± 0.10Cd 2.31 ± 0.17Cd
    MF 6.38 ± 0.42Ba 16.76 ± 0.74Aa 6.66 ± 0.56Ba 5.53 ± 0.13Cb 4.26 ± 0.23Dc 3.00 ± 0.21Ec
    GF 6.38 ± 0.42Ba 5.00 ± 0.41Dc 4.98 ± 0.30Db 5.18 ± 0.13Cb 6.88 ± 0.14Ab 6.94 ± 0.17Ab
    MF+GF 6.38 ± 0.42Ca 7.45 ± 0.17Bb 4.89 ± 0.12Db 6.01 ± 0.29Ca 7.79 ± 0.15Aa 7.98 ± 0.06Aa
    硝态氮
    Nitrate nitrogen
    (NO3 -N)/(mg·kg−1)
    NF 0.49 ± 0.06Ca 0.77 ± 0.08Bd 0.76 ± 0.03Bc 0.74 ± 0.02Bc 0.96 ± 0.10Ac 0.99 ± 0.03Ac
    MF 0.49 ± 0.06Fa 34.17 ± 2.03Aa 5.82 ± 0.15Ba 4.97 ± 0.08Ca 4.16 ± 0.07Db 3.93 ± 0.16Eb
    GF 0.49 ± 0.06Fa 10.57 ± 0.44Ac 2.48 ± 0.20Eb 3.40 ± 0.05Db 4.19 ± 0.17Cb 4.55 ± 0.16Bb
    MF+GF 0.49 ± 0.06Fa 20.17 ± 1.22Ab 5.06 ± 0.36Ea 5.73 ± 0.25Da 6.23 ± 0.26Ca 6.87 ± 0.09Ba
    有效磷
    Available phosphorus
    (AP)/(mg· kg−1)
    NF 20.56 ± 1.67Aa 20.93 ± 2.46Ad 21.80 ± 0.98Ad 16.98 ± 2.94Bc 9.22 ± 0.56Cc 9.58 ± 0.21Cc
    MF 20.56 ± 1.67Ca 38.42 ± 3.16Ac 39.77 ± 2.62Ac 24.49 ± 1.83Bb 16.98 ± 0.28Db 15.37 ± 0.40Db
    GF 20.56 ± 1.67Ca 53.93 ± 3.75Aa 51.72 ± 4.83Aa 34.50 ± 2.61Ba 32.13 ± 2.42Ba 27.77 ± 5.80Ba
    MF+GF 20.56 ± 1.67Ea 49.26 ± 3.95Ab 46.30 ± 1.86Bb 33.40 ± 2.41Ca 30.56 ± 2.69Ca 24.92 ± 1.73Da
    速效钾
    Available potassium
    (AK)/(mg· kg−1)
    NF 97.22 ± 0.00Aa 94.44 ± 4.81Bd 95.00 ± 3.85Bd 88.35 ± 2.65Cd 80.51 ± 0.00Dd 75.00 ± 2.30Ed
    MF 97.22 ± 0.00Ea 199.00 ± 2.99Aa 148.78 ± 2.80Ba 128.11 ± 1.68Cc 104.76 ± 0.36Dc 96.93 ± 3.25Ec
    GF 97.22 ± 0.00Ea 120.56 ± 4.84Dc 123.56 ± 2.89Cc 131.57 ± 4.16Ab 134.57 ± 1.51Ab 128.26 ± 2.44Bb
    MF+GF 97.22 ± 0.00Ca 149.11 ± 3.08Ab 139.33 ± 1.39Bb 148.06 ± 2.65Aa 152.83 ± 1.92Aa 141.33 ± 1.10Ba
    下载: 导出CSV
  • [1] Zhang L, Sun X Y. Addition of seaweed and bentonite accelerates the two-stage composting of green waste[J]. Bioresource Technology, 2017, 243: 154−162. doi: 10.1016/j.biortech.2017.06.099
    [2] Zhang L, Sun X Y. Evaluation of maifanite and silage as amendments for green waste composting[J]. Waste Management, 2018, 77: 435−446. doi: 10.1016/j.wasman.2018.04.028
    [3] 张瑜, 崔斌, 许晓鸿, 等. 不同施肥方式对经果林地土壤理化性状的影响[J]. 水土保持通报, 2014, 34(3):207−210, 217.

    Zhang Y, Cui B, Xu X H, et al. Soil physiochemical properties in economic fruit forest under different fertilization pattern[J]. Bulletin of Soil and Water Conservation, 2014, 34(3): 207−210, 217.
    [4] Liu Y H, Zang H D, Ge T D, et al. Intensive fertilization (N, P, K, Ca, and S) decreases organic matter decomposition in paddy soil[J]. Applied Soil Ecology, 2018, 127: 51−57. doi: 10.1016/j.apsoil.2018.02.012
    [5] Naeem M A, Khalid M, Aon M, et al. Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize[J]. Journal of Plant Nutrition, 2017, 41: 112−122.
    [6] Hui C, Liu B, Wei R, et al. Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice-wheat cropping soil under different fertilization treatments[J]. Environmental Pollution, 2019, 249: 686−695. doi: 10.1016/j.envpol.2019.03.091
    [7] Hai L, Li X G, Li F M, et al. Long-term fertilization and manuring effects on physically-separated soil organic matter pools under a wheat-wheat-maize cropping system in an arid region of China[J]. Soil Biology and Biochemistry, 2010, 42: 253−259. doi: 10.1016/j.soilbio.2009.10.023
    [8] Lou Y, Xu M, Wang W, et al. Soil organic carbon fractions and management index after 20 yr of manure and fertilizer application for greenhouse vegetables[J]. Soil Use and Management, 2011, 27: 163−169. doi: 10.1111/j.1475-2743.2010.00325.x
    [9] Wang Y, Hu N, Xu M, et al. 23-Year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system[J]. Biology and Fertility of Soils, 2015, 51: 583−591. doi: 10.1007/s00374-015-1007-2
    [10] Blanchet G, Gavazov K, Bragazza L, et al. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system[J]. Agriculture Ecosystems and Environment, 2016, 230: 116−126. doi: 10.1016/j.agee.2016.05.032
    [11] Mi W H, Sun Y, Gao Q, et al. Changes in humus carbon fractions in paddy soil given different organic amendments and mineral fertilizers[J/OL]. Soil and Tillage Research, 2019, 195: 104421 [2019−09−10]. https://doi.org/10.1016/j.still.2019.104421.
    [12] Doane T A, Devêvre O C, Horwath W R. Short-term soil carbon dynamics of humic fractions in low-input and organic cropping systems[J]. Geoderma, 2003, 114: 319−331. doi: 10.1016/S0016-7061(03)00047-8
    [13] Wang W, Zhong Z, Wang Q, et al. Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles[J/OL]. Scientific Reports, 2017, 7(1): 13003 [2017−10−11]. https://doi.org/10.1038/s41598-017-12731-7.
    [14] Anna G, Karolina G, Aw G J, et al. Effect of different agricultural management practices on soil biological parameters including glomalin fraction[J]. Plant Soil and Environment, 2017, 63(7): 300−306. doi: 10.17221/207/2017-PSE
    [15] Paul E, Collins H, Leavitt S. Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance[J]. Geoderma, 2001, 104: 239−256. doi: 10.1016/S0016-7061(01)00083-0
    [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业出版社, 2000.

    Lu R K. Soil and agro-chemical analysis[M]. Beijing: China Agricultural Press, 2000.
    [17] 窦森, 于水强, 张晋京. 不同CO2浓度对玉米秸秆分解期间土壤腐殖质形成的影响[J]. 土壤学报, 2007, 44(3):458−466. doi: 10.3321/j.issn:0564-3929.2007.03.012

    Dou S, Yu S Q, Zhang J J. Effects of carbon dioxide concentration on humus formation in corn stalk decomposition[J]. Acta Pedologica Sinica, 2007, 44(3): 458−466. doi: 10.3321/j.issn:0564-3929.2007.03.012
    [18] Puget P, Angers D A, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils[J]. Soil Biology and Biochemistry, 1999, 31: 55−63.
    [19] Wright S F, Franke-Snyder M, Morton J B, et al. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots[J]. Plant and Soil, 1996, 181(2): 193−203. doi: 10.1007/BF00012053
    [20] Zhong Y, Yan W, Shang G Z. Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field[J]. Catena, 2015, 135: 38−46. doi: 10.1016/j.catena.2015.06.018
    [21] Somerville P D, May P B, Livesley S J. Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils[J]. Journal of Environmental Management, 2018, 227: 365−374.
    [22] 于树, 汪景宽, 王鑫, 等. 不同施肥处理的土壤肥力指标及微生物碳、氮在玉米生育期内的动态变化[J]. 水土保持学报, 2007, 21(4):137−140. doi: 10.3321/j.issn:1009-2242.2007.04.032

    Yu S, Wang J K, Wang X, et al. Dynamical changes of soil fertility and microbial biomass carbon and nitrogen in different fertilizations within corn development period[J]. Journal of Soil and Water Conservation, 2007, 21(4): 137−140. doi: 10.3321/j.issn:1009-2242.2007.04.032
    [23] 郭军成, 王明国, 周洋, 等. 持续秸秆还田对土壤理化性状及玉米产量的影响[J]. 农业科学研究, 2020, 41(1):1−6. doi: 10.3969/j.issn.1673-0747.2020.01.001

    Guo J C, Wang M G, Zhou Y, et al. Effects of continuous straw returning on soil physical and chemical properties and crop yield[J]. Journal of Agricultural Sciences, 2020, 41(1): 1−6. doi: 10.3969/j.issn.1673-0747.2020.01.001
    [24] 再吐尼古丽·库尔班, 吐尔逊·吐尔洪, 山其米克, 等. 施肥对不同生育期甜高粱土壤养分含量的影响[J]. 草地学报, 2021, 29(1):103−113.

    Zaituniguli Kuerban, Tuerxun Tuerhong, Shanqimike, et al. Study on the change of soil nutrient content in the growth period of sweet sorghum under different fertilization[J]. Acta Agrestia Sinica, 2021, 29(1): 103−113.
    [25] 张启明, 陈仁霄, 管成伟, 等. 不同有机物料对土壤改良和烤烟产质量的影响[J]. 土壤, 2018, 50(5):929−933.

    Zhang Q M, Chen R X, Guan C W, et al. Effects  of  different  organic  materials  on soil improvement and  tobacco yield and quality[J]. Soils, 2018, 50(5): 929−933.
    [26] Navarrete I A, Tsutsuki K, Navarrete R A. Humus composition and the structural characteristics of humic substances in soils under different land uses in Leyte, Philippines[J]. Soil Science and Plant Nutrition, 2010, 56: 289−296. doi: 10.1111/j.1747-0765.2010.00455.x
    [27] Tadashi T, Randy A D. Nature, properties and function of aluminum-humus complexes in volcanic soils[J]. Geoderma, 2016, 263: 110−121. doi: 10.1016/j.geoderma.2015.08.032
    [28] Khaled H, Fawy H A. Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity[J]. Soil and Water Research, 2011, 6: 21−29. doi: 10.17221/4/2010-SWR
    [29] Rivero C, Chirenje T, Ma L Q, et al. Influence of compost on soil organic matter quality under tropical conditions[J]. Geoderma, 2004, 123: 355−361. doi: 10.1016/j.geoderma.2004.03.002
    [30] Yan Y, Liu M D, Yang D, et al. Effect of different rice-crab coculture modes on soil carbohydrates[J]. Journal of Integrative Agriculture, 2014, 13(3): 641−647. doi: 10.1016/S2095-3119(13)60722-4
    [31] 高秀兵, 邢丹, 陈瑶, 等. 茶树根际球囊霉素相关土壤蛋白含量及其与土壤因子的关系[J]. 茶叶科学, 2016, 36(2):191−200. doi: 10.3969/j.issn.1000-369X.2016.02.012

    Gao X B, Xing D, Chen Y, et al. Contents of glomalin-related soil protein and its correlations with soil factors in the rhizosphere of tea plant[J]. Journal of Tea Science, 2016, 36(2): 191−200. doi: 10.3969/j.issn.1000-369X.2016.02.012
    [32] 刘辉, 陈梦, 黄引娣, 等. 安徽茶区茶树丛枝菌根真菌多样性[J]. 应用生态学报, 2017, 28(9):2897−2906.

    Liu H, Chen M, Huang Y T, et al. Diversity of arbuscular mycorrhizal fungi in the rhizosphere of tea plant from Anhui tea area, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2897−2906.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  108
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-03-28
  • 网络出版日期:  2021-06-26
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回