高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镉胁迫下美洲黑杨无性系‘中菏1号’转录组分析

宋润先 李翔 毛秀红 王丽 陈香丽 姚俊修 赵曦阳 李善文

宋润先, 李翔, 毛秀红, 王丽, 陈香丽, 姚俊修, 赵曦阳, 李善文. 镉胁迫下美洲黑杨无性系‘中菏1号’转录组分析[J]. 北京林业大学学报, 2021, 43(7): 12-21. doi: 10.12171/j.1000-1522.20210037
引用本文: 宋润先, 李翔, 毛秀红, 王丽, 陈香丽, 姚俊修, 赵曦阳, 李善文. 镉胁迫下美洲黑杨无性系‘中菏1号’转录组分析[J]. 北京林业大学学报, 2021, 43(7): 12-21. doi: 10.12171/j.1000-1522.20210037
Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. doi: 10.12171/j.1000-1522.20210037
Citation: Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. doi: 10.12171/j.1000-1522.20210037

镉胁迫下美洲黑杨无性系‘中菏1号’转录组分析

doi: 10.12171/j.1000-1522.20210037
基金项目: 山东省重点研发计划项目(2017GNC11115),林业科技发展项目(KJZXZZ2019015、KJZXSA202003),中央财政林业改革发展资金项目(2020TG07)
详细信息
    作者简介:

    宋润先。主要研究方向:林木遗传育种。Email:13359850710@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林木遗传育种国家重点实验室

    责任作者:

    李善文,博士,研究员。主要研究方向:林木遗传育种。Email:lishanwen66@163.com 地址:250014山东省济南市历下区文化东路42号山东省林业科学研究院

  • 中图分类号: S792.11;S722.3+6

Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress

  • 摘要:   目的  通过转录组测序和分析,发掘美洲黑杨无性系‘中菏1号’耐镉关键功能基因,揭示美洲黑杨在镉胁迫下的响应机制。  方法  以‘中菏1号’为试验材料,通过沙培试验法对处在不同质量浓度(0 mg/L(ZH1C0),10 mg/L(ZH1C1),20 mg/L(ZH1C2))Cd2+ 环境下的无性系进行胁迫处理,而后采集叶片,提取RNA,并使用Illumina HiSeqTM2500系统对转录组进行高通量测序。  结果  主成分分析确定PC1作为区分不同Cd2+ 浓度样本的标准;经过差异表达分析,在ZH1C0和ZH1C2之间共检测到4 109条差异基因,其中2 741条基因显著上调表达,1 368条基因显著下调表达;在ZH1C1和ZH1C2之间检测到3 710条差异基因,其中1 969条基因显著上调表达,1 741条基因显著下调表达;不同数据库之间的注释表明Cd2+ 不仅会影响叶绿体、线粒体等细胞器的微结构,而且会干扰光合作用和呼吸作用中的电子传递。转录因子分析发现,WRKY、MYB、ZIP、ERF、bHLH在镉胁迫响应和耐受中具有重要作用。  结论  在‘中菏1号’中,异戊二烯化植物蛋白在阻止Cd2+ 进入细胞内部发挥了重要作用;谷胱甘肽不仅可以促进细胞内Cd2+ 的螯合,还可以缓解细胞内的氧化胁迫;ABC家族蛋白和MATE家族蛋白是‘中菏1号’体内转移Cd2+ 螯合蛋白的关键载体。

     

  • 图  1  样本相关性分析图(a)和主成分分析图(b)

    Figure  1.  Sample correlation analysis (a) and principal component analysis (b)

    图  2  不同处理间差异分析表达图

    横坐标log2(fold change)代表不同样品的基因表达倍数的变化;蓝色点表示有显著性差异表达的下调基因;红色点表示有显著性差异表达的上调基因。The abscissa log2(fold change) represents the change of gene expression multiple in different samples. The blue dots indicate the significantly differentially expressed down-regulated genes. The red dots indicate significantly differentially expressed up-regulated genes.

    Figure  2.  Differential expression analysis among different samples

    图  3  不同处理间差异分析韦恩图(a)、关键基因热图(b)

    Figure  3.  Venn diagram for difference expression analysis among different samples (a) and heat map of key genes (b)

    图  4  GO注释的主要分类(a)和KEGG通路主要富集结果(b)

    Figure  4.  GO analysis of DEGs in three main categories (a) and the main KEGG pathway of DEGs (b)

    图  5  ‘中菏1号’镉胁迫响应机制

    HIPPS. 异戊二烯化植物蛋白;ROS. 活性氧;SULTR. 硫转运蛋白;Cys. 半胱氨酸;GSH. 谷胱甘肽;SOD. 超氧化物歧化酶;H2O2. 过氧化氢;O2. 氧气;PCs. 植物螯合肽;GSH-Px. 谷胱甘肽过氧化物酶;CYP. 细胞色素P450;MCP. 金属螯合蛋白;PPO. 多酚氧化酶。HIPPS, heavy metal-associated isoprenylated plant protein;ROS, reactive oxygen species; SULTR, sulfate transporter; Cys, cysteine; GSH, glutathione; SOD, superoxide dismutase; H2O2, hydrogen peroxide; O2, oxygen; PCs, phytochelatins; GSH-Px, glutathione peroxidase; CYP, cytochrome P450; MCP, cytochrome P450; PPO, polyphenol oxidase.

    Figure  5.  Response mechanism of ‘Zhonghe 1’ to cadmium stress

    表  1  过滤质控结果统计表

    Table  1.   Statistics about filter and quality control results

    样本名称
    Sample name
    数据量
    Data size/Gbp
    合格片段比率
    Percentage of reads passed filters/%
    低质量片段比率
    Percentage of reads with low quality/%
    Q20/%Q30/%GC含量
    GC content/%
    ZH1C0_01 3.5 99.27 0.71 98.0877 94.3162 43.9527
    ZH1C0_02 3.6 99.14 0.84 98.1839 94.5767 44.3988
    ZH1C0_03 3.4 99.26 0.73 98.3412 94.9551 44.0303
    ZH1C1_01 7.0 99.28 0.69 98.2169 94.6320 44.1911
    ZH1C1_02 3.5 99.30 0.68 98.3452 94.9798 44.4505
    ZH1C1_03 3.5 99.21 0.76 98.3455 94.9996 44.3253
    ZH1C2_01 3.7 99.28 0.70 98.1963 94.6092 43.8494
    ZH1C2_02 3.3 99.40 0.58 98.3329 94.9437 43.6732
    ZH1C2_03 3.3 99.34 0.64 98.3065 94.8871 43.8043
    注:Q20为质量值达到20的碱基占总碱基的比例;Q30为质量值达到30的碱基占总碱基的比例。Notes: Q20, proportion of base with a mass value of 20 to the total base; Q30, proportion of base with a mass value of 30 to the total base.
    下载: 导出CSV

    表  2  候选基因统计表

    Table  2.   Statistics about candidate gene

    基因编号 Gene No.差异倍数 Difference multiple主成分I特征向量 Eigenvector of PC1表达方向 Expression direction
    POPTR_003G179000v3 9.071 940 0.000 046 000 上调表达 Up-regulated expression
    POPTR_003G178900v3 3.004 620 0.000 029 900 上调表达 Up-regulated expression
    POPTR_001G225800v3 60.371 590 0.001 305 238 上调表达 Up-regulated expression
    POPTR_010G007700v3 744.043 210 0.014 218 858 上调表达 Up-regulated expression
    POPTR_010G007800v3 751.474 010 0.020 496 434 上调表达 Up-regulated expression
    POPTR_T029100v3 855.076 500 0.030 096 073 上调表达 Up-regulated expression
    POPTR_017G120500v3 40.786 410 0.000 185 587 上调表达 Up-regulated expression
    POPTR_005G169700v3 36.817 109 0.000 168 462 上调表达 Up-regulated expression
    POPTR_010G007500v3 819.524 340 0.050 154 620 上调表达 Up-regulated expression
    POPTR_014G037700v3 37.371 470 0.000 140 974 上调表达 Up-regulated expression
    POPTR_014G037400v3 33.486 880 0.000 106 482 上调表达 Up-regulated expression
    POPTR_006G156000v3 98.991 580 0.001 932 698 上调表达 Up-regulated expression
    POPTR_006G158900v3 37.371 488 0.001 932 666 上调表达 Up-regulated expression
    POPTR_011G108300v3 119.526 960 0.001 374 329 上调表达 Up-regulated expression
    POPTR_011G108200v3 57.737 300 0.017 319 826 上调表达 Up-regulated expression
    POPTR_011G047300v3 243.142 820 0.000 357 136 上调表达 Up-regulated expression
    POPTR_003G061000v3 41.185 603 0.000 959 078 上调表达 Up-regulated expression
    POPTR_T029200v3 487.474 580 0.072 398 362 上调表达 Up-regulated expression
    POPTR_003G061200v3 25.837 470 0.001 113 294 上调表达 Up-regulated expression
    POPTR_002G240300v3 41.185 640 0.000 966 678 上调表达 Up-regulated expression
    下载: 导出CSV

    表  3  转录因子统计表

    Table  3.   Statistics of transcription factors

    转录因子家族
    Transcription
    factor family
    数量
    Quantity
    转录因子家族
    Transcription
    factor family
    数量
    Quantity
    ERF 46 B3 4
    WRKY 45 C3H 4
    MYB 42 CO-like 4
    NAC 27 GRF 4
    bHLH 19 ZF-HD 4
    bZIP 16 ARF 3
    C2H2 15 ARR-B 3
    GRAS 12 EIL 3
    MYB-related 11 NF-YA 3
    HD-ZIP 10 Nin-like 3
    G2-like 9 AP2 2
    Dof 7 DBB 2
    HSF 6 FAR1 2
    SBP 6 MIKC_MADS 2
    TCP 6 RAV 2
    Trihelix 6 TALE 2
    GATA 5 WOX 2
    LBD 5 BES1 1
    下载: 导出CSV

    表  4  关键基因功能

    Table  4.   Function of key genes

    基因编号 Gene No.基因功能 Gene function
    POPTR_005G169700v3 重金属相关异戊二烯基植物蛋白
    Heavy metal-associated isoprenylated
    plant protein
    POPTR_T029100v3 类神秘果蛋白
    Miraculin-like protein
    POPTR_011G108200v3 多酚氧化酶
    Polyphenol oxidase
    POPTR_010G007800v3 大豆Kunitz家族胰蛋白酶抑制剂
    Soybean trypsin inhibitor (Kunitz)
    family of protease inhibitors
    POPTR_010G007500v3 大豆Kunitz家族胰蛋白酶抑制剂
    Soybean trypsin inhibitor (Kunitz)
    family of protease inhibitors
    POPTR_006G156000v3 硫酸盐转运蛋白
    Sulfate transporter protein
    POPTR_006G158900v3 硫酸盐转运蛋白
    Sulfate transporter protein
    POPTR_014G037700v3 细胞色素
    Cytochrome p450
    POPTR_014G037400v3 细胞色素
    Cytochrome p450
    POPTR_003G179000v3 属于ABC转运体超级家族
    Belongs to the ABC transporter superfamily
    POPTR_003G178900v3 属于ABC转运体超级家族
    Belongs to the ABC transporter superfamily
    POPTR_017G120500v3 属于MATE转运体超级家族
    Belongs to the multi antimicrobial extrusion (MATE) family
    POPTR_001G225800v3 属于半胱氨酸蛋白酶抑制剂家族
    Belongs to the family of cysteine protease inhibitors
    POPTR_011G108300v3 多酚氧化酶
    Polyphenol oxidase
    POPTR_011G047300v3 多酚氧化酶 Polyphenol oxidase
    下载: 导出CSV
  • [1] 高彪. 土壤重金属污染程度分析及等级评估研究[J]. 山西化工, 2020, 40(5):186−188.

    Gao B. Analysis and grade assessment of soil heavy metal pollution[J]. Shanxi Chemical Industry, 2020, 40(5): 186−188.
    [2] 孙鑫, 娄燕宏, 王会, 等. 重金属污染土壤的植物强化修复研究进展[J]. 土壤通报, 2017, 48(4):1008−1013.

    Sun X, Lou Y H, Wang H, et al. Review on enhancing phytoremediation of soil contamination by heavy metals[J]. Chinese Journal of Soil Science, 2017, 48(4): 1008−1013.
    [3] Upadhyay R K. Metal stress in plants: its detoxification in natural environment[J]. Brazilian Journal of Botany, 2014, 37(4): 377−382. doi: 10.1007/s40415-014-0087-9
    [4] Pavla Z, Michal H, Stanislava V, et al. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements[J]. Environmental Science and Pollution Research, 2015, 22(23): 18801−18813. doi: 10.1007/s11356-015-5043-0
    [5] 邹花莉, 马倩, 常江峰, 等. 不同物种龙葵对镉胁迫的生理响应研究[J]. 陕西科技大学学报, 2021, 39(1):32−38, 57.

    Zhou H L, Ma Q, Chang J F, et al. Studies on the physiological response of different species of Solanum nigrum to cadmium stress[J]. Journal of Shaanxi University of Science, 2021, 39(1): 32−38, 57.
    [6] 杨琴, 樊战辉, 孙家宾, 等. 东南景天种植及对土壤重金属锌和Cd的去除研究[J]. 农业与技术, 2020, 40(2):3−6.

    Yang Q, Fan Z H, Sun J B, et al. Planting and removal of heavy metals Zn and Cd from soil of Sedum sativum L.[J]. Agriculture and Technology, 2020, 40(2): 3−6.
    [7] 杨园, 王艮梅. 杨树对Cd胁迫的响应及抗性机制研究进展[J]. 世界林业研究, 2017, 30(4):29−34.

    Yang Y, Wang G M. Poplar response to Cd stress and its resistance mechanism[J]. World Forestry Research, 2017, 30(4): 29−34.
    [8] 吉亚飞. 不同林种对土壤重金属污染修复影响研究[J]. 农村经济与科技, 2019, 30(21):9−10. doi: 10.3969/j.issn.1007-7103.2019.21.005

    Ji Y F. Effects of different forest species on remediation of soil heavy metal pollution[J]. Rural Economy and Science, 2019, 30(21): 9−10. doi: 10.3969/j.issn.1007-7103.2019.21.005
    [9] 余国营, 吴燕玉, 王新. 杨树落叶前后重金属元素内外迁移循环规律研究[J]. 应用生态学报, 1996, 7(2):201−206.

    Yu G Y, Wu Y Y, Wang X. Transfer and cycling of heavy metals in and out of the larch trees (Larix olgensis var. koreana Nakai) before and after leaf fallen[J]. Chinese Journal of Applied Ecology, 1996, 7(2): 201−206.
    [10] 朱珍珍, 张明锦, 张健, 等. 外源NO对铅胁迫下雌雄美洲黑杨生理特征的影响[J]. 云南农业大学学报(自然科学), 2019, 34(3):494−502.

    Zhu Z Z, Zhang M J, Zhang J, et al. The effects of an exogenous nitric oxide on the physiological characteristics in females and males of Populus deltoides exposed to Pb stress[J]. Journal of Yunnan Agricultural University(Natural Science), 2019, 34(3): 494−502.
    [11] 陈良华, 胡相伟, 杨万勤, 等. 接种丛枝菌根真菌对雌雄美洲黑杨吸收铅镉的影响[J]. 环境科学学报, 2017, 37(1):308−317.

    Chen L H, Hu X W, Yang W Q, et al. Effects of arbuscular mycorrhizae fungi inoculation on absorption of Pb and Cd in females and males of Populus deltoides when exposed to Pb and Cd pollution[J]. Acta Scientiae Circumstantiae, 2017, 37(1): 308−317.
    [12] 姚俊修, 乔艳辉, 杨庆山, 等. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响[J]. 西北林学院学报, 2020, 35(2):40−46, 107. doi: 10.3969/j.issn.1001-7461.2020.02.06

    Yao J X, Qiao Y H, Yang Q S, et al. Effects of cadmium stress on the growth and photosynthesis of Aigeiros clones[J]. Journal of Northwest Forestry University, 2020, 35(2): 40−46, 107. doi: 10.3969/j.issn.1001-7461.2020.02.06
    [13] 姚俊修, 陈甘牛, 李善文, 等. 镉胁迫对黑杨派无性系生理生化特性及生长的影响[J]. 北京林业大学学报, 2020, 42(4):12−20. doi: 10.12171/j.1000-1522.20190462

    Yao J X, Chen G N, Li S W, et al. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12−20. doi: 10.12171/j.1000-1522.20190462
    [14] 刘诺. 杨树对林区土壤铅镉复合污染修复的试验研究[D]. 南京: 南京林业大学, 2020.

    Liu N. Experimental study on poplar remediation of lead and cadmium compound pollution in forest area[D]. Nanjing: Nanjing Forestry University, 2020.
    [15] 张艳丽. 嫁接杨树对镉胁迫的分子生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2016.

    Zhang Y L. The physiological and molecular mechanisms of grafted poplar species in response to cadmium stress[D]. Yangling: Northwest A&F University, 2016.
    [16] 何佳丽. 杨树对重金属镉胁迫的分子生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2014.

    He J L. A study on mechanisms of molecular and physiological responses to cadmium in Populus species[D]. Yangling: Northwest A&F University, 2014.
    [17] Kersey P J, Allen J E, Armean I, et al. Ensembl genomes 2016: more genomes, more complexity[J]. Nucleic Acids Research, 2016, 44(D1): D574−D580. doi: 10.1093/nar/gkv1209
    [18] Kim D, Langmead B, Salzberg S. HISAT: a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [19] Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4): 357−359. doi: 10.1038/nmeth.1923
    [20] Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [21] Liao Y, Smyth G K, Shi W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote[J]. Nucleic Acids Research, 2013, 41(10): e108. doi: 10.1093/nar/gkt214
    [22] Michael I, Wolfgang H, Simon A. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8
    [23] Jaime H, Damian S, Davide H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2019, 47(D1): D309−D314. doi: 10.1093/nar/gky1085
    [24] 王影, 邱文敏, 李鹤, 等. 东南景天SaWRKY7基因对镉胁迫的响应研究[J]. 南京林业大学学报(自然科学版), 2019, 43(3):59−66.

    Wang Y, Qiu W M, Li H, et al. Research on the response of SaWRKY7 gene to cadmium stress in Sedum alfredii Hance[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(3): 59−66.
    [25] 孟云. 拟南芥WRKY47基因在镉胁迫应答中的作用机理研究[D]. 合肥: 合肥工业大学, 2019.

    Meng Y. Mechanism by which WRKY47 gene regulating the cadmium stress response in Arabidopsis thaliana[D]. Hefei: Hefei University of Technology, 2019.
    [26] 丁杰, 张晓娜, 朴春兰, 等. 大豆根系中应答镉胁迫的R2R3-MYB基因分析[J]. 生态学杂志, 2018, 37(7):2030−2039.

    Ding J, Zhang X N, Piao C L, et al. Analysis of the R2R3-MYB genes in soybean roots in response to Cd stress[J]. Chinese Journal of Ecology, 2018, 37(7): 2030−2039.
    [27] 李梦颖. 107杨镉胁迫相关基因表达调控机制研究[D]. 北京: 中国林业科学研究院, 2015.

    Li M Y. The study of regulation mechanism of gene expression for Populus × euramericana (Dode) guineir ‘Neva’ under Cd stress[D]. Beijing: Chinese Academy of Forestry, 2015.
    [28] 王景晨, 陈信波. 植物非生物胁迫应答相关转录因子研究进展[J]. 湖南农业科学, 2011, 41(17):9−12. doi: 10.3969/j.issn.1006-060X.2011.17.003

    Wang J C, Chen X B. Advances in transcription factors related to plant abiotic stress response[J]. Hunan Agricultural Sciences, 2011, 41(17): 9−12. doi: 10.3969/j.issn.1006-060X.2011.17.003
    [29] 苏稚喆, 王雪华, 杨华, 等. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4):69−77.

    Su Z Z, Wang X H, Yang H, et al. Transcriptome analysis of cadmium exposed Jatropha curcas[J]. China Biotechnology, 2016, 36(4): 69−77.
    [30] 王艳敏, 白卉, 曹焱. bHLH转录因子研究进展及其在植物抗逆中的应用[J]. 安徽农业科学, 2015, 43(21):34−35, 50. doi: 10.3969/j.issn.0517-6611.2015.21.013

    Wang Y M, Bai H, Cao Y. Research progress of bHLH transcription factor and application in plant abiotic stress tolerance[J]. Journal of Anhui Agricultural Sciences, 2015, 43(21): 34−35, 50. doi: 10.3969/j.issn.0517-6611.2015.21.013
    [31] Philip E D, Philip R S, Anne M, et al. A new class of proteins capable of binding transition metals[J]. Plant Molecular Biology, 1999, 41(1): 139−150.
    [32] Mark D H, Christopher E J, Marc S, et al. Intracellular copper routing: the role of copper chaperones[J]. Trends in Biochemical Sciences, 2000, 25(1): 29−32.
    [33] Nobuaki S, Yube Y, Nozomu K, et al. Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis[J]. The Plant Journal, 2002, 32(2): 165−173.
    [34] Giovanni D, Silvia F, Silvia M, et al. How plants cope with cadmium: staking all on metabolism and gene expression[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1268−1280. doi: 10.1111/j.1744-7909.2008.00737.x
    [35] 刘祉辛, 孙亿敬, 李姣爱, 等. 高等植物硫酸盐吸收与代谢的调控机制[J]. 上海师范大学学报(自然科学版), 2019, 48(4):460−468.

    Liu Z X, Sun Y J, Li J A, et al. Regulation mechanism of sulfate uptake and metabolism in higher plants[J]. Journal of Shanghai Normal University (Natural Sciences), 2019, 48(4): 460−468.
    [36] 谭利蓉. 阿特拉津胁迫下水稻细胞色素P450酶系的研究[D]. 南京: 南京农业大学, 2015.

    Tan L R. Study on the rice cytochrome P450 enzymes under atrazine exposure[D]. Nanjing: Nanjing Agricultural University, 2015.
    [37] 曹冠华, 柏旭, 陈迪, 等. ABC转运蛋白结构特点及在植物和真菌重金属耐性中的作用与机制[J]. 农业生物技术学报, 2016, 24(10):1617−1628.

    Cao G H, Bai X, Chen D, et al. Structure characteristics of ABC transporter protein and the function and mechanism on enhancing resistance of plants and fungi to heavy metals[J]. Journal of Agricultural Biotechnology, 2016, 24(10): 1617−1628.
    [38] 吕泽玉, 王文静, 赵明明, 等. 拟南芥MATE转运蛋白DTX6参与镉离子的胞内运输[J]. 复旦学报(自然科学版), 2020, 59(4):390−398, 411.

    Lü Z Y, Wang W J, Zhao M M, et al. DTX6, a member of the MATE family transporter from Arabidopsis, is involved in intracellular cadmium transport[J]. Journal of Fudan University (Natural Science), 2020, 59(4): 390−398, 411.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  127
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-03-11
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回