Stand carbon stock growth model system for Larix olgensis plantation
-
摘要:
目的 目前关于林分碳储量随年龄动态变化的模型研究较少,本研究通过建立林分水平的碳储量生长模型系,为区域尺度的森林碳储量动态预估提供方法。 方法 以吉林省长白落叶松人工林为对象,使用立地质量分级算法将所有样地划分为3个立地等级,并将其作为哑变量引入模型系中,使用联立方程组的方法将林分平均高、断面积生长模型和林分碳储量模型3个方程进行联合估计,建立林分碳储量生长模型系。采用调整确定系数( $ {{R}}_{{\text{adj}}}^2 $ )、估计值的标准误(SEE)和平均预估误差(MPE)来评价模型的表现,分析不同立地等级和林分密度指数(SDI)下林分碳储量的生长过程,及林分断面积和平均高对林分碳储量的影响。结果 (1)林分碳储量生长模型系中林分平均高生长模型、林分断面积生长模型和林分碳储量模型的 $ {{R}}_{{\text{adj}}}^2 $ 分别为0.879、0.977和0.953,MPE均 < 2%,具有较好的拟合优度。(2)直接利用林分平均高和断面积或由生长模型得到林分平均高和断面积的这两种途径都可以准确估计林分碳储量,结果仅相差0.02 t/hm2,模型系具有良好的通用性与稳定性。(3)林分碳储量生长量随立地质量的提高而增加;立地等级相同时,SDI < 1 500株/hm2时生长较慢,SDI > 1 500株/hm2时,在40年以后的林分密度对碳储量生长过程基本无影响;林分密度指数控制在1 500 ~ 2 000株/hm2时可实现较快的碳储量生长。(4)林分碳储量随林分断面积和平均高的增加而增加,林分断面积与林分碳储量的关系更为密切。结论 林分碳储量的生长和立地等级、林分平均年龄、密度、断面积、平均高等因子有密切联系,采用联立方程组方法是建立林分碳储量生长模型系的有效方法。本研究建立的林分碳储量生长模型系可以对林分碳储量动态进行有效预测,为了解林分碳储量的生长过程和森林碳汇评估提供了工具。 Abstract:Objective There are knowledge gaps on stand carbon stock growth model at present. This study developed a stand-level carbon stock growth model system to provide a method for dynamic estimation of regional forest carbon storage with time. Method Taking Larix olgensis plantation in Jilin Province of northeastern China as the research object, the site quality classification algorithm was used to divide all sample plots into three site grades, which were introduced into the model system as dummy variables. The stand carbon stock growth model system was established by simultaneous equations to link stand average height, basal area growth model and stand carbon stock model. The adjusted coefficient of determination ( $ {{R}}_{{\text{adj}}}^2 $ ), the standard error of the estimated value (SEE) and the average prediction error (MPE) were used to evaluate model performance. The growth process of stand carbon stock under different site grades and stand density index (SDI), and the influence of stand basal area and average height on stand carbon stock were analyzed.Result (1) The $ {{R}}_{{\text{adj}}}^2 $ of stand average height growth model, basal area growth model and carbon stock model were 0.892, 0.979 and 0.960, respectively, and the MPEs were both less than 2%. (2) Both procedures in the model system (inventory- and model-derived stand average height and basal area) could accurately estimate the stand carbon stock, and the difference was only 0.02 t/ha, so the model system had great generality and stability. (3) Stand carbon stock growth increased with the increasing site grade of sample plots. When the site grade was the same, the growth was slow with SDI less than 1 500 plant/ha; but there were no differences in the growth process among different SDIs larger than 1 500 plant/ha after 40 years, and the optimal SDI for maximum stand carbon stock was about 1 500−2 000 plant/ha. (4) The stand carbon stock increased with the increase of stand basal area and average height, and stand basal area had larger effects on stand carbon than stand average height.Conclusion The growth of stand carbon stock is closely related to the site grade, stand average age, density, basal area and average height. The modeling approach of simultaneous equations is a feasible method for developing the stand carbon stock growth model system. The stand carbon stock growth model system developed by this study could effectively predict stand carbon stock, which providing a tool for understanding the growth of stand carbon stock and forest carbon sink assessment. -
Key words:
- stand carbon stock model /
- growth process /
- site grade /
- stand density /
- Larix olgensis plantation
-
表 1 林分因子概况(n = 150)
Table 1. Summary statistics of stand variables (n = 150)
变量 Variable 平均值 Mean 最小值 Min. 最大值 Max. 标准差 SD 林分平均高 Stand average height (H)/m 13.2 5.0 22.0 3.8 林分公顷断面积/(m2·hm−2) Stand basal area (Ba)/(m2·ha−1) 13.41 3.67 27.97 6.28 林分公顷蓄积/(m3·hm−2) Stand volume (V)/(m3·ha−1) 90.75 16.92 229.78 49.97 平均胸径 Average DBH (Dg)/cm 13.6 6.7 26.1 3.8 林分碳储量/(t·hm−2) Stand carbon stock (C)/(t·ha−1) 37.64 8.11 91.79 19.80 林分密度指数/(株·hm−2) Stand density index (SDI)/(tree·ha−1) 494 159 1 086 212 林分平均年龄/a Stand average age (A)/year 30 11 50 10 表 2 不同立地等级的林分平均高生长模型结果
Table 2. Results of stand average height growth model with different site grades
模型 Model 参数值 Parameter 标准差 SD $ {{R}}_{{\text{adj}}}^2 $ SEE/m MPE/% $ {{\hat H}} = {a_{}}{\left[ {1 - \exp\left( -\left(\displaystyle\sum {{b_i} \cdot {\text{SIT}}{{\text{E}}_i}} \right){A}\right)} \right]^{{\text{ }}c}} $ (i = 1, 2, 3) a = 27.247 3.800 0.889 1.261 1.547 b1 = 0.027 0.011 b2 = 0.019 0.007 b3 = 0.012 0.004 c = 0.789 0.107 表 3 划分立地等级后的样地林分因子概况
Table 3. A summary of stand factor characteristics after site classification
林分因子 Stand factor 立地等级 Site grade 样地数 Sample plot number 平均值 Mean 最小值 Min. 最大值 Max. 标准差 SD F H 1 38 16.7a 11.0 22.0 2.9 55.652 2 70 13.2b 7.0 19.0 3.0 3 42 9.9c 5.0 15.0 2.5 Ba 1 38 16.58a 6.22 27.09 4.96 17.547 2 70 14.16b 3.79 27.97 6.61 3 42 9.29c 3.67 19.90 4.45 C 1 38 48.53a 15.90 87.69 16.96 19.417 2 70 39.69b 9.29 91.79 20.39 3 42 24.36c 8.11 54.95 12.95 注:H、Ba、C的单位分别为m、m2/hm2、t/hm2。不同小写字母表示各林分因子在不同立地等级下的差异显著(P < 0.05)。Notes: the units of H, Ba, C are m, m2/ha, t/ha, respectively. Different lowercase letters indicate significant differences for varied stand factors under different site grades (P < 0.05). 表 4 林分碳储量生长模型式(1)的结果
Table 4. Results of growth model equation (1) of stand carbon stock
模型 Model 参数值 Parameter value 标准差 SD $ {{R}}_{{\text{adj}}}^2 $ SEE/(t·hm−2) SEE/(t·ha−1) MPE/% ${{\hat C}} = \left( {\displaystyle\sum {{a_i} \cdot {\rm{SIT}}{{\rm{E}}_i}} } \right){\left[ {1 - \exp ( - {b_1}{{\left( {\dfrac{{{\rm{SDI}}}}{{1\;000}}} \right)}^{{b_2}}} \cdot {{A}})} \right]^{{\rm{ }}c}}(i = 1, 2, 3) $ a1 = 155.893 45.193 0.962 3.876 1.662 a2 = 145.708 41.691 a3 = 120.919 34.778 b1 = 0.012 ns 0.008 b2 = 1.23 0.109 c = 0.561 0.038 注:ns表示模型参数在0.05水平不显著。Note: ns indicates that parameters of the model are not significant at 0.05 level. 表 5 独立林分断面积生长模型结果
Table 5. Growth model results of independent stand basal area
模型 Model 参数值 Parameter value 标准差 SD $ {{R}}_{{\text{adj}}}^2 $ SEE/(m2·hm−2) SEE/(m2·ha−1) MPE/% $ \widehat {{\text{Ba}}} = {a_{}}{\left[ {1 - \exp\left( - {b_1}{{\left(\dfrac{{{\text{SDI}}}}{{1\;000}}\right)}^{{b_2}}} \cdot {{A}}\right)} \right]^{{\text{ }}c}} $ a = 32.340 2.232 0.979 0.911 1.097 b1 = 0.023 0.007 b2 = 3.888 0.268 c = 0.275 0.019 表 6 林分碳储量生长模型系的参数估计与刀切法验证结果
Table 6. Parameter estimation on growth model system of stand carbon stock and validation results by jackknife method
模型 Model 参数 Parameter 平均值 Mean 最小值 Min. 最大值 Max. 标准差 SD ${{R} }_{ {\text{adj} } }^2 $ SEE MPE/% 林分平均高生长模型
Stand average height growth model (4-1)a1 29.010 26.866 31.869 0.491 0.889 1.261 1.548 b11 0.022 0.017 0.028 0.001 b12 0.016 0.013 0.020 0.001 b13 0.009 0.007 0.012 0.000 c1 0.747 0.716 0.820 0.010 林分断面积生长模型
Stand basal area growth model (4-2)a2 32.171 31.051 34.333 0.286 0.979 0.912 1.097 b21 0.023 0.017 0.027 0.001 b22 3.863 3.791 3.948 0.023 c2 0.275 0.267 0.281 0.002 林分碳储量模型
Stand carbon stock model (4-3)d1 4.867 4.762 5.028 0.026 0.957 4.108 1.762 d2 10.124 9.593 10.972 0.134 注:模型4-1、4-2、4-3的SEE单位分别为m、m2/hm2、t/hm2。Notes: the SEE units of model 4-1, 4-2 and 4-3 are m, m2/ha and t/ha, respectively. 表 7 2种林分碳储量生长模型系林分碳储量估计途径的结果
Table 7. Estimation results of stand carbon stock by different methods using stand carbon stock growth model system
龄组 Age group 途径1/(t·hm−2) Method 1/(t·ha−1) 途径2/(t·hm−2) Method 2/(t·ha−1) 相对差异 Relative difference/% 幼龄林 Young stand 25.93 26.32 1.51 中龄林 Middle-aged stand 32.84 32.46 −1.17 近熟林 Near-mature stand 44.43 44.19 −0.54 成熟林 Mature stand 53.00 53.89 1.67 总体 Total 37.51 37.53 0.07 注:建模样本中没有过熟林。Note: there are no over-mature stand in modeling samples. -
[1] Kindermann G, Obersteiner M, Sohngen B, et al. Global cost estimates of reducing carbon emissions through avoided deforestation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30): 10302−10307. doi: 10.1073/pnas.0710616105 [2] Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609 [3] Dong L, Zhang L, Li F. Allometry and partitioning of individual tree biomass and carbon of Abies nephrolepis Maxim in northeast China[J]. Scandinavian Journal of Forest Research, 2016, 31(4): 399−411. doi: 10.1080/02827581.2015.1060257 [4] Zhu H Y, Weng Y H, Zhang H G, et al. Comparing fast- and slow-growing provenances of Picea koraiensis in biomass, carbon parameters and their relationships with growth[J]. Forest Ecology and Management, 2013, 307: 178−185. doi: 10.1016/j.foreco.2013.06.024 [5] Gao H, Dong L, Li F, et al. Evaluation of four methods for predicting carbon stocks of Korean pine plantations in Heilongjiang Province, China[J/OL]. PLoS One, 2015, 10(12): e0145017 [2020−12−19]. doi: 10.1371/journal.pone.0145017. [6] Gibbs H K, Brown S, Niles J O, et al. Monitoring and estimating tropical forest carbon stocks: making REDD a reality[J/OL]. Environmental Research Letters, 2007, 2(4): 045023 [2021−01−19]. https://iopscience.iop.org/article/10.1088/1748-9326/2/4/045023/meta. [7] Kauppi P E, Mielikäinen K, Kuusela K. Biomass and carbon budget of European forests, 1971 to 1990[J]. Science, 1992, 256: 70−74. doi: 10.1126/science.256.5053.70 [8] Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests: methods to estimate storage and geographical distribution[J]. Water, Air, & Soil Pollution, 1995, 82(1): 271−282. [9] Apps M J, Kurz W A, Beukema S J, et al. Carbon budget of the Canadian forest product sector[J]. Environmental Science and Policy, 1999, 2(1): 25−41. doi: 10.1016/S1462-9011(99)00006-4 [10] 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.Li H K, Lei Y C. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010. [11] 周丽, 张卫强, 唐洪辉, 等. 南亚热带中幼龄针阔混交林碳储量及其分配格局[J]. 生态环境学报, 2014, 23(4):568−574. doi: 10.3969/j.issn.1674-5906.2014.04.004Zhou L, Zhang W Q, Tang H H, et al. Carbon storage and their allocation of young-and-middle aged conifer-broadleaf mixed forests in southern subtropical region[J]. Ecology and Environment Sciences, 2014, 23(4): 568−574. doi: 10.3969/j.issn.1674-5906.2014.04.004 [12] 胡海清, 罗碧珍, 魏书精, 等. 小兴安岭7种典型林型林分生物量碳密度与固碳能力[J]. 植物生态学报, 2015, 39(2):140−158. doi: 10.17521/cjpe.2015.0014Hu H Q, Luo B Z, Wei S J, et al. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains, China[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 140−158. doi: 10.17521/cjpe.2015.0014 [13] 胡海清, 罗碧珍, 魏书精, 等. 大兴安岭5种典型林型森林生物碳储量[J]. 生态学报, 2015, 35(17):5745−5760.Hu H Q, Luo B Z, Wei S J, et al. Estimating biological carbon storage of five typical forest types in the Daxing’anling Mountains, Heilongjiang, China[J]. Acta Ecologica Sinica, 2015, 35(17): 5745−5760. [14] 何潇, 李海奎, 曹磊, 等. 退化森林生态系统中林分碳储量的驱动因素: 以内蒙古大兴安岭为例[J]. 林业科学研究, 2020, 33(2):69−76.He X, Li H K, Cao L, et al. The factors affecting carbon storage in degraded forest ecosystem: a case study from Daxing’anling areas of Inner Mongolia[J]. Forest Research, 2020, 33(2): 69−76. [15] 贾炜玮, 孙赫明, 李凤日. 包含哑变量的黑龙江省落叶松人工林碳储量预测模型系统[J]. 应用生态学报, 2019, 30(3):814−822.Jia W W, Sun H M, Li F R. Prediction model system with dummy variables for carbon storage of larch plantation in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 814−822. [16] 黄晓强, 信忠保, 赵云杰, 等. 林龄和立地条件对北京山区油松人工林碳储量的影响[J]. 水土保持学报, 2015, 29(6):184−190.Huang X Q, Xin Z B, Zhao Y J, et al. Effects of stand ages and site conditions on carbon stock of Pinus tabuliformis plantations in Beijing mountainous area[J]. Journal of Soil and Water Conservation, 2015, 29(6): 184−190. [17] 李娜娜, 牟长城, 郑瞳, 等. 立地类型对长白山天然白桦林生态系统碳储量的影响[J]. 林业科学研究, 2015, 28(5):618−626. doi: 10.3969/j.issn.1001-1498.2015.05.003Li N N, Mu C C, Zheng T, et al. Effect of site types on carbon storage of natural white birch forest ecosystem in Changbai Mountains, Northeast China[J]. Forest Research, 2015, 28(5): 618−626. doi: 10.3969/j.issn.1001-1498.2015.05.003 [18] 郑瞳, 牟长城, 张毅, 等. 立地类型对张广才岭天然白桦林生态系统碳储量的影响[J]. 生态学报, 2016, 36(19):6284−6294.Zheng T, Mou C C, Zhang Y, et al. Effects of site condition on ecosystem carbon storage in a natural Betula platyphylla forest in the Zhangguangcai Mountains, China[J]. Acta Ecologica Sinica, 2016, 36(19): 6284−6294. [19] Reineke L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627−638. [20] 国家林业局. 立木生物量模型及碳计量参数落叶松(LY/T 2654−2016)[S]. 北京: 中国标准出版社, 2016.State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Larix (LY/T 2654−2016)[S]. Beijing: China Standard Press, 2016. [21] 陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989.Chen C G, Zhu J F. Biomass tables for main tree species in northeast China[M]. Beijing: China Forestry Publishing House, 1989. [22] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074 [23] IPCC. IPCC guidelines for national greenhouse gas inventories[M]. Tokyo: Institute for Global Environmental Strategies (IGES), 2006. [24] 唐守正. 广西大青山马尾松全林整体生长模型及其应用[J]. 林业科学研究, 1991, 4(增刊): 8−13.Tang S Z. Integrated stand growth model and its application of masson pine in Guangxi Daqingshan[J]. Forest Research, 1991, 4(Suppl.): 8−13. [25] Li H, Zhao P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology and Management, 2013, 289: 153−163. doi: 10.1016/j.foreco.2012.10.002 [26] 雷相东, 唐守正, 符利勇. 森林立地质量定量评价: 理论、方法、应用[M]. 北京: 中国林业出版社, 2020.Lei X D, Tang S Z, Fu L Y. Quantitative evaluation of forest site quality: theory, method, application[M]. Beijing: China Forestry Publishing House, 2020. [27] 唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(增刊):19−27.Tang S Z, Zhang H R, Xu H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000, 36(Suppl.): 19−27. [28] 董利虎, 李凤日, 宋玉文. 东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型[J]. 应用生态学报, 2015, 26(3):704−714.Dong L H, Li F R, Song Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in Northeast China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 704−714. [29] 唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程) [M]. 北京: 科学出版社, 2009.Tang S Z, Lang K J, Li H K. Statistics and computation of biomathematical models (ForStat textbook)[M]. Beijing: Science Press, 2009. [30] 曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137−143.Zeng W S, Tang S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. Forest Research, 2011, 24(2): 137−143. [31] 曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106−113. doi: 10.11707/j.1001-7488.20111117Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11): 106−113. doi: 10.11707/j.1001-7488.20111117 [32] 曹磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型[J]. 林业科学研究, 2020, 33(5):61−67.Cao L, Liu X T, Li H K, et al. Biomass growth models for evergreen broadleaved forests in Guangdong[J]. Forest Research, 2020, 33(5): 61−67. [33] Yuan Z, Ali A, Jucker T, et al. Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests[J/OL]. Ecology, 2019, 100(5): e02650 [2021−01−14]. doi: 10.1002/ecy.2650. [34] Cannell M G R. Woody biomass of forest stands[J]. Forest Ecology and Management, 1984, 8(3−4): 299−312. doi: 10.1016/0378-1127(84)90062-8 [35] Rahman M M, Kabir M E, Akon A S M J U, et al. High carbon stocks in roadside plantations under participatory management in Bangladesh[J]. Global Ecology and Conservation. 2015, 3: 412−423. [36] Khan M N I, Shil M C, Azad M S, et al. Allometric relationships of stem volume and stand level carbon stocks at varying stand density in Swietenia macrophylla King plantations, Bangladesh[J]. Forest Ecology and Management, 2018, 430: 639−648. doi: 10.1016/j.foreco.2018.09.002 [37] Khan M N I, Islam M R, Rahman A, et al. Allometric relationships of stand level carbon stocks to basal area, tree height and wood density of nine tree species in Bangladesh[J/OL]. Global Ecology and Conservation, 2020, 22: e01025 [2021−01−17]. doi: 10.1016/j.gecco.2020.e01025. [38] Dong L, Zhang L, Li F. Evaluation of stand biomass estimation methods for major forest types in the eastern Daxing’an Mountains, northeast China[J/OL]. Forests, 2019, 10(9): 715 [2021−01−12]. https://doi.org/10.3390/f10090715. [39] Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, et al. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain[J]. Annals of Forest Science, 2012, 69(6): 735−746. doi: 10.1007/s13595-012-0191-6 [40] Wu H, Xiang W, Fang X, et al. Tree functional types simplify forest carbon stock estimates induced by carbon concentration variations among species in a subtropical area[J]. Scientific Reports, 2017, 7(1): 1−11. doi: 10.1038/s41598-016-0028-x [41] 雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12):116−126. doi: 10.11707/j.1001-7488.20181213Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213 [42] 王秀云, 孙玉军, 马炜. 不同密度长白落叶松林生物量与碳储量分布特征[J]. 福建林学院学报, 2011, 31(3):221−226. doi: 10.3969/j.issn.1001-389X.2011.03.007Wang X Y, Sun Y J, Ma W. Biomass and carbon storage distribution of different density in Larix olgensis plantation[J]. Journal of Fujian College of Forestry, 2011, 31(3): 221−226. doi: 10.3969/j.issn.1001-389X.2011.03.007 -