高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太行山南段油松林火烧迹地优势草本生态位及种间关系

金山 武帅楷

金山, 武帅楷. 太行山南段油松林火烧迹地优势草本生态位及种间关系[J]. 北京林业大学学报, 2021, 43(4): 35-46. doi: 10.12171/j.1000-1522.20210044
引用本文: 金山, 武帅楷. 太行山南段油松林火烧迹地优势草本生态位及种间关系[J]. 北京林业大学学报, 2021, 43(4): 35-46. doi: 10.12171/j.1000-1522.20210044
Jin Shan, Wu Shuaikai. Niche and interspecific association of dominant species in herb layer of burned Pinus tabuliformis forest in the southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 35-46. doi: 10.12171/j.1000-1522.20210044
Citation: Jin Shan, Wu Shuaikai. Niche and interspecific association of dominant species in herb layer of burned Pinus tabuliformis forest in the southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 35-46. doi: 10.12171/j.1000-1522.20210044

太行山南段油松林火烧迹地优势草本生态位及种间关系

doi: 10.12171/j.1000-1522.20210044
基金项目: 山西省1331重点学科建设项目(1331KSC),山西省重点学科建设项目(FSKSC),长治学院校级项目(XJ2020002401)
详细信息
    作者简介:

    金山,博士,副教授。主要研究方向:森林生态学。Email:jinshan0355@163.com 地址:046011 山西省长治市保宁门东街73号长治学院生物科学与技术系

  • 中图分类号: S718.5;S762.8

Niche and interspecific association of dominant species in herb layer of burned Pinus tabuliformis forest in the southern Taihang Mountain of northern China

  • 摘要:   目的  生态位及种间关系是研究群落结构的主要方法,为研究太行山南段油松林火烧迹地不同恢复期草本植物群落的结构特征,探索其动态变化规律。  方法  本文以恢复13年(S1)、7年(S2)、6年(S3)和1年(S4)的4个火烧迹地草本植物优势种为研究对象,着重研究不同恢复阶段优势种的生态位和种间关联特征,计测其生态位宽度、生态位重叠值,同时通过总体相关性检验、χ2检验和Spearman秩相关性检验研究其种间关系,并划分生态种组。  结果  大披针薹草、小红菊和白莲蒿在各个恢复期的优势度、生态位宽度与生态位重叠值均较大。总体相关性检验表明,S1为显著正关联,S2和S4为显著负关联,S3为不显著正关联。χ2检验表明,S1、S2、S3和S4的正负关联比分别为2.33、0.69、0.84和0.63。Spearman秩相关性检验表明,S1的正关联种对数大于负关联种对数,而S2、S3和S4的正关联种对数小于负关联种对数。生态种组划分表明S1、S2、S3的优势种基本可以划分为以大披针薹草 + 小红菊、白莲蒿以及其他优势种为代表的3个生态种组,S4的10个优势种所划分的3个生态种组则主要以大披针薹草、小红菊和白莲蒿为代表。  结论  生态位与种间关系研究表明,太行山南段火烧迹地草本植物群落在恢复13年时稳定性最大,有助于更好地理解火烧迹地物种间的相互作用、共存、分布等相关机制,同时可为火烧迹地规划管理与植被恢复过程中植物配置提供理论支撑。

     

  • 图  1  各样地草本层优势种Spearman相关性半矩阵图

        ***P < 0.001

    Figure  1.  Spearman association semimatrix of dominant plant species in herb layer

    图  2  各样地草本层优势种生态相似性关系排序和分组

    Figure  2.  Sorting and grouping of ecological similarity relationship of dominant plants in herb layer

    表  1  样地基本信息

    Table  1.   Basic information of sample plots

    样地
    Sample plot
    经纬度
    Latitude and longitude
    平均海拔
    Mean altitude/m
    火灾日期
    Fire date
    恢复时间/a
    Recovery time/year
    S1 113°11′27″ ~ 113°12′34″E、36°12′24″ ~ 36°13′05″N 1 300 2007−05 13
    S2 113°25′13″ ~ 113°26′47″E、35°46′59″ ~ 35°47′23″N 1 400 2013−03 7
    S3 113°25′39″ ~ 113°26′09″E、35°59′22″ ~ 35°59′55″N 1 400 2014−02 6
    S4 112°12′44″ ~ 112°21′59″E、36°44′00″ ~ 36°51′13″N 1 500 2019−03 1
    注:S1为长治市老顶山;S2为陵川县棋子山;S3为壶关县石坡乡;S4为沁源县王陶乡。Notes: S1, Laoding Mountain, Changzhi City; S2, Qizi Mountain, Lingchuan County; S3, Shipo Township, Huguan County; S4, Wangtao Township, Qinyuan County.
    下载: 导出CSV

    表  2  各样地草本层优势种生态位宽度

    Table  2.   Niche width of dominant species in herb layer

    样地 Sample plotAaAdpAeAhAnvApAsAtBiClDcDi
    S140.08106.7762.9329.05
    S213.8917.7313.7614.4119.8314.9678.0851.91
    S319.7746.1494.6754.30
    S413.4413.2021.2863.868.73
    样地 Sample plotEcElGvLdObPcRcScsSjSoSsVd
    S142.64
    S211.2532.9817.9115.80
    S334.4738.5115.7123.9831.45
    S434.8753.5713.0718.737.26
    注:Aa为三脉紫菀;Adp为石沙参;Ae为南牡蒿;Ah为铃铃香青;Anv为野棉花;Ap为京芒草;As为白莲蒿;At为荠苨;Bi为白羊草;Cl为大披针薹草;Dc为小红菊;Di为野菊;Ec为香薷;El为驴欺口;Gv为少花米口袋;Ld为兴安胡枝子;Ob为地角儿苗;Pc为委陵菜;Rc为茜草;Scs为桃叶鸦葱;Sj为风毛菊;So为地榆;Ss为大油芒;Vd为裂叶堇菜。下同。
    Notes: Aa, Aster ageratoides; Adp, Adenophora polyantha; Ae, Artemisia eriopoda; Ah, Anaphalis hancockii; Anv, Anemone vitifolia; Ap, Achnatherum pekinense; As, Artemisia sacrorum; At, Adenophora trachelioides; Bi, Bothriochloa ischaemum; Cl, Carex lanceolate; Dc, Dendranthema chanetii; Di, Dendranthema indicum; Ec, Elsholtzia ciliate; El, Echinops latifolius; Gv, Gueldenstaedtia verna; Ld, Lespedeza daurica; Ob, Oxytropis bicolor; Pc, Potentilla chinensis; Rc, Rubia cordifolia; Scs, Scorzonera sinensis; Sj, Saussurea japonica; So, Sanguisorba officinalis; Ss, Spodiopogon sibiricus; Vd, Viola dissecta. The same below.
    下载: 导出CSV

    表  3  样地1草本层优势种生态位重叠值

    Table  3.   Niche overlap values of dominant species in herb layer of sample plot 1

    S1ClDcLdAsDi
    Cl0.00
    Dc0.620.00
    Ld0.630.350.00
    As0.530.440.290.00
    Di0.500.400.300.400.00
    下载: 导出CSV

    表  6  样地4草本层优势种生态位重叠值

    Table  6.   Niche overlap values of dominant species in herb layer of sample plot 4

    S4ClLdGvAtScsAsObAeDcVd
    Cl0.00
    Ld0.460.00
    Gv0.510.250.00
    At0.320.210.290.00
    Scs0.220.530.080.270.00
    As0.280.060.110.060.090.00
    Ob0.210.230.100.220.100.040.00
    Ae0.290.190.120.150.100.000.110.00
    Dc0.390.130.340.340.060.000.000.130.00
    Vd0.130.220.220.130.360.000.030.250.040.00
    下载: 导出CSV

    表  4  样地2草本层优势种生态位重叠值

    Table  4.   Niche overlap values of dominant species in herb layer of sample plot 2

    S2ClDcElSsBiAsPcAhAaEcAnvAdp
    Cl0.00
    Dc0.550.00
    El0.610.200.00
    Ss0.600.050.510.00
    Bi0.410.190.040.000.00
    As0.340.240.150.000.030.00
    Pc0.470.400.060.000.210.100.00
    Ah0.610.360.090.000.180.000.100.00
    Aa0.550.260.270.110.100.000.090.150.00
    Ec0.310.170.410.000.000.150.090.020.020.00
    Anv0.400.270.590.260.030.030.000.040.250.000.00
    Adp0.430.350.100.030.040.230.240.010.010.150.040.00
    下载: 导出CSV

    表  5  样地3草本层优势种生态位重叠值

    Table  5.   Niche overlap values of dominant species in herb layer of sample plot 3

    S3ClDcAsElLdSoApSjRc
    Cl0.00
    Dc0.510.00
    As0.560.260.00
    El0.600.470.190.00
    Ld0.590.400.450.180.00
    So0.630.530.110.420.290.00
    Ap0.910.310.230.110.160.140.00
    Sj0.610.470.150.400.180.270.080.00
    Rc0.550.180.130.060.070.110.160.040.00
    下载: 导出CSV

    表  7  各样地草本层优势植物种间总体关联性

    Table  7.   General associativity test of dominant plant species in herb layer

    样地 Sample plotST 2δT 2VRWχ2临界值 (χ2 (0.95,135)χ2(0.05,135)) χ2 clinical value (χ2(0.95,135)χ2(0.05,135))
    S11.300.931.39188.17(109.16,163.12)
    S21.411.890.75100.72(109.16,163.12)
    S32.041.771.15155.72(109.16,163.12)
    S40.771.470.5270.55(109.16,163.12)
    下载: 导出CSV

    表  8  样地1草本层优势种χ2检验半矩阵

    Table  8.   Semi-matrix of χ2 test results in herb layer of sample plot 1

    S1ClDcLdAsDi
    Cl
    Dc−0.00
    Ld−0.351.00
    As0.022.926.38*
    Di−1.860.790.866.62*
    注:*代表P < 0.05。下同。Notes: * means P < 0.05. The same below.
    下载: 导出CSV

    表  11  样地4草本层优势种χ2检验半矩阵

    Table  11.   Semi-matrix of χ2 test results in herb layer of sample plot 4

    S4ClLdGvAtScsAsObAeDcVd
    Cl
    Ld0.04
    Gv−10.19**0.56
    At−0.420.150.00
    Scs−0.26−2.13−1.930.00
    As−9.84**0.12−0.56−0.120.00
    Ob−2.30−0.44−0.95−0.83−0.34−0.05
    Ae−0.16−1.77−0.030.120.00−1.03−0.05
    Dc−0.750.08−0.230.17−0.03−0.41−0.820.17
    Vd0.04−5.25*−0.23−0.170.03−0.410.00 6.24*0.09
    下载: 导出CSV

    表  9  样地2草本层优势种χ2检验半矩阵

    Table  9.   Semi-matrix of χ2 test results in herb layer of sample plot 2

    S2ClDcElSsBiAsPcAhAaEcAnvAdp
    Cl
    Dc3.76
    El0.38−7.24**
    Ss1.03−20.42**16.03**
    Bi1.03−0.04−4.84*−2.39
    As−0.58−0.67−0.42−4.41*0.07
    Pc0.050.24−8.46**−5.43*8.45**0.00
    Ah1.620.05−0.23−2.819.63**−5.10*0.09
    Aa−0.22−3.561.020.140.10−5.10*0.090.02
    Ec−3.40−2.630.01−1.24−1.240.02−0.08−0.18−0.18
    Anv−1.02−1.617.44**1.38−0.05−2.50−3.410.075.13*−1.37
    Adp−2.91−6.85**−1.22−0.42−0.420.520.67−2.13−2.132.47−0.02
    注:**代表P < 0.01。下同。Notes: ** means P < 0.01. The same below.
    下载: 导出CSV

    表  10  样地3草本层优势种χ2检验半矩阵

    Table  10.   Semi-matrix of χ2 test results in herb layer of sample plot 3

    S3ClDcAsElLdSoApSjRc
    Cl
    Dc0.00
    As0.090.38
    El0.673.33−3.59
    Ld0.922.9315.22**0.38
    So−0.1510.54**−4.47*4.92*0.09
    Ap−0.17−0.000.00−0.34−1.87−0.06
    Sj−0.02−0.02−0.282.00−0.024.24*−0.02
    Rc−3.54−1.02−5.66*−2.74−0.00−0.080.02−1.12
    下载: 导出CSV

    表  12  群落优势种种间关联和相关统计

    Table  12.   Interspecific association and association among dominant species in community

    样地
    Sample plot
    检验法
    Test method
    正关联 Positive association负关联 Negative association无关联 No association
    种对
    Species pair
    占比
    Percentage/%
    种对
    Species pair
    占比
    Percentage/%
    种对
    Species pair
    占比
    Percentage/%
    S1χ2770.00 330.0000.00
    Spearman550.00 550.0000.00
    S2χ22740.913959.0900.00
    Spearman2436.364263.6400.00
    S3χ21644.441952.7812.78
    Spearman1233.332466.6700.00
    S4χ21737.782760.0012.22
    Spearman1533.333066.6700.00
    下载: 导出CSV
  • [1] Harpole W S, Tilman D. Grassland species loss resulting from reduced niche dimension[J]. Nature, 2007, 446: 791−793. doi: 10.1038/nature05684
    [2] Walker C L R. Competition and facilitation: a synthetic approach to interactions in plant communities[J]. Ecology, 1997, 78(7): 1958−1965. doi: 10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2
    [3] Tilman D. Causes, consequences and ethics of biodiversity[J]. Nature, 2000, 405: 208−211. doi: 10.1038/35012217
    [4] Moloney K A, Levin S A. The effects of disturbance architecture on landscape-level population dynamics[J]. Ecology, 1996, 77(2): 375−394. doi: 10.2307/2265616
    [5] 张东梅, 赵文智, 罗维成. 荒漠草原带盐碱地优势植物生态位与种间联结[J]. 生态学杂志, 2018, 37(5):1307−1315.

    Zhang D M, Zhao W Z, Luo W C. Niche and interspecific association of dominant plant species in saline-alkaline soils of desert steppe zone[J]. Chinese Journal of Ecology, 2018, 37(5): 1307−1315.
    [6] 郭水良, 于晶, 陈国奇. 生态学数据分析: 方法、程序与软件[M]. 北京: 科学出版社, 2015.

    Guo S L, Yu J, Chen G Q. Ecological data analyses: methods, programs and software[M]. Beijing: Science Press, 2015.
    [7] Pielou E C. Niche width and niche overlap: a method for measuring them[J]. Ecology, 1972, 53(4): 687−692.
    [8] Rousset O, Lepart J. Positive and negative interactions at different life stages of a colonizing species (Quercus humilis)[J]. Journal of Ecology, 2000, 88(3): 400−412.
    [9] Li Y I, Xu H, Chen D X, et al. Division of ecological species groups and functional groups based on interspecific association: a case study of the tree layer in the tropical lowland rainforest of Jianfenling in Hainan Island, China[J]. Frontiers of Forestry in China, 2008, 3(4): 407−415. doi: 10.1007/s11461-008-0049-0
    [10] Mangla S, Sheley R L, James J J, et al. Intra and interspecific competition among invasive and native species during early stages of plant growth[J]. Plant Ecology, 2011, 212(4): 531−542. doi: 10.1007/s11258-011-9909-z
    [11] 武帅楷. 三峡水库消落带植物群落生态学研究[D]. 重庆: 重庆大学, 2019.

    Wu S K. Studies on ecology of plant communities in the drawdown zone of the Three Gorges Reservoir[D]. Chongqing: Chongqing University, 2019.
    [12] 王健铭, 董芳宇, 巴海·那斯拉, 等. 中国黑戈壁植物多样性分布格局及其影响因素[J]. 生态学报, 2016, 36(12):3488−3498.

    Wang J M, Dong F Y, Nasina B, et al. Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China[J]. Acta Ecologica Sinica, 2016, 36(12): 3488−3498.
    [13] 奚为民. 怀柔山区灌丛群落优势种群生态位的研究[J]. 植物生态学报, 1993, 17(4):324−330. doi: 10.3321/j.issn:1005-264X.1993.04.009

    Xi W M. Niche research of scrub dominant population in Huairou Mountainous Region of Beijing Area[J]. Chinese Journal of Plant Ecology, 1993, 17(4): 324−330. doi: 10.3321/j.issn:1005-264X.1993.04.009
    [14] 何芳兰, 刘世增, 李昌龙, 等. 甘肃河西戈壁植物群落组成特征及其多样性研究[J]. 干旱区资源与环境, 2016, 30(4):74−78.

    He F L, Liu S Z, Li C L, et al. Study on composition and diversity of phytocoenosium in Gobi region of Hexi, Gansu[J]. Journal of Arid Land Resources and Environment, 2016, 30(4): 74−78.
    [15] Chasw J M, Belovsky G E. Experimental evidence for the included niche[J]. American Naturalist, 1994, 143(3): 514−527. doi: 10.1086/285617
    [16] 蓝俊杰. 漠河地区火烧迹地落叶松林群落物种组成及多样性研究[D]. 北京: 北京林业大学, 2019.

    Lan J J. Study on community species composition and diversity of Larix gmelinii burned area in Mohe[D]. Beijing: Beijing Forestry University, 2019.
    [17] Roscher C, Schumacher J, Lipowsky A. Functional groups differ in trait means, but not in trait plasticity to species richness in local grassland communities[J]. Ecology, 2018, 99(10): 2295−2307. doi: 10.1002/ecy.2447
    [18] 吴志庄, 厉月桥, 汪泽军, 等. 太行山黄连木天然群落物种多样性的研究[J]. 中南林业科技大学学报, 2013, 33(12):15−18. doi: 10.3969/j.issn.1673-923X.2013.12.004

    Wu Z Z, Li Y Q, Wang Z J, et al. Study on species diversity of Pistacia chinensis natural communities in Taihang Mountains[J]. Journal of Central South University of Forestry & Technology, 2013, 33(12): 15−18. doi: 10.3969/j.issn.1673-923X.2013.12.004
    [19] Kikvidze Z, Ohsawa M. Measuring the number of co-dominants in ecological communities[J]. Ecological Research, 2010, 17(4): 519−525.
    [20] 张金屯. 数量生态学[M]. 2版. 北京: 科学出版社, 2011.

    Zhang J T. Quantitative ecology[M]. 2nd ed. Beijing: Science Press, 2011.
    [21] Miura M, Manabe T, Nishimura N, et al. Forest canopy and community dynamics in a temperate old-growth evergreen broad-leaved forest, south-western Japan: a 7-year study of a 4-ha plot[J]. Journal of Ecology, 2001, 89(5): 841−849. doi: 10.1046/j.0022-0477.2001.00603.x
    [22] 陈林, 辛佳宁, 苏莹, 等. 异质生境对荒漠草原植物群落组成和种群生态位的影响[J]. 生态学报, 2019, 39(17):6187−6025.

    Chen L, Xin J N, Su Y, et al. Effects of heterogeneous habitats on community composition and niche characteristics of different plant populations in the desert steppe of China[J]. Acta Ecologica Sinica, 2019, 39(17): 6187−6025.
    [23] Gu L, Gong Z W, Li W Z. Niches and interspecific associations of dominant populations in three changed stages of natural secondary forests on Loess Plateau, P. R. China[J]. Scientific Reports, 2017, 7(1): 6604. doi: 10.1038/s41598-017-06689-9
    [24] Zhang M T, Kang X G, Meng J H, et al. Distribution patterns and associations of dominant tree species in a mixed coniferous-broadleaf forest in the Changbai Mountains[J]. Journal of Mountain Science, 2015, 12(3): 659−670. doi: 10.1007/s11629-013-2795-1
    [25] 张苗苗, 王咏雪, 田阔, 等. 台州玉环北部沿岸海域主要游泳动物生态位和种间联结性[J]. 应用生态学报, 2018, 29(11):3867−3875.

    Zhang M M, Wang Y X, Tian K, et al. Niche and interspecific associations of major nekton in northern coastal waters in Yuhuan, Taizhou, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3867−3875.
    [26] Pickett S T A. Population patterns through twenty years of old field succession[J]. Vegetatio, 1982, 49(1): 45−59. doi: 10.1007/BF00051566
    [27] Fesl C. Biodiversity and resource use of larval chironomids in relation to environmental factors in a large river[J]. Freshwater Biology, 2002, 47(6): 1065−1087. doi: 10.1046/j.1365-2427.2002.00833.x
    [28] 奇凯, 张春雨, 侯继华, 等. 赤峰市沙地油松林草本植物多样性及种间关联动态[J]. 生态学报, 2010, 30(18):5106−5112.

    Ji K, Zhang C Y, Hou J H, et al. Dynamics of species diversity and interspecific associations of herbaceous plants in a Pinus tabulaeformis forest on a sandy site in Chifeng, China[J]. Acta Ecologica Sinica, 2010, 30(18): 5106−5112.
    [29] 周先叶, 王伯荪, 李鸣光, 等. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析[J]. 植物生态学报, 2000, 24(3):332−339. doi: 10.3321/j.issn:1005-264X.2000.03.015

    Zhou X Y, Wang B S, Li M G, et al. An analysis of interspecific associations in secondary succession forest communities in Heishiding Natural Reserve, Guangdong Province[J]. Chinese Journal of Plant Ecology, 2000, 24(3): 332−339. doi: 10.3321/j.issn:1005-264X.2000.03.015
    [30] Su S J, Liu J F, He Z S, et al. Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve[J]. Journal of Mountain Science, 2015, 12(3): 637−646. doi: 10.1007/s11629-013-2935-7
  • 加载中
图(2) / 表(12)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  149
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-03-18
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回