高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京平原地区主要造林树种叶片氮磷再吸收及生态化学计量特征

陈贝贝 杨浩 姜俊

陈贝贝, 杨浩, 姜俊. 北京平原地区主要造林树种叶片氮磷再吸收及生态化学计量特征[J]. 北京林业大学学报, 2022, 44(7): 8-15. doi: 10.12171/j.1000-1522.20210055
引用本文: 陈贝贝, 杨浩, 姜俊. 北京平原地区主要造林树种叶片氮磷再吸收及生态化学计量特征[J]. 北京林业大学学报, 2022, 44(7): 8-15. doi: 10.12171/j.1000-1522.20210055
Chen Beibei, Yang Hao, Jiang Jun. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8-15. doi: 10.12171/j.1000-1522.20210055
Citation: Chen Beibei, Yang Hao, Jiang Jun. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8-15. doi: 10.12171/j.1000-1522.20210055

北京平原地区主要造林树种叶片氮磷再吸收及生态化学计量特征

doi: 10.12171/j.1000-1522.20210055
基金项目: 国家自然科学基金项目(31901306)
详细信息
    作者简介:

    陈贝贝,助理研究员。主要研究方向:森林经理学。Email:chenbei@bjfu.edu.cn 地址:100083北京市海淀区清华东路 35 号北京林业大学林学院

    责任作者:

    姜俊,副教授。主要研究方向:人工林经营及作业法设计。Email:jiang@bjfu.edu.cn 地址:同上

  • 中图分类号: S731.1

Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing

  • 摘要:   目的  通过分析北京平原地区主要造林树种叶片氮(N)和磷(P)再吸收及生态化学计量特征,探讨不同树种对平原造林地生境的生态适应及养分利用机制。  方法  以刺槐、千头椿、旱柳、毛白杨、白蜡和油松等主要造林树种为研究对象,测定其新鲜叶、凋落叶的N、P含量,计算叶片N、P再吸收率并分析其与叶片、土壤养分指标的关系。  结果  刺槐的叶片N含量最高,旱柳的叶片P含量最高;白蜡叶片的N∶P显著高于其他树种(P < 0.05),毛白杨叶片的N∶P最低,刺槐、千头椿、旱柳和油松之间叶片N∶P差异不显著。不同树种凋落叶N、P含量及N∶P与新鲜叶养分相关性不同。刺槐叶片N再吸收率和千头椿叶片P再吸收率显著高于其他树种,多数树种的叶片N再吸收率或P再吸收率与其凋落叶养分含量表现出显著负相关。  结论  刺槐、旱柳、白蜡和油松的生长受到 P 限制,千头椿和毛白杨生长受到 N 限制。树种能通过叶片N、P再吸收来适应养分限制环境。建议在平原林养护中加强林分结构调整、凋落叶归还林地、人工补植补造等措施以改善平原林养分限制状况。

     

  • 图  1  不同树种新鲜叶和凋落叶N和P含量和化学计量比

    RO.刺槐;AI.千头椿;SA.旱柳;PO.毛白杨;FR.白蜡;PI.油松。 不同小写字母表示同一指标不同树种之间差异显著(P < 0.05)。下同。RO, Robinia pseudoacacia; AI, Ailanthus altissima ‘Qiantou’; SA, Salix matsudana; PO, Populus tomentosa; FR, Fraxinus chinensis; PI, Pinus tabuliformis. Different lowercase letters indicate significant differences at varied tree species for the same index (P < 0.05). The same below.

    Figure  1.  N and P contents and stoichiometric ratio of fresh and fallen leaves of different tree species

    图  2  不同树种叶片N和P再吸收率

    Figure  2.  Leaf N and P resorption rates of different tree species

    表  1  北京平原造林主要树种林分和土壤性质概况(平均值 ± 标准偏差)

    Table  1.   Basic situation and soil properties of main silviculture tree species in Beijing plain area (mean ± SD)

    树种类型
    Tree species type
    林分平均密度/(株·hm−2
    Average stand
    density/(tree·ha−1)
    平均胸径
    Average DBH/cm
    平均树高
    Average tree
    height/m
    土壤全氮含量
    Soil total N
    content/(g·kg–1)
    土壤全磷含量
    Soil total P
    content/(g·kg–1)
    土壤N∶P
    Soil N∶P
    刺槐
    Robinia pseudoacacia
    624 13.7 6.1 0.71 ± 0.09b 0.66 ± 0.04b 1.08 ± 0.12b
    千头椿
    Ailanthus altissima ‘Qiantou’
    628 13.2 6.8 0.37 ± 0.07d 0.65 ± 0.01b 0.56 ± 0.08b
    旱柳
    Salix matsudana
    622 17.6 11.1 0.57 ± 0.11c 0.51 ± 0.02c 1.12 ± 0.06a
    毛白杨
    Populus tomentosa
    626 15.1 12.4 0.64 ± 0.05b 0.60 ± 0.02b 1.07 ± 0.11b
    白蜡
    Fraxinus chinensis
    625 12.4 5.7 0.49 ± 0.21c 0.55 ± 0.04c 0.89 ± 0.13c
    油松
    Pinus tabuliformis
    626 11.3 5.2 0.81 ± 0.04a 0.87 ± 0.03a 0.93 ± 0.04c
    注:同列不同小写字母表示差异显著(P < 0.05, n = 54)。Note: different lowercase letters in the same column indicate significant differences at P < 0.05 level (n = 54).
    下载: 导出CSV

    表  2  不同造林树种新鲜叶和凋落叶N、P含量及N∶P化学计量特征的相关性

    Table  2.   Correlation of N, P contents and N∶P stoichiometric characteristics in fresh and fallen leaves of different afforestation tree species

    树种 Tree speciesNs-NfNs-PfNs-NPfPs-NfPs-PfPs-NPfNPs-NfNPs-PfNPs-NPf
    刺槐
    Robinia pseudoacacia
    0.632* 0.112 0.324 0.431 0.235 −0.016 0.412 0.025 0.378*
    千头椿
    Ailanthus altissima ‘Qiantou’
    0.145 0.223 −0.236 −0.314 0.574* 0.477 0.223 0.502* 0.218
    旱柳
    Salix matsudana
    0.412* −0.256 −0.319 −0.453 0.388 −0.527 −0.028 −0.243 −0.539
    毛白杨
    Populus tomentosa
    0.034 0.107 0.113 0.328 −0.201 −0.113 −0.012 0.445 0.201
    白蜡
    Fraxinus chinensis
    0.048 0.159 0.197 0.224 −0.082 −0.392* −0.257 0.332 0.241
    油松
    Pinus tabuliformis
    0.290* −0.175* −0.230 0.019 −0.339 0.203 0.106 −0.052 0.188
    注:Nf.新鲜叶N含量;Pf.新鲜叶P含量;NPf.新鲜叶氮磷计量比;Ns.凋落叶N含量;Ps.凋落叶P含量;NPs.凋落叶氮磷计量比;*表示显著相关(P < 0.05);**表示极显著相关(P < 0.01)。下同。Notes: Nf, fresh leaf N concentration; Pf, fresh leaf P concentration; NPf, fresh leaf N∶P ratio; Ns, senesced leaf N concentration; Ps, senesced leaf P concentration; NPs, senesced leaf N∶P ratio. * indicates significant correlation (P < 0.05), ** indicates extremely significant correlation (P < 0.01). The same below.
    下载: 导出CSV

    表  3  不同造林树种叶片 N、P 再吸收率与叶片和土壤 N、P 化学计量特征的相关性

    Table  3.   Correlations between N, P resorption rates (RE) of leaf and N, P stoichiometric characteristics of leaf and soil in six tree species

    树种
    Tree species
    再吸收率
    RE
    NfNsPfPsNPfNPs土壤N
    Soil N
    土壤P
    Soil P
    土壤N∶P
    Soil N∶P
    刺槐 Robinia pseudoacacia NRE 0.258* −0.387* 0.014 0.128 −0.211 0.162 0.024 0.256 0.362
    PRE −0.102 0.223 −0.133 −0.406* 0.323 0.576** −0.113 0.347 0.198
    千头椿
    Ailanthus altissima ‘Qiantou’
    NRE 0.122 0.122 0.014 0.301 0.318 0.332 0.147 0.387 0.278
    PRE 0.024 0.141 0.101 −0.245* 0.107 0.049 0.165 0.412* 0.361*
    旱柳 Salix matsudana NRE 0.109 0.255 0.019 0.056 0.201 0.186 0.164 0.543 0.253
    PRE 0.307 0.353 0.113 −0.571** −0.123 0.268 −0.041 0.104 0.130
    毛白杨 Populus tomentosa NRE 0.257 −0.284* 0.017 0.031 0.339 0.028 0.271 0.157 0.227
    PRE 0.547 0.257 0.099 −0.238 0.207 0.197 −0.153 0.315 0.251
    白蜡 Fraxinus chinensis NRE 0.106 0.015 −0.129 0.051 0.101 0.257 0.015 0.024 0.014
    PRE 0.213 0.322 −0.153* 0.233 0.208 0.316 −0.18 0.231 0.131
    油松 Pinus tabuliformis NRE 0.062 0.158 0.301 0.036 −0.269* −0.275 0.137 0.281 0.151
    PRE −0.116 −0.222* −0.270 −0.019 0.139 −0.318 0.224 0.093 0.101
    下载: 导出CSV
  • [1] Aerts R. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. Journal of Ecology, 1996, 84: 597−608. doi: 10.2307/2261481
    [2] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 30: 61−67.
    [3] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [4] Pugnaire F I, Chapin III F S. Controls over nutrient resorption from leaves of evergreen Mediterranean species[J]. Ecology, 1993, 74(1): 124−129. doi: 10.2307/1939507
    [5] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints interrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi: 10.1038/35046058
    [6] Campo J. Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico[J/OL]. Environmental Research Letters, 2006, 11(9): 095006[2021−01−15]. https://iopscience.iop.org/article/10.1088/1748-9326/11/9/095006.
    [7] 邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P 化学计量特征[J]. 应用与环境生物学报, 2015, 21(3): 522−527. doi: 10.3724/sp.j.1145.2014.11032

    Deng H J, Chen A M, Yan S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephala[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 522−527. doi: 10.3724/sp.j.1145.2014.11032
    [8] 刘宏伟, 刘文丹, 王微, 等. 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征[J]. 生态学报, 2015, 35(12): 4071−4080.

    Liu H W, Liu W D, Wang W, et al. Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing[J]. Acta Ecologica Sinica, 2015, 35(12): 4071−4080.
    [9] 刘若莎, 王冬梅. 黄土高原高寒区不同人工林土壤养分及生态化学计量特征[J]. 北京林业大学学报, 2021, 43(1): 88−95. doi: 10.12171/j.1000-1522.20200149

    Liu R S, Wang D M. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88−95. doi: 10.12171/j.1000-1522.20200149
    [10] 闫帮国, 何光熊, 史亮涛, 等. 元谋干热河谷燥红土和变性土上植物叶片的元素含量及其重吸收效率[J]. 应用生态学报, 2016, 27(4): 1039−1045. doi: 10.13287/j.1001-9332.201604.002

    Yan B G, He G X, Shi L T, et al. Element concentration in leaves and nutrient resorption efficiency on dry-red soil and vertisols in dry and hot valley in Yuanmou[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1039−1045. doi: 10.13287/j.1001-9332.201604.002
    [11] 贺静雯, 刘颖, 余杭, 等. 干热河谷优势灌木养分重吸收率及其C∶N∶P化学计量特征[J]. 北京林业大学学报, 2020, 42(1): 18−26. doi: 10.12171/j.1000-1522.20190185

    He J W, Liu Y, Yu H, et al. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18−26. doi: 10.12171/j.1000-1522.20190185
    [12] Drenovsky R E, Koehler C E, Skelly K, et al. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees[J]. Oecologia, 2013, 171(1): 39−50. doi: 10.1007/s00442-012-2396-7
    [13] Han W, Fang J Y, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [14] Güsewell, S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation[J]. Functional Ecology, 2005, 19: 344−354. doi: 10.1111/j.0269-8463.2005.00967.x
    [15] Zeng Q C, Liu Y, Fang Y, et al. Impact of vegetation restoration on plants and soil C: N: P stoichiometry on the Yunwu Mountain Reserve of China[J]. Ecological Engineering, 2017, 109: 92−100. doi: 10.1016/j.ecoleng.2017.10.003
    [16] Vitousek P M, Turner D R, Parton W J, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models[J]. Ecology, 1994, 75: 418−429. doi: 10.2307/1939545
    [17] Kobe R K, Lepczyk C A, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J]. Ecology, 2005, 86: 2780−2792. doi: 10.1890/04-1830
    [18] Zhang H, Guo W, Yu M, et al. Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China[J]. Science of the Total Environment, 2018, 618: 1−6. doi: 10.1016/j.scitotenv.2017.11.030
    [19] Qiu X C, Wang H B, Peng D L, et al. Thinning drives C∶N∶P stoichiometry and nutrient resorption in Larix principis-rupprechtii plantations in North China[J/OL]. Forest Ecology and Management, 2020, 462:117984[2021−01−16]. http://www.socolar.com/Article/Index?aid=100079867426&jid=100000003373.
    [20] 申奥, 朱教君, 闫涛, 等. 辽东山区主要阔叶树种叶片养分含量和再吸收对落叶时间的影响[J]. 植物生态学报, 2018, 42(5): 573−584. doi: 10.17521/cjpe.2018.0041

    Shen A, Zhu J J, Yan T, et al. Effects of leaf nutrient concentration and resorption on leaf falling time of dominant broadleaved species in a montane region of eastern Liaoning Province, China[J]. Chinese Journal of Plant Ecology, 2018, 42(5): 573−584. doi: 10.17521/cjpe.2018.0041
    [21] 宁秋蕊, 李守中, 姜良超, 等. 亚热带红壤侵蚀区马尾松针叶养分含量及再吸收特征[J]. 生态学报, 2016, 36(12): 3510−3517. doi: 10.5846/stxb201506301380

    Ning Q R, Li S Z, Jiang L C, et al. Foliar nutrient content and resorption efficiency of Pinus massoniana in the subtropical red soil erosion region[J]. Acta Ecologica Sinica, 2016, 36(12): 3510−3517. doi: 10.5846/stxb201506301380
    [22] 北京市园林绿化局. 新一轮百万亩造林为北京再添新绿[J]. 国土绿化, 2019(3): 16−21.

    Beijing Municipal Bureau of Landscape and Greening. A new round of afforestation of 1 million mu adds new green to Beijing[J]. Land Greening, 2019(3): 16−21.
    [23] 姜俊, 陆元昌, 秦永胜, 等. 北京平原地区不同人工林叶片−凋落物−土壤生态化学计量特征[J]. 生态环境学报, 2020, 29(4): 702−708.

    Jiang J, Lu Y C, Qin Y S, et al. Ecological stoichiometric characteristics of leaf-litter-soil for four dominant tree species in plain afforestation area, Beijing[J]. Ecology and Environmental Sciences, 2020, 29(4): 702−708.
    [24] Norby R J, Long T M, Hartz-Rubin J S, et al. Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere[J]. Plant and Soil, 2000, 224: 15−29. doi: 10.1023/A:1004629231766
    [25] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科技出版社, 1978.

    Institute of Soil Science, Chinese Academy of Sciences. The analysis of soil physical-chemical properties[M]. Shanghai: Shanghai Scientific & Technical Publishers,1978.
    [26] Milla R, Castro-Díez P, Maestro-Martínez M, et al. Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants?[J]. Plant and Soil, 2005, 278: 303−313. doi: 10.1007/s11104-005-8770-z
    [27] 赵琼, 曾德慧. 林木生长氮磷限制的诊断方法研究进展[J]. 生态学杂志, 2009, 28(1): 122−128. doi: 10.13292/j.1000-4890.2009.0057

    Zhao Q, Zeng D H. Diagnosis methods of N and P limitation to tree growth: a review[J]. Chinese Journal of Ecology, 2009, 28(1): 122−128. doi: 10.13292/j.1000-4890.2009.0057
    [28] Güsewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266.
    [29] 王风芹, 田丽青, 宋安东, 等. 华北刺槐林与自然恢复植被土壤微生物量碳、氮含量四季动态[J]. 林业科学, 2015, 51(3): 16−24.

    Wang F Q, Tian L Q, Song A D, et al. Seasonal dynamics of microbial biomass carbon and nitrogen in soil of Robinia pseudoacacia forests and near-naturally restored vegetation in northern China[J]. Scientia Silvae Sinicae, 2015, 51(3): 16−24.
    [30] del Arco J M, Escudero A, Garrido M V. Effects of site characteristics on nitrogen retranslocation from senescing leaves[J]. Ecology, 1991, 72: 701−708. doi: 10.2307/2937209
    [31] Sardans J, Penuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology, 2012, 160(4): 1741−1761. doi: 10.1104/pp.112.208785
    [32] Luyssaert S, Staelens J, de Schrijver A. Does the commonly used estimator of nutrient resorption in tree foliage actually measure what it claims to?[J]. Oecologia, 2005, 144(2): 177−186. doi: 10.1007/s00442-005-0085-5
    [33] Killingbeck K T. Nutrients in senesced leaves: keys to the aearch for potential resorption and resorption proficiency[J]. Ecology, 1996, 77(6): 1716−1727. doi: 10.2307/2265777
    [34] Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species[J]. Functional Ecology, 2010, 17(1): 10−19.
    [35] Lü X T, Reed S C, Yu Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions[J]. Plant and Soil, 2016, 398(1/2): 111−120.
    [36] An Y, Wan S, Zhou X, et al. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming[J]. Global Change Biology, 2005, 11: 1733−1744. doi: 10.1111/j.1365-2486.2005.01030.x
    [37] Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82(2): 205−220. doi: 10.1890/11-0416.1
    [38] Zhang H, Wang J N, Wang J Y, et al. Tree stoichiometry and nutrient resorption along a chronosequence of Metasequoia glyptostroboides forests in coastal China[J]. Forest Ecology and Management, 2018, 430: 445−450. doi: 10.1016/j.foreco.2018.08.037
    [39] 郭二辉, 方晓, 马丽, 等. 河岸带农田不同恢复年限对土壤碳氮磷生态化学计量特征的影响: 以温榆河为例[J]. 生态学报, 2020, 40(11): 3785−3794. doi: 10.5846/stxb201906191292

    Guo E H, Fang X, Ma L, et al. Effects of different recovery years on the ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in riparian farmland: a case study of Wenyu River[J]. Acta Ecologica Sinica, 2020, 40(11): 3785−3794. doi: 10.5846/stxb201906191292
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  14
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 录用日期:  2022-07-05
  • 修回日期:  2021-04-21
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2022-08-02

目录

    /

    返回文章
    返回