高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同种源地沙枣幼苗对混合盐胁迫的生长及生理响应研究

耿红凯 毕春竹 韦淋馨 宋振琪 李庆卫

耿红凯, 毕春竹, 韦淋馨, 宋振琪, 李庆卫. 不同种源地沙枣幼苗对混合盐胁迫的生长及生理响应研究[J]. 北京林业大学学报, 2021, 43(10): 9-17. doi: 10.12171/j.1000-1522.20210066
引用本文: 耿红凯, 毕春竹, 韦淋馨, 宋振琪, 李庆卫. 不同种源地沙枣幼苗对混合盐胁迫的生长及生理响应研究[J]. 北京林业大学学报, 2021, 43(10): 9-17. doi: 10.12171/j.1000-1522.20210066
Geng Hongkai, Bi Chunzhu, Wei Linxin, Song Zhenqi, Li Qingwei. Effects of mixed salt stress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia seedlings from different provenances[J]. Journal of Beijing Forestry University, 2021, 43(10): 9-17. doi: 10.12171/j.1000-1522.20210066
Citation: Geng Hongkai, Bi Chunzhu, Wei Linxin, Song Zhenqi, Li Qingwei. Effects of mixed salt stress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia seedlings from different provenances[J]. Journal of Beijing Forestry University, 2021, 43(10): 9-17. doi: 10.12171/j.1000-1522.20210066

不同种源地沙枣幼苗对混合盐胁迫的生长及生理响应研究

doi: 10.12171/j.1000-1522.20210066
基金项目: 北京林业大学建设世界一流学科和特色发展引导专项(2019XKJS0324),科学研究与研究生培养共建科研项目(2016GJ-03),北京园林绿化增彩延绿科技创新工程(2019-KJC-02-10)
详细信息
    作者简介:

    耿红凯。主要研究方向:园林植物应用与园林生态、植物生理。Email:bfuhkgeng@126.com 地址:100083北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    李庆卫,博士,教授。主要研究方向:园林植物应用与园林生态、园林植物栽培与养护、园林植物生理生化。Email:lqw6809@bjfu.edu.cn 地址:同上

  • 中图分类号:  S722.3+6

Effects of mixed salt stress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia seedlings from different provenances

  • 摘要:   目的  研究不同种源沙枣对于混合盐胁迫的生理响应,为筛选优良耐盐沙枣种质与沙枣的园林应用提供依据。  方法  以宁夏银川、甘肃张掖两种源地二年生沙枣幼苗为试验材料,选用NaCl、Na2SO4的1∶1(体积比)混合盐溶液胁迫40 d,观测幼苗生长情况及生理指标。  结果  随盐浓度增加和胁迫时间延长,两种源沙枣幼苗叶长、叶宽、新梢和地径生长量,包括叶绿素含量均呈下降趋势。叶片细胞膜透性、丙二醛、脯氨酸、可溶性糖含量均呈上升趋势。可溶性蛋白含量先上升后下降再上升。超氧化物歧化酶、过氧化物酶活性均先上升后下降。随盐浓度增加,幼苗净光合速率、叶片气孔导度、叶片蒸腾速率整体呈下降趋势;叶片胞间CO2浓度呈上升趋势。随胁迫时间延长,两种源沙枣净光合速率先下降后上升再下降;叶片气孔导度先下降后上升再下降;两种源沙枣叶片胞间CO2浓度先下降后上升;叶片蒸腾速率整体呈下降趋势。宁夏、甘肃种源沙枣的耐盐阈值分别为1.088%和1.153%。  结论  综合分析认为,不同种源地沙枣幼苗耐盐能力有所不同,甘肃种源沙枣耐盐能力强于宁夏种源。叶绿素含量、胞间二氧化碳浓度、丙二醛、蒸腾速率、叶片膜透性、脯氨酸等6个指标可作为评价沙枣耐盐性的重要指标,叶长、叶宽、新梢、地径生长量等指标可作为辅助评价参考指标。研究结果对沙枣种质的耐盐性评价及其引种栽培、丰富盐碱地区植物景观、改善生态环境具有重要意义。

     

  • 图  1  不同盐胁迫对沙枣MP及MDA含量的影响

    图中N、G分别代表宁夏种源和甘肃种源;不同小写字母表示各指标在不同浓度处理组间存在显著差异(P < 0.05)。下同。The capital letters N and G in the figure represent Ningxia provenance and Gansu provenance, respectively; different lowercase letters indicate there is a significant difference between treatment groups with different concentrations of each index (P < 0.05). The same below.

    Figure  1.  Effects of different salt stress on MP and MDA contents of Elaeagnus angustifolia

    图  2  不同盐胁迫对沙枣Pro、SP、SS含量的影响

    SP. 可溶性蛋白;Pro. 游离脯氨酸;SS. 可溶性糖。SP, soluble protein; Pro, proline; SS, soluble sugar.

    Figure  2.  Effects of different salt stress on the contents of Pro, SP, SS of E. angustifolia

    图  3  不同盐胁迫对沙枣SOD、POD活性的影响

    Figure  3.  Effects of different salt stress on the activities of SOD and POD of E. angustifolia

    图  4  不同盐胁迫下沙枣Chl含量变化

    Figure  4.  Changes in Chl content of E. angustifolia under different salt stress

    图  5  不同盐胁迫对沙枣叶片光合参数的影响

    Tr. 蒸腾速率;Ci. 胞间CO2浓度;Pn. 净光合速率;Gs. 气孔导度。下同。Tr, transpiration rate; Ci, intercellular CO2 concentration; Pn, net photosynthesis rate; Gs, stomatal conductance. The same below.

    Figure  5.  Effects of different salt stress on photosynthetic parameters of E. angustifolia leaves

    表  1  混合盐胁迫对沙枣生长特性的影响

    Table  1.   Effects of mixed salt stress on the growth characteristics of Elaeagnus angustifolia

    质量分数
    Mass fraction/%
    叶长生长量
    Leaf length growth/cm
    叶宽生长量
    Leaf width growth/cm
    新梢生长量
    New shoot growth/cm
    地径生长量
    Ground diameter growth/cm
    宁夏 Ningxia甘肃 Gansu宁夏 Ningxia甘肃 Gansu宁夏 Ningxia甘肃 Gansu宁夏 Ningxia甘肃 Gansu
    0.0 (CK)1.07 ± 0.04a1.12 ± 0.05a0.58 ± 0.04ab0.68 ± 0.05a21.50 ± 0.50a20.67 ± 0.94a1.04 ± 0.05a1.08 ± 0.06a
    0.31.14 ± 0.05a1.10 ± 0.06a0.68 ± 0.06a0.50 ± 0.04c16.38 ± 0.46a18.67 ± 0.38a0.85 ± 0.03bc1.02 ± 0.04ab
    0.60.82 ± 0.02b0.97 ± 0.04b0.46 ± 0.06bc0.61 ± 0.01ab16.08 ± 0.71b14.33 ± 0.87b0.95 ± 0.07ab0.86 ± 0.05bc
    0.90.92 ± 0.03b0.72 ± 0.06c0.52 ± 0.04abc0.52 ± 0.02bc13.17 ± 0.80c16.08 ± 0.72b0.92 ± 0.05ab0.64 ± 0.09d
    1.20.57 ± 0.05c0.64 ± 0.05c0.40 ± 0.09c0.39 ± 0.06d9.22 ± 0.47d7.91 ± 0.80c0.78 ± 0.02c0.75 ± 0.09cd
    注:不同小写字母表示各指标在不同浓度处理组间存在显著差异(P < 0.05)。下同。Notes: different lowercase letters indicate there is a significant difference between the treatment groups with different concentrations of each index (P < 0.05). The same below.
    下载: 导出CSV

    表  2  盐碱胁迫下沙枣苗的回归方程及其耐盐阈值

    Table  2.   Regression equation of E. angustifolia seedlings under salt-alkali stress and its salt tolerance threshold

    种源 Provenance回归方程 Regression equationR2阈值 Threshold/%
    宁夏 Ningxiay = 20.824 − 9.257x0.9441.088
    甘肃 Gansuy = 21.154 − 9.370x0.8221.153
    下载: 导出CSV

    表  3  两种源沙枣耐盐指标主成分载荷表

    Table  3.   Principal component loading table of salt tolerance index of E. angustifolia from two sources

    主成分
    Main
    ingredient
    指标 Index
    ChlCiMDATrMPProPnGsSPSSSODPOD新梢
    New
    shoot
    叶长
    Leaf
    length
    叶宽
    Leaf
    width
    地径
    Ground
    diameter
    1−0.9170.8780.945−0.9450.9370.918−0.937−0.9510.9340.8760.876−0.6120.7160.7770.8070.824
    20.321−0.374−0.2490.247−0.255−0.2590.2150.184−0.0920.0840.1580.0810.6780.6240.5660.533
    下载: 导出CSV

    表  4  两种源沙枣耐盐指标主成分系数及贡献率

    Table  4.   Principal component coefficients and contribution rates of salt tolerance indexes of two sources

    主成分
    Main
    ingredient
    指标 Index
    ChlCiMDATrMPProPnGsSPSSSODPOD新梢
    New
    shoot
    叶长
    Leaf
    length
    叶宽
    Leaf
    width
    地径
    Ground
    diameter
    特征值
    Eigenvalue
    贡献率
    Contribution
    rate/%
    累计贡献率
    Cumulative
    contribution
    rate/%
    1−0.9380.9370.921−0.9200.9180.904−0.895−0.8900.8230.6760.635−0.5510.2100.2910.3490.38112.13175.81875.818
    2−0.2520.1850.326−0.3280.3170.303−0.350−0.3840.4500.5630.624−0.2780.9630.9530.9220.9042.00712.97988.796
    下载: 导出CSV
  • [1] 刘正祥, 张华新, 杨秀艳, 等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报, 2014, 34(2):326−336.

    Liu Z X, Zhang H X, Yang X Y, et al. Growth, and cationic absorption, transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2014, 34(2): 326−336.
    [2] 郑秀玲, 林静, 信健, 等. 同一种源地两种沙枣对NaCl胁迫的响应及耐盐阈值[J]. 作物杂志, 2017(4):143−149.

    Zheng X L, Lin J, Xin J, et al. Response to NaCl stress and salinity threshold by two species of Elaeagnus from the same provenance[J]. Crops, 2017(4): 143−149.
    [3] 王利军. 不同种源沙枣对水分和盐分胁迫生长的响应[D]. 北京: 北京林业大学, 2010.

    Wang L J. Water and salt stress response on the growth of different provenances Elaeagnus angustifolia[D]. Beijing: Beijing Forestry University, 2010.
    [4] Zalesny R S, Stange C M, Birr B A. Survival, height growth, and phytoextraction potential of hybrid poplar and Russian olive (Elaeagnus Angustifolia L.) established on soils varying in salinity in North Dakota, USA [J/OL]. Forests 2019, 10, 672 [2020−12−09]. https://doi.org/10.3390/f10080672.
    [5] 陈春晓, 谢秀华, 王宇鹏, 等. 盐分和干旱对沙枣幼苗生理特性的影响[J]. 生态学报, 2019, 39(12):4540−4550.

    Chen C X, Xie X H, Wang Y P, et al. Effects of salt and drought on the physiological characteristics of Elaeagnus angustifolia L. seedlings[J]. Acta Ecologica Sinica, 2019, 39(12): 4540−4550.
    [6] Liu X J, Chen C X, Liu Y, et al. The presence of moderate salt can increase tolerance of Elaeagnus angustifolia seedlings to waterlogging stress [J/OL]. Plant Signaling & Behavior, 2020, 15(4): 1743518 [2020−12−26]. https://doi.org/10.1080/15592324.2020.1743518.
    [7] 杨升, 张华新, 陈秋夏, 等. NaCl 胁迫下不同种源沙枣的生理特性[J]. 核农学报, 2015, 29(11):2215−2223. doi: 10.11869/j.issn.100-8551.2015.11.2215

    Yang S, Zhang H X, Chen Q X, et al. Physiological characteristics of different Elaeagnus angustifolia L. provenances under NaCl stress[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(11): 2215−2223. doi: 10.11869/j.issn.100-8551.2015.11.2215
    [8] 杨升, 张华新, 杨秀艳, 等. NaCl 胁迫下不同种源沙枣的生长表现差异[J]. 林业科学, 2015, 51(9):51−58.

    Yang S, Zhang H X, Yang X Y, et al. Differential growth performance of Elaeagnus angustifolia provenances under NaCl stress[J]. Scientia Silvae Sinicae, 2015, 51(9): 51−58.
    [9] 王利军, 马履一, 王爽, 等. 水盐胁迫对沙枣幼苗叶绿素荧光参数和色素含量的影响[J]. 西北农业学报, 2010, 19(12):122−127. doi: 10.3969/j.issn.1004-1389.2010.12.024

    Wang L J, Ma L Y, Wang S, et al. Effects of water and salt stress on chlorophyll fluorescence parameters and pigment contents of Elaeagnus angustifolia L. seedlings[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(12): 122−127. doi: 10.3969/j.issn.1004-1389.2010.12.024
    [10] 陈爱葵, 韩瑞宏, 李东洋, 等. 植物叶片相对电导率测定方法比较研究[J]. 广东教育学院学报, 2010, 30(5):88−91.

    Chen A K, Han R H, Li D Y, et al. A comparison of two methods for electrical conductivity about plant leaves[J]. Journal of Guangdong University of Education, 2010, 30(5): 88−91.
    [11] 李合生. 植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2006.

    Li H S. Principles and techniques of plant physiological and biochemical experiments [M]. Beijing: Higher Education Press, 2006.
    [12] 高俊凤, 植物生理学试验指导[M]. 北京: 高等教育出版社, 2006.

    Gao J F, Plant physiology experiment guidance [M]. Beijing: Higher Education Press, 2006.
    [13] 王殿, 袁芳, 王宝山, 等. 能源植物杂交狼尾草对NaCl胁迫的响应及其耐盐阈值[J]. 植物生态学报, 2012, 36(6):572−577.

    Wang D, Yuan F, Wang B S, et al. Response of plant biofuel hybrid Pennisetum to NaCl stress and its salinity threshold[J]. Chinese Journal of Plant Ecology, 2012, 36(6): 572−577.
    [14] 李彦, 张英鹏, 孙明, 等. 盐分胁迫对植物的影响及植物耐盐机理研究进展[J]. 中国农学通报, 2008, 24(1):258−265.

    Li Y, Zhang Y P, Sun M, et al. Research advance in the effects of salt stress on plant and the mechanism of plant resistance[J]. Chinese Agricultural Science Bulletin, 2008, 24(1): 258−265.
    [15] 李思思. NaCl和Na2SO4盐胁迫对沙枣生长和生理生化特性的影响[D]. 北京: 北京林业大学, 2017.

    Li S S. Effects of NaCl and Na2SO4 salt stress on the growth and physiological and biochemical characteristics of Elaeagnus angustifolia[D]. Beijing: Beijing Forestry University, 2017.
    [16] 赵海燕, 魏宁, 孙聪聪, 等. NaCl胁迫对银杏幼树组织解剖结构和光合作用的影响[J]. 北京林业大学学报, 2018, 40(11):28−41.

    Zhao H Y, Wei N, Sun C C, et al. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28−41.
    [17] 魏秀君, 殷云龙, 芦治国, 等. NaCl胁迫对5种绿化植物幼苗生长和生理指标的影响及耐盐性综合评价[J]. 植物资源与环境学报, 2011, 20(2):35−42. doi: 10.3969/j.issn.1674-7895.2011.02.006

    Wei X J, Yin Y L, Lu Z G, et al. Effects of NaCl stress on growth and physiological indexes of five greening plant seedlings and comprehensive evaluation of their salt tolerance[J]. Plant Resources and Environment, 2011, 20(2): 35−42. doi: 10.3969/j.issn.1674-7895.2011.02.006
    [18] 王忠. 植物生理学[M]. 北京: 中国农业出版社, 2000: 422−439.

    Wang Z. Plant physiology [M]. Beijing: China Agriculture Press, 2000: 422−439.
    [19] Farooq S, Azam F. The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties[J]. Journal of Plant Physiology, 2006, 163(6): 629−637.
    [20] Marcelo F P, Ricardo B L, Hermerson S V, et al. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery[J]. Biomass and Bioenergy, 2010, 34(8): 1207−1215.
    [21] 赵福庚, 刘友良. 胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J]. 植物学通报, 1999, 16(5):540−546.

    Zhao F G, Liu Y L. Advances in study on metabolism and rgulation of proline in higher plants under stress[J]. Chinese Bulletin of Botany, 1999, 16(5): 540−546.
    [22] Close T J, Bray E A. Plant responses to cellular dehydration during environment stress[J]. Plant Physiology, 1993, 103(10): 91−93.
    [23] 张海燕, 赵可夫. 盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J]. 植物学报, 1998, 40(1): 56−61.

    Zhang H Y, Zhao K F. Effect of salt and water stress on osmotic adjustment of Suaeda salsa seedlings[J]. Acta Botanica Sinica, 1998, 40(1): 56−61.
    [24] 杨艳, 黎云祥, 胥晓. 珙桐种子休眠解除和萌发过程中主要抗氧化酶活性和代谢产物含量的变化[J]. 植物分类与资源学报, 2015, 37(6):779−789.

    Yang Y, Li Y X, Xu X. The activity of principal antioxidant enzymes and the content of metabolites in dormancy breaking and germination of Davidia involucrate seeds[J]. Plant Diversity, 2015, 37(6): 779−789.
    [25] Parida A K, Das A B, Mohanty P. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes[J]. Plant Physiology, 2004, 161: 531−542. doi: 10.1078/0176-1617-01084
    [26] Al-Saady N A, Khan A J, Rajesh L, et al. Effect of salt stress on germination, proline metabolism and chlorophyll content of fenugreek (Trigonella foenum gracium L.)[J]. Journal of Plant Sciences, 2012, 7(5): 176−185. doi: 10.3923/jps.2012.176.185
    [27] Zhani K, Elouer M A, Aloui H, et al. Selection of a salt tolerant Tunisian cultivar of chili pepper (Capsicum frutescens)[J]. EurAsian Journal of BioSciences, 2012, 6: 47−59.
    [28] Sneha S, Rishi A, Chandra S. Effect of short term salt stress on chlorophyll content, protein and activities of catalase and ascorbate peroxidase enzymes in pearl millet[J]. American Journal of Plant Physiology, 2014, 9(1): 32−37.
    [29] Amal F A, Henrik A, Christer S. High salt stress in wheat leaves causes retardation of chlorophyll accumulation due to a limited rate of protochlorophyllide formation [J]. Physiologia Plantarum, 2007, 130(1): 157−166.
    [30] 李秀霞. 新疆大果沙枣的抗盐性研究[D]. 乌鲁木齐: 新疆农业大学, 2005.

    Li X X. The study on characteristics of salt-resistance of Elaeagnus mooraroftii in Xinjiang [D]. Urumqi: Xinjiang Agricultural University, 2005.
    [31] Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C(3) non-halophytes[J]. Plant Physiology, 1991, 95(2): 628−635. doi: 10.1104/pp.95.2.628
    [32] 郑国琦, 许兴, 徐兆桢, 等. 盐胁迫对枸杞光合作用的气孔与非气孔限制[J]. 西北植物学报, 2002, 22(6):75−79.

    Zheng G Q, Xu X, Xu Z Z, et al. The effect of salt stress on the stomatal and non-stomatal limitation of photosynthesis of Lycium barbarum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(6): 75−79.
    [33] 李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应[J]. 草业学报, 2010, 19(4):79−86.

    Li Y, Liu G B, Gao H W, et al. A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage[J]. Acta Prataculturae Sinica, 2010, 19(4): 79−86.
    [34] 孙宗玖, 李培英, 阿不来提, 等. 26份偃麦草种质苗期耐盐性评价[J]. 草原与草坪, 2013, 33(3):43−49, 56. doi: 10.3969/j.issn.1009-5500.2013.03.009

    Sun Z J, Li P Y, Abulaiti, et al. Evaluation on salt resistance of 26 Elytrigria repens germplasm in seedling stage[J]. Grassland and Turf, 2013, 33(3): 43−49, 56. doi: 10.3969/j.issn.1009-5500.2013.03.009
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  35
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 修回日期:  2021-03-27
  • 网络出版日期:  2021-10-01
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回