Response and mechanism of potassium content in leaves of alpine meadow plants to multiple nutrient additions
-
摘要:目的 钾是植物体内含量仅次于氮的大量元素,对于维持植物生长和适应低温环境具有重要的意义。近期研究表明植物生长受到多种养分的共同限制,而本研究旨在揭示植物叶片钾含量对钾、氮、磷养分添加及其交互作用的响应及机理。方法 以川西北高寒草甸为研究对象,开展钾、氮、磷添加及交互控制试验,以揭示高寒草甸优势植物叶片钾对多种养分及其交互作用的响应及机理。结果 本研究发现钾、氮、磷3种养分添加对4种植物(垂穗披碱草、发草、无脉薹草、草玉梅)的叶片钾含量均不存在显著的交互作用。单独磷添加不影响植物叶片钾,钾添加促进无脉薹草和草玉梅叶片钾含量,而氮添加均促进4种植物的叶片钾。尽管氮添加产生的直接效应(土壤有效氮增加)对部分植物叶片钾有显著影响,但是氮添加处理下叶片钾含量的增加主要是由氮添加的间接作用驱动的,即氮添加显著增加植物群落生物量,进而由于遮荫作用降低土壤温度,而结果表明较低土壤温度一致地增加了所有植物的叶片钾含量。与钾、磷养分相比,氮添加对植物叶片钾含量的影响更大。结论 不同于传统观点认为土壤养分是主要影响植物叶片钾的因素,本研究发现氮添加引发的间接作用(土壤温度降低)是驱动养分富集背景下叶片钾含量变化的主要机理。该研究结果指示出高寒草甸植物由于长期受到低温胁迫,其钾利用策略可能与低温适应性密切相关。Abstract:Objective Potassium (K) is the second most abundant element in plants, which is important to sustain plant growth and adapt to cold environment. Recent meta-analysis studies showed that grassland plant product was universally co-limited by multiple nutrients, while this study aimed to reveal the responses and mechanisms of leaf K concentration to main and interaction effects of the addition of K, nitrogen (N) and phosphorus (P).Method Taking the alpine meadow in northwestern Sichuan as the research object, potassium, nitrogen and phosphorus addition and interactive control experiments were carried out to reveal the response and mechanism of potassium in the leaves of dominant plants in alpine meadow to a variety of nutrients and their interactions.Result We found no significant interaction effect for the combined addition of K, N and P fertilizers on the leaf K concentration of Elymus nutans, Deschampsia cespitosa, Carex enervis and Anemone rivularis. P addition alone did not affect species’ leaf K, while K addition increased leaf K concentration in Carex enervis and Anemone rivularis significantly. In contrast, N addition consistently enhanced leaf K concentration across all species. The direct effect of increasing soil N availability by N addition only affected two species’ leaf K concentration. However, we found that the consistent increase in leaf K concentration among species was mainly driven by the indirect effect caused by N addition. To be specific, N addition firstly increased community biomass, further indirectly reducing soil temperature due to increasing shading effect. Moreover, we found a consistent increase in leaf K concentration with lower soil temperature among different species.Conclusion Different from the traditional view that soil nutrient is the main factor affecting plant leaf potassium, this study finds that the indirect effect caused by nitrogen addition (decrease of soil temperature) is the main mechanism driving the change of leaf K content under the background of nutrient enrichment. The results indicate that the K utilization strategy of alpine meadow plants may be closely related to low temperature adaptability due to long-term low temperature stress.
-
Keywords:
- leaf potassium concentration /
- nutrient addition /
- soil temperature /
- alpine meadow
-
钾是植物必需的大量元素[1],对维持植物生长、适应寒冷[2]、提高水分利用效率[3-5]具有重要的意义。如一般低温胁迫会降低植物体内抗氧化酶的活性,导致活性氧大量积累,进而抑制叶片光合作用[6-8]。然而,钾元素有利于提高植物体内抗氧化剂水平并减少活性氧的产生,从而减轻低温胁迫对植物的负面作用[9-10]。前人研究认为土壤养分是影响植物钾吸收的重要因素,但是以往的研究主要关注氮、磷或钾单独添加对植物叶片养分的影响[11-13],缺少比较多种养分添加及其交互作用的影响研究。
土壤养分是调控植物叶片钾含量的重要因素[14]。在钾限制的环境中,钾添加通常会促进植物的钾吸收[15]。关于磷添加对于叶片钾的影响研究还很少,并且得到的结果不一致。有研究认为受到磷限制的植物在添加磷之后,不仅可以促进植物的磷吸收,同时也会增加对钾离子的吸收[16]。此外,也有研究发现磷添加不影响植物的钾吸收[17]。因此,目前磷添加对植物叶片钾的影响及机理还不清楚。
前人研究表明氮添加对叶片钾含量的影响存在很大的变异,可能的作用机理如下。首先,氮添加会增加土壤中铵根离子,进而抑制植物对钾离子的吸收[18-19];第二,氮富集通常会导致土壤酸化,从而引发钾离子的丢失[20],最终抑制植物的钾吸收;第三,植物在受到氮钾共同限制的情况下,氮添加会促进植物的钾吸收[21];第四,氮添加通常会增加植物群落生物量,进而产生遮荫作用并降低土壤温度[22-23],刺激高寒地区植物的钾吸收,从而更好地适应低温胁迫。然而,这几种主要机制对植物叶片钾含量影响的相对贡献仍然缺乏研究。
近期研究发现,当多种养分同时添加植物生物量的增加幅度显著大于养分单独添加的处理,表明植物生长受到养分的共同限制[24-25]。如Harpole等[26]通过整合分析发现,植物群落生产力普遍受到氮磷共同限制。同时,另外一项全球养分添加试验的整合研究进一步发现,植物生长也普遍受到氮磷钾的共同限制[27]。但是,植物钾吸收是否受到氮磷钾的共同限制还有待研究。
青藏高原由于海拔高,导致生境严寒,优势植被主要以高寒草甸为主[28]。高寒草甸植物常年适应低温环境,需要吸收更多钾离子来提升抗寒能力。低温环境同时会抑制微生物分解,减缓养分循环,容易导致高寒草甸植物产生养分限制作用[29]。因此,本研究以红原高寒草甸为研究对象,开展钾、氮、磷添加及交互控制试验。拟解决的科学问题如下:(1)钾添加、氮添加、磷添加对高寒草甸优势植物叶片钾含量的影响有何差异?(2)多种养分添加的交互作用如何影响叶片钾含量?(3)驱动叶片钾含量响应养分添加的主要机理是什么?
1. 研究区概况和研究方法
1.1 研究区概况
研究样地位于四川省阿坝藏族羌族自治州红原县西南民族大学青藏高原研究基地(32°49′59″ N、102°34′53″ E,海拔3 490 m)。实验区域年平均气温1.4 ℃,1月份平均气温为−9.7 ℃,7月份平均气温为11.1 ℃。年平均降水量为747 mm (1961—2013年),降雨多集中在5—9月(占全年总降水量80%)。植被类型属于高寒草甸类,优势种包括禾本科(Poaceae)的垂穗披碱草(Elymus nutans)和发草(Deschampsia cespitosa),莎草科(Cyperaceae)的无脉薹草(Carex enervis)以及毛茛科(Ranunculaceae)的草玉梅(Anemone rivularis)等,其株高范围分别为55 ~ 90 cm、40 ~ 85 cm、30 ~ 60 cm、10 ~ 40 cm。样地本底土壤氮含量为229.38 mg/kg,有效磷含量为2.69 mg/kg,有效钾含量为68.77 mg/kg。
1.2 研究方法
1.2.1 试验设计
试验平台建于2017年5月,于2018年加入全球标准化联网实验(Nutrient Network)[30]。试验采用随机区组设计,处理包括对照(CK)、钾添加(K)、氮添加(N)、磷添加(P)、氮磷同时添加(NP)、氮磷钾同时添加(NPK), 4个重复,共24个小区。小区面积大小为4 m × 4 m,间隔为2 m。钾添加、氮添加、磷添加量均为10 g/(m2·a)。钾肥采用硫酸钾(含K2O量为50.0%),氮肥采用树脂包膜尿素(纯N量为46.6%),磷肥采用重过磷酸钙(含P2O5量为12.0%)。本试验设计和处理方法与全球Nutrient Net联网实验设计一致。于每年5月初,选择连续阴雨天进行施肥,将钾肥、氮肥、磷肥均匀撒在相应处理小区内。
1.2.2 样品采集与室内分析
本试验选取了该地区4种优势植物(相对生物量占比60%左右),分别是垂穗披碱草、发草、无脉薹草、草玉梅。植物采样时间于2019年8月4—12日,在每个小区内用两个0.1 m × 1 m样方框剪取所有植物的地上生物量进行室内分种,按照物种分类后分别装入标记好的信封袋,并放入65 ℃烘箱烘至恒质量后称质量。其中对叶片烘干样品采用球磨仪(NM200,Retsch,Haan,Germany)粉碎,用于测定植物叶片钾含量,具体使用硫酸双氧水消解之后,再用火焰光度计法测定。植物采样的同时,在每个小区内随机选取5个位置,对0 ~ 10 cm土壤取样,随后混匀并过2 mm孔筛。将过筛土样分成2份, 1份新鲜土样置于冰箱冷冻保存,使用连续流动分析仪(SAN Plus,Skalar,Netherlands)测定土壤有效氮(AN)。另1份土样室内风干后,使用球磨仪粉碎之后,土壤有效钾(AK)使用乙酸铵浸提—火焰光度计法进行测定,土壤有效磷(AP)使用NaHCO3浸提—钼锑抗比色法测定。此外,土壤温度采用LI-6400便携式温度探头进行测定,土壤含水量采用TDR水分仪(TDR350,Aurora,Illinois,USA)测定,具体于植物生长季5—9月,每月测定两次,测定时间10:00—11:00,共10次数据。本文分析中所用的土壤温度和湿度均为生长季平均值。
1.2.3 数据分析
首先采用三因素方差(three-way ANOVA)分析各处理及其交互作用对植物叶片钾含量的影响;第二,利用独立样本T检验分别比较NP、NPK与对照之间的差异。第三,利用多元线性回归模型分析土壤有效钾、有效氮、有效磷、土壤温度(ST)、土壤含水量(SM)与植物叶片钾含量之间的定量关系。上述统计分析使用SPSS软件完成,制图使用Sigma Plot 14.0和ggplot 2程序包。
2. 结果与分析
2.1 不同处理对叶片钾含量的影响
在自然状态下的叶片钾含量,草玉梅(16.45 mg/g)明显高于垂穗披碱草(10.04 mg/g)、发草(10.93 mg/g)和无脉薹草(11.93 mg/g)。钾添加对垂穗披碱草、发草的叶片钾含量没有影响,增加了无脉薹草和草玉梅的叶片钾;磷添加对垂穗披碱草、发草、无脉薹草、草玉梅的叶片钾均没有影响;而氮添加一致地促进4种植物的叶片钾含量(图1)。同样,氮磷钾同时添加均促进不同植物的叶片钾。然而,氮磷同时添加只增加了垂穗披碱草和发草的叶片钾含量。此外,氮磷或氮磷钾同时添加均不存在显著的交互作用(表1)。
指标 Index 自由度
df垂穗披碱草
Elymus nutans发草
Deschampsia cespitosa无脉薹草
Carex enervis草玉梅
Anemone rivularis区组 Block 3 0.922 7 5.207 8* 4.479 2* 0.542 8 钾添加 K addition 1 0.346 0 4.455 6 5.747 7* 8.129 1* 氮添加 N addition 1 7.790 1* 55.423 1*** 12.582 4** 5.857 8* 磷添加 P addition 1 1.508 5 4.188 9 0.569 0 0.519 3 氮磷交互作用 N × P interaction 1 0.0115 0.011 7 1.188 7 1.464 2 氮磷钾交互作用 N × P × K interaction 1 1.698 9 0.534 9 1.002 8 0.512 6 注: *、**、***分别表示在P < 0.05、P < 0.01、P < 0.001水平上差异显著。Notes: *, **, *** represent significant difference at P < 0.05, P < 0.01, P < 0.001 levels, respectively. 2.2 影响植物叶片钾含量变化的机理
不同优势植物叶片钾含量对土壤有效养分的响应不同(图2)。无脉薹草、草玉梅叶片钾含量与土壤有效钾呈正相关,但垂穗披碱草、发草的叶片钾不受其影响。随着土壤有效磷增加,垂穗披碱草、发草、无脉薹草和草玉梅的叶片钾含量的变化趋势均不显著。垂穗披碱草叶片钾与土壤有效氮正相关,但无脉薹草表现出相反的趋势,其叶片钾随土壤有效氮的增加而降低。而土壤有效氮对于发草和草玉梅叶片钾的影响不显著。土壤湿度对无脉薹草叶片钾含量有显著的正效应,而对其他植物叶片钾不影响。
此外,包括氮添加的处理(氮添加、氮磷添加、氮磷钾添加)均显著增加植物群落地上生物量(图3),进而线性降低土壤温度(图4)。同时,结果一致显示,较低土壤温度显著增加4种植物的叶片钾含量(图2)。
3. 讨 论
3.1 叶片钾含量对多种养分添加及交互作用的响应
本研究发现钾添加促进高寒草甸无脉薹草和草玉梅的叶片钾含量,这与前人研究表明钾添加增加植物叶片钾含量的研究结果一致[12]。但是,我们并没有发现钾添加对垂穗披碱草和发草叶片钾含量存在影响,导致这种差异的原因可能是高寒草甸物种之间的钾离子需求不同[31]。例如,无脉薹草和草玉梅的物候期比垂穗披碱草和发草更早,而高寒草甸物候早的物种会经历更低温的环境[32]。同时,无脉薹草、草玉梅处于群落中下层,而其他两个物种处于群落的顶层,由于实验区域植物生长密集,通常会产生较强的遮荫作用,导致处于中下层的植物经历更寒冷的环境[29,33-34]。因此,无脉薹草和草玉梅为了适应低温环境需增强钾离子的吸收,进而导致其对土壤有效钾更加敏感。
本试验中,磷添加对叶片钾含量没有影响,表明高寒地区植物钾吸收可能不受到土壤磷钾的共同限制。但是,含氮添加的处理均增加4种植物的叶片钾含量。而前人研究发现长期氮添加通常导致土壤酸化并造成钾离子丢失[35],进而削弱植物对钾离子的吸收并降低叶片钾含量[20,36-37]。该结果与前人研究的差异可能是因为本研究属于短期氮添加试验(2年),并没有导致土壤酸化。同时,氮添加增加了植物群落生物量,从而产生遮荫作用导致土壤温度降低。而本试验结果显示较低土壤温度促进了叶片钾含量,可能是因为高寒地区植物为了适应低温环境增强了钾吸收[2,38]。综上所述,本研究表明氮富集背景下高寒地区植物的钾吸收的主导机制是氮添加引发的间接作用(土壤温度降低)。此外,氮磷或氮磷钾同时添加处理之间不存在交互作用,说明高寒草甸植物钾吸收不受多种养分的共同限制[27,39-40]。
3.2 影响高寒草甸植物叶片钾含量的机理
前人研究表明土壤湿度与植物钾吸收有着密切的关系[41-42],一些研究发现植物吸收钾的能力与土壤湿度正相关[43-44]。但本研究中大部分植物叶片钾含量与土壤湿度没有关系,可能是因为实验区域雨水充足,植物养分吸收没有受到水分胁迫。
本试验发现影响植物叶片钾对氮添加的响应包括直接和间接效应。直接效应为土壤有效氮增加对叶片钾的影响。前人研究表明,氮添加导致的土壤中高浓度铵根离子会对植物吸收钾离子产生抑制作用[18-19],本研究同样发现无脉薹草叶片钾含量与土壤有效氮呈负相关。但是,垂穗披碱草叶片钾含量与土壤有效氮呈正相关。不同物种之间的响应差异可能是因为根系形态导致的[45],如垂穗披碱草的根系属须根系[46],该根系在土壤中分布范围广,相比于无脉薹草的根茎型根系,前者根系的养分吸收能力更强[47],所以土壤铵根离子对无脉薹草钾吸收的抑制作用比较大,而对垂穗披碱草的影响不大。
同时,本研究中氮添加对高寒草甸植物叶片钾含量具有显著的间接影响。具体表现为氮添加增加植物群落地上生物量,产生遮荫作用进而降低土壤温度。本试验结果显示较低土壤温度一致地刺激了4种优势植物的叶片钾含量,这些表明氮添加的间接作用主导了叶片钾含量对氮富集的响应。可能的作用机理如下:(1)大量研究证据表明钾离子在植物抵抗低温的过程中起着关键作用[2, 48],其主要通过提高植物体内抗氧化剂的含量和降低活性氧的产生来提高植物抵抗低温胁迫的能力[9,49]。一般来说,叶片高钾浓度有利于增强抵抗寒冷的能力并维持植物的健康生长[38]。(2)研究区域高寒草甸植物常年处于低温环境,植物为了适应低温,会增加对钾离子的需求[2]。(3)氮添加试验的间接作用加剧了高寒草甸植物的低温胁迫作用[22, 50],植物需要吸收更多的钾离子来适应低温逆境。这一发现与传统认为土壤养分是主要影响叶片钾含量的观点不一致[1]。本研究发现的氮富集对高寒草甸植物叶片钾含量影响的间接机理,有助于更好地理解全球变化背景下植物钾动态以及为低温适应性的研究提供了新视角。
4. 结 论
本研究揭示高寒地区植物的钾吸收不存在氮磷钾的共同限制。与钾添加和磷添加相比,氮添加对优势植物的叶片钾含量影响更大。尽管氮添加的直接效应(有效氮增加)对不同植物的叶片钾有一定的影响,但主要是由氮添加的间接效应主导了叶片钾含量的变化。综合研究结果发现,氮添加增加了植物群落生物量,产生遮荫作用进而降低土壤温度,而高寒草甸植物为了适应较低土壤温度一致地增加了叶片钾含量。该发现与前人研究认为的土壤养分是决定植物叶片钾含量的观点不一致,有助于增加对氮富集背景下高寒草甸植物钾动态的新认识,表明了未来氮沉降与全球变暖的交互作用在高寒地区植物群落的钾利用扮演着重要的角色。
-
图 1 4种植物叶片钾含量对钾添加(K)、氮添加(N)、磷添加(P)、氮磷同时添加(NP)、氮磷钾同时添加(NPK)的响应
^、*分别表示在P < 0.1、P < 0.05水平上处理与对照差异显著。^, * indicate that there is significant difference between the treatment and the control at the levels of P < 0.1 and P < 0.05, respectively.
Figure 1. Response of K concentration in leaves of four plants to potassium addition (K), nitrogen addition (N), phosphorus addition (P), simultaneous addition of nitrogen and phosphorus (NP), simultaneous addition of nitrogen, phosphorus and potassium (NPK)
图 2 优势植物叶片钾含量与土壤理化性质之间的关系
AK. 土壤有效钾;AN. 土壤有效氮;AP. 土壤有效磷;ST.土壤温度;SM. 土壤湿度;^、*、**、***分别表示在P < 0.1、P < 0.05、P < 0.01、P < 0.001水平上差异显著。 AK, soil available potassium; AN, soil available nitrogen; AP, soil available phosphorus; ST, soil temperature; SM, soil moisture. ^, *, **, *** represent significant difference at P < 0.1, P < 0.05, P < 0.01, P < 0.001 levels, respectively.
Figure 2. Relationship between potassium content in leaves of dominant plants and physical and chemical properties of soil
图 3 植物群落地上生物量对钾添加(K)、氮添加(N)、磷添加(P)、氮磷同时添加(NP)、氮磷钾同时添加(NPK)的响应
*表示在P < 0.05水平上处理与对照差异显著。地上生物量差值等于处理小区生物量减去对照生物量。* indicates that there is significant difference between treatment and control at the level of P < 0.05. The difference of aboveground biomass is equal to the biomass of the treatment plot minus the control biomass.
Figure 3. Response of aboveground biomass to the addition of potassium (K), nitrogen (N), phosphorus (P) fertilizer and their combined treatments (NP, NPK)
图 4 植物群落地上生物量与土壤温度变化之间的关系
地上生物量差值等于处理小区生物量减去对照生物量;土壤温度差值等于处理小区土壤温度减去对照土壤温度。 The difference of aboveground biomass is equal to the biomass of the treatment plot minus the control biomass; the soil temperature difference is equal to the soil temperature of the treatment plot minus the control soil temperature.
Figure 4. Relationship between aboveground biomass of plant community and soil temperature
表 1 钾、氮、磷添加及其交互作用对叶片钾含量影响的三因素方差分析
Table 1 Three-way ANOVA of the effects of potassium, nitrogen and phosphorus addition and their interaction on potassium concentration in leaves
指标 Index 自由度
df垂穗披碱草
Elymus nutans发草
Deschampsia cespitosa无脉薹草
Carex enervis草玉梅
Anemone rivularis区组 Block 3 0.922 7 5.207 8* 4.479 2* 0.542 8 钾添加 K addition 1 0.346 0 4.455 6 5.747 7* 8.129 1* 氮添加 N addition 1 7.790 1* 55.423 1*** 12.582 4** 5.857 8* 磷添加 P addition 1 1.508 5 4.188 9 0.569 0 0.519 3 氮磷交互作用 N × P interaction 1 0.0115 0.011 7 1.188 7 1.464 2 氮磷钾交互作用 N × P × K interaction 1 1.698 9 0.534 9 1.002 8 0.512 6 注: *、**、***分别表示在P < 0.05、P < 0.01、P < 0.001水平上差异显著。Notes: *, **, *** represent significant difference at P < 0.05, P < 0.01, P < 0.001 levels, respectively. -
[1] Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8): 788−796. doi: 10.1111/j.1461-0248.2011.01641.x
[2] Wang M, Zheng Q, Shen Q, et al. The critical role of potassium in plant stress response[J]. International Journal of Molecular Sciences, 2013, 14(4): 7370−7390. doi: 10.3390/ijms14047370
[3] Tripler C E, Kaushal S S, Likens G E, et al. Patterns in potassium dynamics in forest ecosystems[J]. Ecology Letters, 2006, 9(4): 451−466. doi: 10.1111/j.1461-0248.2006.00891.x
[4] Sardans J, Penuelas J, Coll M, et al. Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests[J]. Functional Ecology, 2012, 26(5): 1077−1089. doi: 10.1111/j.1365-2435.2012.02023.x
[5] Sardans J, Penuelas J. Potassium: a neglected nutrient in global change[J]. Global Ecology and Biogeography, 2015, 24(3): 261−275. doi: 10.1111/geb.12259
[6] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
[7] Suzuki N, Mittler R. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction[J]. Physiologia Plantarum, 2006, 126(1): 45−51. doi: 10.1111/j.0031-9317.2005.00582.x
[8] Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress[J]. Plant Cell, 2002, 14: 165−183. doi: 10.1105/tpc.000596
[9] Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 521−530. doi: 10.1002/jpln.200420485
[10] Devi B S, Kim Y J, Selvi S K, et al. Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng[J]. Russian Journal of Plant Physiology, 2012, 59(3): 318−325. doi: 10.1134/S1021443712030041
[11] Lü X T, Cui Q, Wang Q B, et al. Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland[J]. Ecological Engineering, 2010, 37(3): 534−538.
[12] Yang T, Zhang S, Hu Y, et al. The role of a potassium transporter OsHAK5 in potassium acquisition and trans port from roots to shoots in rice at low potassium supply levels[J]. Plant Physiology, 2014, 166(2): 945−959. doi: 10.1104/pp.114.246520
[13] Butler O M, Elser J J, Lewis T, et al. The phosphorus-rich signature of fire in the soil-plant system: a global meta-analysis[J]. Ecology Letters, 2018, 21(3): 335−344. doi: 10.1111/ele.12896
[14] Tian D S, Peter B R, Chen H Y H, et al. Global changes alter plant multi-element stoichiometric coupling[J]. New Phytologist, 2019, 221(2): 807−817. doi: 10.1111/nph.15428
[15] Wright S J. Plant responses to nutrient addition experiments conducted in tropical forests[J/OL]. Ecological Monographs, 2019, 89(4): e01382 [2021−03−18]. https://doi.org/10.1002/ecm.1382.
[16] 王艳丽, 王京, 刘国顺, 等. 磷施用量对烤烟根系生理及叶片光合特性的影响[J]. 植物营养与肥料学报, 2016, 22(2): 410−417. doi: 10.11674/zwyf.14437 Wang Y L, Wang J, Liu G S, et al. Effects of different phosphorus levels on root physiological and leaf photosynthetic characteristics of flue-cured tobacco[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 410−417. doi: 10.11674/zwyf.14437
[17] Tobias C, Carly J S, Luc D, et al. Soil phosphorus constrains biodiversity across European grasslands[J]. Global Change Biology, 2014, 20(12): 3814−3822. doi: 10.1111/gcb.12650
[18] Sharifi M, Cheema M, McVicar K, et al. Evaluation of liming properties and potassium bioavailability of three Atlantic Canada wood ash sources[J]. Canadian Journal of Plant Science, 2013, 93(6): 1209−1216. doi: 10.4141/cjps2013-168
[19] Chen G, Hu Q, Luo L, et al. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges[J]. Plant Cell Environment, 2015, 38(12): 2747−2765. doi: 10.1111/pce.12585
[20] Yavitt J B, Harms K E, Garcia M N, et al. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical forest, Panama[J]. Austral Ecology, 2011, 36(4): 433−445. doi: 10.1111/j.1442-9993.2010.02157.x
[21] Minden V, Venterink H O. Plant traits and species interactions along gradients of N, P and K availabilities[J]. Functional Ecology, 2019, 33(9): 1611−1626. doi: 10.1111/1365-2435.13387
[22] Yang Y H S, Xi X Q, Zhong X T, et al. N addition suppresses the performance of grassland caterpillars (Gynaephora alpherakjj) by decreasing ground temperature[J]. Ecosphere, 2017, 8(3): 1−12.
[23] Humbert J Y, Dwyer J M, Andrey A, et al. Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review[J]. Global Change Biology, 2016, 22(1): 110−120. doi: 10.1111/gcb.12986
[24] Schleuss P M, Meike W, Anna H B, et al. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant‐growth responses[J/OL]. Ecology, 2020, 101(5): e03003[2021−03−18]. https://pubmed.ncbi.nlm.nih.gov/32020599/.
[25] Ren Z, Qi L, Chu C, et al. Effects of resource additions on species richness and ANPP in an alpine meadow community[J]. Ecology, 2010, 3(1): 25−31.
[26] Harpole W S, Ngai J T, Cleland E E, et al. Nutrient co-limitation of primary producer communities[J]. Ecology Letters, 2011, 14(9): 852−869. doi: 10.1111/j.1461-0248.2011.01651.x
[27] Chao C T, Li P H, Guang H X. Response of switchgrass grown for forage and bioethanol to nitrogen, phosphorus, and potassium on semiarid marginal land[J/OL]. Agronomy, 2020, 10(8): 1147 [2021−03−18]. https://doi.org/10.3390/agronomy10081147.
[28] Sun J, Qin X, Yang J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau[J]. Environment Monitoring and Assessment, 2016, 188(1): 1−11. doi: 10.1007/s10661-015-4999-z
[29] 杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应[J]. 植物生态学报, 2014, 38(2): 159−166. doi: 10.3724/SP.J.1258.2014.00014 Yang X X, Ren F, Zhou H K, et al. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 159−166. doi: 10.3724/SP.J.1258.2014.00014
[30] Borer E T, Harpole W S, Adler P B, et al. Finding generality in ecology: a model for globally distributed experiments[J]. Methods in Ecology and Evolution, 2014, 5(1): 65−73. doi: 10.1111/2041-210X.12125
[31] Tian L M, Zhao L, Wu X D, et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland[J]. Science of the Total Environment, 2018, 622: 192−202.
[32] Milla R, Castro D P, Maestro M M, et al. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens[J]. New Phytologist, 2005, 168(1): 167−178. doi: 10.1111/j.1469-8137.2005.01477.x
[33] Tilman D. Plant strategies and the dynamics and structure of plant communities[J]. Princeton:Princeton University Press, 1988, 51(3): 409−411.
[34] Suding K N, Collins S L, Gough L, et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization[J]. Proceedings of the National Academy of Sciences, 2005, 102(12): 4387−4392. doi: 10.1073/pnas.0408648102
[35] Mitchell A D, Smethurst P J. Base cation availability and leaching after nitrogen fertilization of a eucalypt plantation[J]. Australian Journal of Soil Research, 2008, 46(5): 445−454. doi: 10.1071/SR08005
[36] He Z L, Alva A K, Calvert D V, et al. Effects of nitrogen fertilization of grapefruit trees on soil acidification and nutrient availability in a Rivera fine sand[J]. Plant and Soil, 1999, 206: 11−19.
[37] Glab T, Gondek K. The influence of soil compaction and fertilization on physico-chemical properties of mollic fluvisol under red clover/grass mixture[J]. Geoderma, 2014, 226: 204−212.
[38] Webster D E, Ebdon J S. Effects of nitrogen and potassium fertilization on perennial ryegrass cold tolerance during deacclimation in late winter and early spring[J]. Hortscience, 2005, 40(3): 842−849. doi: 10.21273/HORTSCI.40.3.842
[39] Zhang J J, Yan X B, Su F L, et al. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow[J]. Science of the Total Environment, 2018, 625: 440−448. doi: 10.1016/j.scitotenv.2017.12.292
[40] Mamolos A P, Vasilikos C P, Veresoglou D S. Vegetation in contrasting soil water sites of upland herbaceous grasslands and N∶P ratios as indicators of nutrient limitation[J]. Plant and Soil, 2005, 270(1): 355−369. doi: 10.1007/s11104-004-1793-z
[41] Watson R, Pritchard J, Malone M. Direct measurement of sodium and potassium in the transpirating stream of salt-excluding and non-excluding varieties of wheat[J]. Journal of Experimental Botany, 2001, 52: 1873−1881. doi: 10.1093/jexbot/52.362.1873
[42] Oliveira R H, Rosolem C A, Trigueiro R M. Importance of mass flow and diffusion on the potassium supply to cotton plants as affected by soil water and potassium[J]. Revista Brasileira Ciencia Solo, 2004, 28(3): 439−445. doi: 10.1590/S0100-06832004000300005
[43] Fernandez F G, Brouder S M, Volenec J J, et al. Soybean shoot and root response to localized water and potassium in a split-pot study[J]. Plant and Soil, 2011, 344(1): 197−212.
[44] Ge T D, Sun N B, Bai L P, et al. Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) through the growth cycle[J]. Acta Physiologiae Plantarum, 2012, 34: 2179−2186. doi: 10.1007/s11738-012-1018-7
[45] Liao H, Ge Z Y, Yan X L. Ideal root architecture for phosphorus acquisition of plants under water and phosphorus coupled stresses: from simulation to application[J]. Chinese Science Bulletin, 2001, 46(16): 1346−1351. doi: 10.1007/BF03183385
[46] 朱志红, 刘建秀, 郑伟. 资源获得性和种内竞争对垂穗披碱草生长繁殖的影响 [J]. 西北植物学报, 2005, 25(10): 2056−2061. Zhu Z H, Liu J X, Zheng W. Influence of resource availability and intraspecific competition on Elymus nutans growth and reproduction[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(10): 2056−2061.
[47] Klanderud K. Species-specific responses of an alpine plant community under simulated environmental change[J]. Journal of Vegetation Science, 2008, 19(3): 363−372. doi: 10.3170/2008-8-18376
[48] Romheld V, Kirkby E A. Research on potassium in agriculture: needs and prospects[J]. Plant and Soil, 2010, 335(1): 155−180.
[49] Devi B S R, Kim Y J, Selvi S K, et al. Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng[J]. Journal of Plant Physiology, 2012, 59(3): 318−325.
[50] Del G S, Parton W, Stohlgren T, et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature[J]. Ecology, 2008, 89(8): 2117−2126. doi: 10.1890/07-0850.1
-
期刊类型引用(2)
1. 俞群,高伟,施家意,傅成杰,林国江,康天琪,邱敏. 珍稀植物银粉蔷薇叶功能性状对环境变化的响应. 热带亚热带植物学报. 2024(06): 705-714 . 百度学术 2. 张树彬,任启文,王鑫,郭娇娇,赵广智,李联地,张树梓. 白洋淀湿地水生植物群落功能性状和功能多样性分析. 林业科技. 2023(02): 21-27 . 百度学术 其他类型引用(3)