• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

现场分散液液微萃取−气相色谱法检测水体中5种拟除虫菊酯类农药

韩文涛, 胡克娇, 赵婉凝, 李松卿, 陆鹏飞

韩文涛, 胡克娇, 赵婉凝, 李松卿, 陆鹏飞. 现场分散液液微萃取−气相色谱法检测水体中5种拟除虫菊酯类农药[J]. 北京林业大学学报, 2021, 43(9): 131-138. DOI: 10.12171/j.1000-1522.20210075
引用本文: 韩文涛, 胡克娇, 赵婉凝, 李松卿, 陆鹏飞. 现场分散液液微萃取−气相色谱法检测水体中5种拟除虫菊酯类农药[J]. 北京林业大学学报, 2021, 43(9): 131-138. DOI: 10.12171/j.1000-1522.20210075
Han Wentao, Hu Kejiao, Zhao Wanning, Li Songqing, Lu Pengfei. Determination of five pyrethroid pesticides in water using on-site DLLME-GC[J]. Journal of Beijing Forestry University, 2021, 43(9): 131-138. DOI: 10.12171/j.1000-1522.20210075
Citation: Han Wentao, Hu Kejiao, Zhao Wanning, Li Songqing, Lu Pengfei. Determination of five pyrethroid pesticides in water using on-site DLLME-GC[J]. Journal of Beijing Forestry University, 2021, 43(9): 131-138. DOI: 10.12171/j.1000-1522.20210075

现场分散液液微萃取−气相色谱法检测水体中5种拟除虫菊酯类农药

基金项目: 国家自然科学基金青年基金项目(21707008)
详细信息
    作者简介:

    韩文涛。主要研究方向:化学防治中的农药分析。Email:wentaohan2020@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    李松卿,博士,讲师。主要研究方向:化学防治及农药环境毒理。Email:songqingli@bjfu.edu.cn 地址:同上

    陆鹏飞,博士,教授。主要研究方向:昆虫化学生态学。Email:lpengfei224@126.com 地址:同上

  • 中图分类号: S767.3+4

Determination of five pyrethroid pesticides in water using on-site DLLME-GC

  • 摘要:
      目的  由于森林病虫害频发,大量化学农药用于病害虫防治。而农药残留进入水体造成了水资源的污染,因此,拟建立一种新颖的实现现场处理的样品前处理方法,对环境水体中的农药进行检测。
      方法  称量0.499 2 g柠檬酸、0.405 6 g磷酸二氢钠、0.218 4 g碳酸氢钠和0.180 0 g己酸钠,研磨混合均匀,使用压片机压制成泡腾片待用。将吸油棉裁卷为2 cm高度和60 mg/cm密度的圆柱体,填装入过滤柱,手动制成聚丙烯吸油棉过滤柱。将10 mL样品盛于注射器中,加入泡腾片,待完全反应后,经自制过滤柱过滤,200 μL乙腈洗脱,气相色谱-电子捕获检测器检测。
    最佳条件下,该方法在5 ~ 500 μg/L范围内,相关系数均大于0.999 0,具有良好的线性。按照3倍信噪比和10倍信噪比计算检出限和定量限,检测限为0.22 ~ 1.88 μg/L,定量限为0.75 ~ 6.25 μg/L。加标回收率在88.2% ~ 113.0%之间,相对标准偏差为4.5% ~ 11.8%,富集倍数在65 ~ 108之间。
      结论  本研究建立了一种基于可转换亲水性溶剂的泡腾片辅助现场分散液液微萃取−气相色谱法,检测了环境水样中的5种拟除虫菊酯类农药。该方法不需要使用用电设备,能够实现样品现场预处理,减少了人力物力的消耗,具有广阔的应用前景。
    Abstract:
      Objective  Due to the frequent occurrence of forest pests and diseases, a large number of chemical pesticides were used for pest control which enter the water and pollute the water resources. Therefore, it is planned to establish a novel sample pretreatment method for on-site processing to detect pesticides in environmental water bodies.
      Method  0.499 2 g of citric acid, 0.405 6 g of sodium dihydrogen phosphate, 0.218 4 g of sodium bicarbonate and 0.180 0 g of sodium caproate are weighed, ground and mixed evenly. The powder was compressed by a tablet machine into effervescent tablets for use. The polypropylene oil-absorbent cotton was cut into a cylinder with a height of 2 cm and a density of 60 mg/cm and packed into a filter column, and a novel homemade filter column was accomplished finally. The 10 mL sample was placed in a syringe and added with effervescent tablets. After the reaction was complete, it was filtered through a self-made filter column. After the filter column being eluted with 200 μL of acetonitrile, the filtrate was detected by gas chromatography-electron capture detector.
      Result  Under the optimal conditions, the linearity was in the concentration ranges of 5−500 μg/L, with coefficients greater than 0.999 0. The limit of detection and limit of quantification were calculated based on 3 times signal-to-noise ratio and 10 times signal-to-noise ratio. The limit of detection and the limit of quantitation were in the range of 0.22−1.88 μg/L and 0.75−6.25 μg/L. The recovery rate ranged between 88.2%−113.0%, the relative standard deviation was 0.8%−6.1%, and the enrichment factor was between 65−108.
      Conclusion  In this study, a new method named switchable hydrophilic solvent-based effervescent tablet assisted on-site dispersion liquid-liquid microextraction-gas chromatography was established to determine five pyrethroid pesticides in environmental waters. This method does not require the use of electrical equipment and can realize on-site pretreatment, which reduces the consumption of manpower and material resources and has broad application prospects.
  • 森林是一个国家的重要资源,在防治水土流失、改善生态环境方面发挥着重要作用,具有良好的生态效益和社会效益[1]。但是,一直以来森林不断遭受着病虫害的侵扰,大量的农药被用来防治病虫害的发生。在防治的同时,大量农药喷洒在林地上,部分农药残留渗入地下,经由河流汇入湖泊,不可避免对环境水体造成一定污染[2]

    拟除虫菊酯是一类广泛使用的杀虫剂,是衍生自菊花和植物花的除虫菊酯的合成衍生物[3]。它们通常被大量用于林业、农业等领域[4]。据报道,在中国,每年消耗3 700多吨拟除虫菊酯类农药,用于害虫防治[5]。大量拟除虫菊酯的使用会导致生态环境的污染,同时,如果人体长期过量接触拟除虫菊酯,会产生严重的健康问题,引发包括恶心、呕吐、呼吸抑制、精神变化、急性肾损伤等疾病症状[6]。因此,有必要对环境水体中的拟除虫菊酯进行检测。

    由于样品的复杂性和低浓度性,需要进行样品预处理才能够进行检测。传统的萃取方法有液液萃取(LLE)[7]、索氏提取(Soxhlet extraction)[8]、固相萃取(SPE)[9]等。液液萃取易于使用,无需使用复杂的仪器执行。然而,高毒性有机溶剂的大量消耗和提取分析物的低选择性限制了液液萃取的使用。与液液萃取相比,固相萃取消耗较少量的有机溶剂,但相对昂贵且耗时[10]。因此,近年来的样本前处理技术不断向绿色化、微型化和简便化方向发展。

    分散液液微萃取(DLLME)是常用的农药残留检测方法,具有操作简单、快速、成本低等优点。该方法由Rezaee等[11]于2006年提出来,主要包括两个步骤:萃取剂分散和回收。传统分散液液微萃取需要采用有机分散剂进行分散,既消耗了有机溶剂,又降低了分析物的分配系数。近年来不需要有机分散剂的辅助分散方法逐渐被开发出来,丰富了分散液液微萃取技术。具体分散技术包括手动摇晃[12]、涡旋[13]、超声[14]、微波[15]等。其中,手动摇晃因为重现性差而逐渐被其他方式代替,而其他几种方式都需要使用仪器进行操作,难以现场进行。2014年,Lasade-Aragones等人首次引入了泡腾辅助分散液液微萃取(EA-DLLME),它是通过酸和碳酸盐或碳酸氢盐发生泡腾反应,产生二氧化碳将萃取剂分散[16]。因其不受超声、涡旋等仪器限制,具有现场处理的可能,且具有环境副作用小的优点,越来越受到欢迎[17]

    最近,可转换亲水性溶剂(SHS)已被用作液相微萃取中的萃取剂[18]。中链脂肪酸被认为是可转换亲水性溶剂[19],其机理是通过调节pH值实现可溶和不溶之间的转化[20]。而且,中链脂肪酸的钠盐和泡腾片都是可溶性固体粉末,泡腾反应能够促进可转换亲水性溶剂的分散和溶解,同时,泡腾片中过量的酸可以促使萃取剂从可溶性转变为不溶性,从而完成萃取过程。因此,将可转换亲水性溶剂与泡腾片结合非常利于微萃取过程的完成[17]

    萃取剂相的分离是液相微萃取技术的重要步骤,离心是常用的相分离方法,但是离心步骤涉及到离心机的使用,而大型仪器的存在使得前处理过程难以在现场操作[21]。基于此问题,研究者开发出多种现场处理方法。磁性纳米粒子(MNPs)分散在溶液中吸附萃取剂,借助于磁铁吸附作用实现汇聚,最终洗脱得到萃取剂,整个过程不需要使用大型仪器,方便现场操作[16]。另外,利用低密度溶剂会漂浮在溶液上层的性质,刘学科等使用1-十一烷醇作为萃取剂,采用移液管吸收上层液体的方法以实现现场处理[22]。最近,采用过滤方式进行相分离的方法也可以很好地在现场进行[23]。本课题组已制作具有良好亲油疏水性的过滤柱,采用过滤方式实现萃取剂的回收[24]。目前还没有研究采用泡腾片分散和过滤分离相结合的方法,来进行样品的现场前处理。

    因此,在现场处理的基础上,本研究开发了一种基于可转换亲水性溶剂的泡腾片辅助分散液液微萃取结合气相色谱法,测定环境水中的拟除虫菊酯类农药。该方法按照一定配方压制泡腾片,用于萃取剂的分散,采用过滤方式进行相分离,成功完成了前处理步骤和气相色谱仪检测。整个提取过程不依赖任何特殊仪器,这使得该方法得以成功地应用于现场处理。目前,该方法已成功应用于北京市环境水的检测。

    5种拟除虫菊酯类农药标准品(联苯菊酯、氟氰菊酯、氯氰菊酯、氰戊菊酯、溴氰菊酯)购自坛墨质量检测技术有限公司(江苏,中国),纯度均 > 98%。己酸钠(99%)、壬酸钠(98%)购自百灵威公司(北京,中国)。柠檬酸、磷酸二氢钠、碳酸氢钠、碳酸钠均购自麦克林公司(上海,中国)。SPE色谱柱购自安捷伦科技公司(美国)。聚丙烯吸油棉和聚丙烯无纺布购自苏州伊路发环保技术有限公司(江苏,中国)。

    安捷伦7890B型气相色谱仪(美国安捷伦科技公司,美国),配备电子捕获检测器;DB-5 MS型毛细管柱(30 m × 0.32 mm × 0.25 µm);手动液压压片机购自鹤壁立信仪器有限公司(河南,中国);Milli-Q超纯水系统(Millipore,美国);万分之一天平;微量进样针;一次性注射器。

    使用色谱级乙腈,分别配制5种拟除虫菊酯标准品的标准溶液(2 000 μg/mL),并在4 ℃的冰箱中储存。将5种标准溶液等体积混合配制混合标准溶液。将混合标准溶液稀释至不同浓度,得到工作标准溶液。自来水、水库水和河水均采集于中国北京。水样收集在玻璃瓶中,避光储存。

    使用万分天平称量0.499 2 g柠檬酸、0.405 6 g磷酸二氢钠、0.218 4 g碳酸氢钠和0.180 0 g己酸钠,加入到研钵中,手动研磨直至获得均匀细致的粉末。然后,将粉末放入直径12 mm模具中,使用手动液压压片机在1 MPa的压力下压制成泡腾片,取出泡腾片,干燥储存或直接使用。

    自制过滤柱制备过程如图1所示,它由3部分组成:SPE外壳、吸油棉填料和适配器。先将1 mL SPE色谱柱裁剪至合适的高度,底部加入一个垫片;然后将吸油棉切成长条状,卷成圆柱形,填充到SPE柱中,起到过滤作用,在上部再压上一个垫片;最后将适配器插入色谱柱上方,获得自制过滤柱。

    图  1  过滤柱的制备
    Figure  1.  Preparation of filter column

    取10 mL水样品注入20 mL注射器中,注射器下端接转接头,加入已制备的泡腾片,待泡腾片完全反应、注射器中无气泡产生时,打开转接头,使用自制过滤柱过滤注射器中溶液,再使用50 mL注射器吹干自制过滤柱上残留水滴,最后使用200 μL乙腈洗脱得到分析物,进行气相色谱电子捕获检测器(GC-ECD)检测。

    萃取剂的选择朝着越来越绿色、环保、低毒等的方向发展,因此,本研究选择了两种可转换性溶剂(己酸钠和壬酸钠)进行优化,其他条件如下:脂肪酸盐的量为0.16 g,泡腾片成分包括0.499 2 g柠檬酸、0.405 6 g 磷酸二氢钠和0.218 4 g 碳酸氢钠,无盐,自制过滤柱(填料吸油棉,高度为2 cm,密度为60 mg/cm),洗脱剂乙腈200 μL。结果如图2所示,对样本进行显著性检验,P < 0.01,两组间差异极显著,而己酸钠具有更高的响应值,因此,己酸钠萃取效果更佳,用于后续的优化实验。

    图  2  萃取剂种类的影响
    Figure  2.  Effects of the type of extractant

    泡腾片中己酸钠的用量需要进行优化,以获得最佳的条件。在实验中,检测了不同用量己酸钠(0.16、0.18、0.20、0.22 g)对峰面积的影响,其他条件同上。如图3所示,不同萃取剂用量差异显著(P < 0.01),当萃取剂为0.16 g时,峰面积最大,随着萃取剂用量的增加,峰面积逐渐减小。因此,最终选择0.16 g己酸钠进行后续优化实验。

    图  3  萃取剂用量的影响
    Figure  3.  Effects of the amount of extractant

    泡腾反应对萃取剂的分散和萃取具有重要影响。不同类型的泡腾片将发生不同时长和强度的泡腾反应,从而影响最终的萃取效果。在实验中,我们选择了4种物质(柠檬酸,磷酸二氢钠,碳酸氢钠和碳酸钠)进行测定。4种方案如表1所示。泡腾片中的酸不仅与碳酸盐发生泡腾反应,而且与萃取剂反应,使萃取剂从可溶状态转变为不溶状态,完成萃取。基于该过程对酸的双重要求,具有较强酸性的柠檬酸成为最佳选择。实验中同时发现,柠檬酸酸性较强,反应迅速,反应时间过短,导致萃取剂分散不充分,萃取效果受到影响,所以,加入弱酸磷酸二氢钠作为调节剂,延缓反应的速度,延长反应的时间,使萃取剂在分散、转化和萃取过程更为充分。根据图4所示,P < 0.01表明差异极显著,综合A、B、C、D四个方案显示,方案A的反应速度和反应强度更为优化,萃取效果更佳。因此,泡腾片制备选择方案A(柠檬酸 + 磷酸二氢钠 + 碳酸氢钠 + 己酸钠)。

    表  1  不同泡腾片成分方案
    Table  1.  Scheme of different effervescent tablets
    编号 No.方案 Scheme反应时间 Reaction time/s
    A 柠檬酸 + 磷酸二氢钠 + 碳酸氢钠 + 己酸钠
    Citric acid + sodium dihydrogen phosphate + sodium bicarbonate + sodium hexanoate
    60
    B 柠檬酸 + 磷酸二氢钠 + 碳酸钠 + 己酸钠
    Citric acid + sodium dihydrogen phosphate + sodium carbonate + sodium hexanoate
    80
    C 柠檬酸 + 碳酸氢钠 + 己酸钠 Citric acid + sodium bicarbonate + sodium hexanoate 15
    D 柠檬酸 + 碳酸钠 + 己酸钠 Citric acid + sodium carbonate + sodium hexanoate 30
    下载: 导出CSV 
    | 显示表格
    图  4  泡腾片类型的影响
    Figure  4.  Effects of different effervescent tablets

    萃取剂己酸钠很容易受到pH值的影响,因此有必要对泡腾片的酸碱比进行优化。根据酸碱电离理论,柠檬酸可产生3个H+,磷酸二氢钠可产生1个H+,碳酸氢钠和己酸钠可产生一个OH。因此,根据不同的酸碱比(6∶2∶1∶1,8∶2∶1∶1,10∶2∶1∶1)进行优化。结果如图5所示,进行显著性分析,P > 0.05,差异性不显著,表明pH的变化能够对峰面积产生影响,但是目前范围变化影响不大。据图可知,在柠檬酸∶磷酸二氢钠∶碳酸氢钠∶己酸钠的比例为8∶2∶1∶1的情况下,可获得最佳峰面积。因此,泡腾片质量为0.499 2 g柠檬酸,0.405 6 g磷酸二氢钠、0.218 4 g碳酸氢钠、0.18 g己酸钠,进行下一步实验。

    图  5  酸碱比例影响
    Figure  5.  Effects of acid-base ratio

    通过向水样中添加不同量的盐(0 ~ 10%, w/w)来调节盐的质量分数,从而评估盐效应带来的影响。如图6所示,随着盐质量分数的增加,不同农药的响应幅度显示出差异,联苯菊酯和氰戊菊酯P < 0.01,差异极显著,受盐效应影响较大,抑制作用明显;而氟氯氰菊酯、氰戊菊酯、溴氰菊酯P > 0.05,差异不显著,变化不大。总体上盐质量分数的增加起到了抑制作用。因此,最终选择零添加进行后续研究。

    图  6  盐效应的影响
    Figure  6.  Effects of salt effect

    自制过滤柱是进行相分离的重要设备。而自制过滤柱的填料是影响分离效果的重要因素。吸油棉和无纺布被选作自制过滤柱的填料,二者都是聚丙烯材料,能够在过滤过程中吸附萃取剂,完成相分离,但是在亲脂性和疏水性的性能上存在差异,因此有必要对其进行优化。结果如图7所示,显著性检验P < 0.01,表明不同填料类型差异极显著,吸油棉效果显著高于无纺布。因此,吸油棉用于后续实验。

    图  7  填料类型影响
    Figure  7.  Effects of homemade filter column packing type

    自制过滤柱填料的高度和密度会影响过滤性能。如果过滤柱填料过高,则需要消耗更多的洗脱剂,降低响应值;如果过滤柱填料过低,则容易无法完全保留过滤溶液中的萃取剂,影响回收效率,所以,选择合适的高度对于该方法具有重要影响。因此,研究了1.5、2.0和2.5 cm高度对峰面积的影响,结果如图8所示,显著性检验P > 0.05,差异不显著,考虑到在2 cm高度时,除联苯菊酯外,其他几种农药微弱高于其他条件。因此,选择了2.0 cm高度的自制过滤柱进行进一步研究。

    图  8  自制过滤柱填料高度影响
    Figure  8.  Effects of height of homemade filter column packing

    如果过滤材料太紧,则会影响过滤速度;如果过滤材料太稀疏,萃取剂将很容易被冲洗掉。所以,有必要对过滤柱的密度进行优化。因此,在2.0 cm的高度条件下,研究了不同密度的填料(40、50、60、70 mg/cm)对峰面积的影响,结果如图9所示,显著性检验显示联苯菊酯、氰戊菊酯和溴氰菊酯P < 0.05,差异显著,峰面积呈现先增后减的趋势,在60 mg/cm处获得最佳效果。因此,最佳密度选择为60 mg/cm。

    图  9  自制过滤柱填料密度影响
    Figure  9.  Effects of density of homemade filter column packing

    为了评价所建立方法的性能,评估了包括线性范围、线性方程、相关系数、检测限、定量限、相对标准偏差和富集倍数在内的参数。在优化条件下进行研究,结果如表2所示,在5 ~ 500 μg/L的线性范围内,相关系数均 ≥ 0.999 0,线性关系良好。检出限和定量限分别为0.22 ~ 1.88 μg/L和0.75 ~ 6.25 μg/L。日内标准差和日间标准差分别低于6.1%和5.4%。富集倍数在65 ~ 108范围内。

    表  2  5种菊酯的线性方程、相关系数及检出限
    Table  2.  Linear equation, correlation coefficients and detection limits of five pyrethroids
    化合物
    Compounds
    线性范围
    Range of
    linearity/
    (μg·L−1)
    线性方程
    Linearity
    equation
    相关系数
    Correlation
    coefficient
    检出限
    Limit of
    detection/
    (μg·L−1)
    定量限
    Limit of
    quantitation/
    (μg·L−1)
    日内标准差
    Intra-day
    SD/%
    日间标准差
    Inter-day
    SD/%
    富集倍数
    Enrichment
    factor
    联苯菊酯 Bifenthrin 5 ~ 500 y = 94.8x − 217.5 0.999 0 0.22 0.75 6.1 0.8 108
    氟氯氰菊酯 Cyfluthrin 5 ~ 500 y = 24.916x + 67.895 0.999 4 1.03 3.45 2.2 5.4 71
    氯氰菊酯 Cypermethrin 5 ~ 500 y = 13.341x + 42.416 0.999 6 1.65 5.49 3.0 4.6 65
    氰戊菊酯 Fenvalerate 5 ~ 500 y = 68.004x + 165.82 0.999 6 0.39 1.29 4.3 2.9 66
    溴氰菊酯 Deltamethrin 5 ~ 500 y = 21.184x − 51.306 0.999 9 1.88 6.25 1.9 1.3 93
    下载: 导出CSV 
    | 显示表格

    为了进一步验证所开发方法的可靠性和适用性,本研究分析了包括自来水、库水、水在内的3种实际样品。添加质量浓度为0、50、200 μg/L,样品回收率总结于表3,空白样品与加标样品色谱图见于图10。结果显示:所有空白实际水样均未检测到农药残留,表明采样地水质较为纯净。加标样品的回收率为88.2% ~ 113.0%,相对标准偏差在4.5% ~ 11.8%之间,均在可接受范围。因此,该方法可以成功准确地检测环境中水样。

    表  3  使用建立的方法对3种实际水样进行分析
    Table  3.  Analytical performance of the proposed method for three real samples
    化合物
    Compounds
    自来水 Tap water水库水 Reservoir water河流水 River water
    添加水平
    Spiked level/(μg·L−1)
    回收率
    Relative recovery/%
    标准差
    SD/%
    回收率
    Relative recovery/%
    标准差
    SD/%
    回收率
    Relative recovery/%
    标准差
    SD/%
    联苯菊酯
    Bifenthrin
    50 92.3 8.3 94.5 4.5 105.1 6.8
    200 113.0 5.7 97.8 8.1 107.6 10.0
    氟氯氰菊酯
    Cyfluthrin
    50 106.2 6.1 104.8 7.3 104.6 7.9
    200 109.7 7.4 103.2 8.3 99.5 7.5
    氯氰菊酯
    Cypermethrin
    50 98.2 7.5 96.4 7.9 97.5 9.3
    200 108.5 5.7 99.1 9.2 100.2 8.9
    氰戊菊酯
    Fenvalerate
    50 96.8 6.9 96.5 6.1 104.4 6.4
    200 110.8 5.0 93.7 8.6 102.7 8.2
    溴氰菊酯
    Deltamethrin
    50 88.2 8.6 88.7 5.2 97.1 8.8
    200 101.6 6.0 89.6 10.2 98.8 11.8
    下载: 导出CSV 
    | 显示表格
    图  10  空白样品(a)和加标样品(b)的气相色谱图
    添加质量浓度为50 μg/L;峰1为联苯菊酯;峰2为氟氯氰菊酯;峰3为氯氰菊酯;峰4为氰戊菊酯;峰5为溴氰菊酯。Spiked mass concentration, 50 μg/L; peak 1, bifenthrin; peak 2, cyfluthrin; peak 3, cypermethrin; peak 4, fenvalerate; peak 5, deltamethrin.
    Figure  10.  Gas chromatogram of blank sample (a) and spiked sample (b)

    为了体现现场分散液液微萃取结合气相色谱法(On-stie DLLME-GC)的优越性,该方法与已报道方法的几个重要参数进行了比较。如表4所示,研究发现该方法具有良好的线性范围、较低的检出限。同时,相比于前处理过程,固相萃取、分散固相萃取等方法都需要使用耗电设备,主要体现在在萃取剂的分散[25-26]和萃取剂的分离[27]两个步骤,Li等[25]使用磁力搅拌仪进行Fe3O4@TiO2的分散,Mi等[26]采用离心吸取上层液的方法进行相分离。与之前前处理方法相比,该方法成功地实现了整个样品前处理过程不使用耗电设备,从而实现了现场样品处理,大大减少大量样品运输带来的不便,减少了人力和物力的消耗。因此,On-site DLLME-GC-ECD被证明是一种经济实用、简单方便的方法,能够用于现场处理环境水样中的5种拟除虫菊酯类杀虫剂。

    表  4  与其他方法在水中拟除虫菊酯测定中的比较
    Table  4.  Comparison of the proposed method and some other methods for pyrethroids determination in water
    方法
    Method
    检测器
    Detector
    萃取剂
    Extraction
    solvent
    线性范围
    Range of linearity
    检出限
    Limit of
    detection/
    (μg·L−1)
    是/否使用耗电设备
    Yes/no use of
    power-consuming
    equipment
    是/否现场
    Yes/no on-site
    参考文献
    Reference
    固相萃取
    Solid phase extraction
    高效液相色谱仪
    HPLC
    Fe3O4@TiO2 25 ~ 2 500 2.8 ~ 6.1 是 Yes 否 No [25]
    分散固相萃取
    Dispersive solid
    phase extraction
    高效液相色谱仪
    HPLC
    β-环糊精连接的
    超支化聚合物
    CD-HBP
    5 ~ 500
    10 ~ 500
    0.96 ~ 2.06 是 Yes 否 No [26]
    固相萃取
    Solid phase extraction
    气相色谱仪
    GC
    Fe3O4-NH2@MIL-101(Cr) 0.002 ~ 2.000 0.005 ~ 0.009 是 Yes 否 No [27]
    现场分散液液微萃取
    On-site DLLME
    气相色谱仪
    GC
    己酸钠
    Sodium hexanoate
    5 ~ 500 0.22 ~ 1.88 否 No 是 Yes 本工作
    This work
    下载: 导出CSV 
    | 显示表格

    本研究发了一种基于现场处理的分散液液微萃取气相色谱法测定环境水中的5种拟除虫菊酯类杀虫剂。该方法采用泡腾片辅助分散方式,选择可切换亲水性溶剂作为萃取剂。影响此方法的相关因素进行了优化,在最佳条件下,样品的加标回收率为88.2% ~ 113.0%,相对标准偏差为4.5% ~ 11.8%,检出限在0.22 ~ 1.88 μg/L之间,定量限在0.75 ~ 6.25 μg/L之间。富集倍数为65 ~ 108。该方法具有毒性低,污染小,环境友好的优点,同时在萃取剂分散和回收过程不需要用电设备,操作简便,方便现场操作,减少运输带来的不便。最后,该方法成功检测了3种环境水样,具有应用于现场处理的广阔潜力。

  • 图  1   过滤柱的制备

    Figure  1.   Preparation of filter column

    图  2   萃取剂种类的影响

    Figure  2.   Effects of the type of extractant

    图  3   萃取剂用量的影响

    Figure  3.   Effects of the amount of extractant

    图  4   泡腾片类型的影响

    Figure  4.   Effects of different effervescent tablets

    图  5   酸碱比例影响

    Figure  5.   Effects of acid-base ratio

    图  6   盐效应的影响

    Figure  6.   Effects of salt effect

    图  7   填料类型影响

    Figure  7.   Effects of homemade filter column packing type

    图  8   自制过滤柱填料高度影响

    Figure  8.   Effects of height of homemade filter column packing

    图  9   自制过滤柱填料密度影响

    Figure  9.   Effects of density of homemade filter column packing

    图  10   空白样品(a)和加标样品(b)的气相色谱图

    添加质量浓度为50 μg/L;峰1为联苯菊酯;峰2为氟氯氰菊酯;峰3为氯氰菊酯;峰4为氰戊菊酯;峰5为溴氰菊酯。Spiked mass concentration, 50 μg/L; peak 1, bifenthrin; peak 2, cyfluthrin; peak 3, cypermethrin; peak 4, fenvalerate; peak 5, deltamethrin.

    Figure  10.   Gas chromatogram of blank sample (a) and spiked sample (b)

    表  1   不同泡腾片成分方案

    Table  1   Scheme of different effervescent tablets

    编号 No.方案 Scheme反应时间 Reaction time/s
    A 柠檬酸 + 磷酸二氢钠 + 碳酸氢钠 + 己酸钠
    Citric acid + sodium dihydrogen phosphate + sodium bicarbonate + sodium hexanoate
    60
    B 柠檬酸 + 磷酸二氢钠 + 碳酸钠 + 己酸钠
    Citric acid + sodium dihydrogen phosphate + sodium carbonate + sodium hexanoate
    80
    C 柠檬酸 + 碳酸氢钠 + 己酸钠 Citric acid + sodium bicarbonate + sodium hexanoate 15
    D 柠檬酸 + 碳酸钠 + 己酸钠 Citric acid + sodium carbonate + sodium hexanoate 30
    下载: 导出CSV

    表  2   5种菊酯的线性方程、相关系数及检出限

    Table  2   Linear equation, correlation coefficients and detection limits of five pyrethroids

    化合物
    Compounds
    线性范围
    Range of
    linearity/
    (μg·L−1)
    线性方程
    Linearity
    equation
    相关系数
    Correlation
    coefficient
    检出限
    Limit of
    detection/
    (μg·L−1)
    定量限
    Limit of
    quantitation/
    (μg·L−1)
    日内标准差
    Intra-day
    SD/%
    日间标准差
    Inter-day
    SD/%
    富集倍数
    Enrichment
    factor
    联苯菊酯 Bifenthrin 5 ~ 500 y = 94.8x − 217.5 0.999 0 0.22 0.75 6.1 0.8 108
    氟氯氰菊酯 Cyfluthrin 5 ~ 500 y = 24.916x + 67.895 0.999 4 1.03 3.45 2.2 5.4 71
    氯氰菊酯 Cypermethrin 5 ~ 500 y = 13.341x + 42.416 0.999 6 1.65 5.49 3.0 4.6 65
    氰戊菊酯 Fenvalerate 5 ~ 500 y = 68.004x + 165.82 0.999 6 0.39 1.29 4.3 2.9 66
    溴氰菊酯 Deltamethrin 5 ~ 500 y = 21.184x − 51.306 0.999 9 1.88 6.25 1.9 1.3 93
    下载: 导出CSV

    表  3   使用建立的方法对3种实际水样进行分析

    Table  3   Analytical performance of the proposed method for three real samples

    化合物
    Compounds
    自来水 Tap water水库水 Reservoir water河流水 River water
    添加水平
    Spiked level/(μg·L−1)
    回收率
    Relative recovery/%
    标准差
    SD/%
    回收率
    Relative recovery/%
    标准差
    SD/%
    回收率
    Relative recovery/%
    标准差
    SD/%
    联苯菊酯
    Bifenthrin
    50 92.3 8.3 94.5 4.5 105.1 6.8
    200 113.0 5.7 97.8 8.1 107.6 10.0
    氟氯氰菊酯
    Cyfluthrin
    50 106.2 6.1 104.8 7.3 104.6 7.9
    200 109.7 7.4 103.2 8.3 99.5 7.5
    氯氰菊酯
    Cypermethrin
    50 98.2 7.5 96.4 7.9 97.5 9.3
    200 108.5 5.7 99.1 9.2 100.2 8.9
    氰戊菊酯
    Fenvalerate
    50 96.8 6.9 96.5 6.1 104.4 6.4
    200 110.8 5.0 93.7 8.6 102.7 8.2
    溴氰菊酯
    Deltamethrin
    50 88.2 8.6 88.7 5.2 97.1 8.8
    200 101.6 6.0 89.6 10.2 98.8 11.8
    下载: 导出CSV

    表  4   与其他方法在水中拟除虫菊酯测定中的比较

    Table  4   Comparison of the proposed method and some other methods for pyrethroids determination in water

    方法
    Method
    检测器
    Detector
    萃取剂
    Extraction
    solvent
    线性范围
    Range of linearity
    检出限
    Limit of
    detection/
    (μg·L−1)
    是/否使用耗电设备
    Yes/no use of
    power-consuming
    equipment
    是/否现场
    Yes/no on-site
    参考文献
    Reference
    固相萃取
    Solid phase extraction
    高效液相色谱仪
    HPLC
    Fe3O4@TiO2 25 ~ 2 500 2.8 ~ 6.1 是 Yes 否 No [25]
    分散固相萃取
    Dispersive solid
    phase extraction
    高效液相色谱仪
    HPLC
    β-环糊精连接的
    超支化聚合物
    CD-HBP
    5 ~ 500
    10 ~ 500
    0.96 ~ 2.06 是 Yes 否 No [26]
    固相萃取
    Solid phase extraction
    气相色谱仪
    GC
    Fe3O4-NH2@MIL-101(Cr) 0.002 ~ 2.000 0.005 ~ 0.009 是 Yes 否 No [27]
    现场分散液液微萃取
    On-site DLLME
    气相色谱仪
    GC
    己酸钠
    Sodium hexanoate
    5 ~ 500 0.22 ~ 1.88 否 No 是 Yes 本工作
    This work
    下载: 导出CSV
  • [1]

    Ma E, Feng Z, Zheng Y. The effect of forest on soil erosion control based on remote sensing technology[J]. Ekoloji Dergisi, 2019, 28(108): 2213−2217.

    [2]

    Matyjaszczyk E, Karmilowicz E, Skrzecz I. How European Union accession and implementation of obligatory integrated pest management influenced forest protection against harmful insects: A case study from Poland[J]. Forest Ecology and Management, 2019, 433: 146−152. doi: 10.1016/j.foreco.2018.11.001

    [3]

    Jeong D, Kang J S, Kim K M, et al. Simultaneous determination of pyrethroids and their metabolites in human plasma using liquid chromatography tandem mass spectrometry[J/OL]. Forensic Science International, 2019, 302: 109846 [2021−01−08]. https://doi.org/10.1016/j.forsciint.2019.06.004.

    [4]

    Lidova J, Buric M, Kouba A, et al. Acute toxicity of two pyrethroid insecticides for five non-indigenous crayfish species in Europe[J]. Veterinární Medicína, 2019, 64(3): 125−133.

    [5]

    Deng W, Yu L, Li X, et al. Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices[J]. Food Chemistry, 2019, 274: 891−899. doi: 10.1016/j.foodchem.2018.09.048

    [6]

    Chen S, Gu S, Wang Y, et al. Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China[J]. Environmental Pollution, 2016, 218: 1128−1134. doi: 10.1016/j.envpol.2016.08.066

    [7]

    Sicupira L C, Tiago J P F, Pinho G P, et al. Simultaneous determination of 2, 3, 7, 8-TCDD and 2, 3, 7, 8-TCDF in water samples by LLE-LTP and HPLC-DAD[J]. Journal of the Brazilian Chemical Society, 2019, 30(6): 1284−1292.

    [8]

    Ebrahimi M R, Ghasemian A, Resalati H, et al. Facile isolation of LCC-fraction from organosolv lignin by simple soxhlet extraction[J/OL]. Polymers, 2019, 11(2): 225 [2021−01−19]. https://doi.org/10.3390/polym11020225.

    [9]

    Fracassetti D, Vigentini I, Lo Faro A F F, et al. Assessment of tryptophan, tryptophan ethylester, and melatonin derivatives in red wine by SPE-HPLC-FL and SPE-HPLC-MS methods[J]. Foods, 2019, 8(3): 99. doi: 10.3390/foods8030099

    [10]

    Jouyban A, Farajzadeh M A, Mogaddam M R A. Dispersive liquid-liquid microextraction based on solidification of deep eutectic solvent droplets for analysis of pesticides in farmer urine and plasma by gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 2019, 1124: 114−121. doi: 10.1016/j.jchromb.2019.06.004

    [11]

    Rezaee M, Assadi Y, Hosseini M R M, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(1−2): 1−9. doi: 10.1016/j.chroma.2006.03.007

    [12]

    Xue J, Zhu X, Wu X, et al. Self-acidity induced effervescence and manual shaking-assisted microextraction of neonicotinoid insecticides in orange juice[J]. Journal of Separation Science, 2019, 42(18): 2993−3001. doi: 10.1002/jssc.201900473

    [13]

    Psillakis E. Vortex-assisted liquid-liquid microextraction revisited[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 332−339. doi: 10.1016/j.trac.2018.11.007

    [14]

    Elik A, Altunay N, Gürkan R. Ultrasound-assisted low-density solvent-based dispersive liquid-liquid microextraction coupled to spectrophotometry for the determination of low levels of histamine in fish and meat products[J]. Food Analytical Methods, 2019, 12(2): 489−502. doi: 10.1007/s12161-018-1380-1

    [15]

    Zhong Z, Li G, Luo Z, et al. Microwave-assisted dispersive liquid-liquid microextraction coupling to solidification of floating organic droplet for colorants analysis in selected cosmetics by liquid chromatography[J]. Talanta, 2019, 194: 46−54. doi: 10.1016/j.talanta.2018.09.105

    [16]

    Lasarte-Aragonés G, Lucena R, Cárdenas S, et al. Effervescence assisted dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles[J]. Analytica Chimica Acta, 2014, 807: 61−66. doi: 10.1016/j.aca.2013.11.029

    [17]

    Shishov A, Sviridov I, Timofeeva I, et al. An effervescence tablet-assisted switchable solvent-based microextraction: on-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination[J]. Journal of Molecular Liquids, 2017, 247: 246−253. doi: 10.1016/j.molliq.2017.09.120

    [18]

    Hassan M, Alshana U. Switchable-hydrophilicity solvent liquid-liquid microextraction of non-steroidal anti-inflammatory drugs from biological fluids prior to HPLC-DAD determination[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174: 509−517. doi: 10.1016/j.jpba.2019.06.023

    [19]

    Vakh C, Pochivalov A, Andruch V, et al. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples[J]. Analytica Chimica Acta, 2016, 907: 54−59. doi: 10.1016/j.aca.2015.12.004

    [20]

    Moghadam A G, Rajabi M, Hemmati M, et al. Development of effervescence-assisted liquid phase microextraction based on fatty acid for determination of silver and cobalt ions using micro-sampling flame atomic absorption spectrometry[J]. Journal of Molecular Liquids, 2017, 242: 1176−1183. doi: 10.1016/j.molliq.2017.07.038

    [21]

    Piao H, Jiang Y, Qin Z, et al. Development of a novel acidic task-specific ionic liquid-based effervescence-assisted microextraction method for determination of triazine herbicides in tea beverage [J/OL]. Talanta, 2020, 208: 120414 [2021−01−19]. https://doi.org/10.1016/j.talanta.2019.120414.

    [22]

    Liu X, Shen Z, Wang P, et al. Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water[J]. Journal of Chromatography A, 2014, 1371: 58−64. doi: 10.1016/j.chroma.2014.10.068

    [23]

    Talaee M, Lorestani B, Ramezani M, et al. Microfunnel-filter-based emulsification microextraction followed by gas chromatography for simple determination of organophosphorus pesticides in environmental water samples[J]. Journal of Separation Science, 2019, 42(14): 2418−2425. doi: 10.1002/jssc.201900132

    [24]

    Li S, Hu L, Chen K, et al. Extensible automated dispersive liquid–liquid microextraction[J]. Analytica Chimica Acta, 2015, 872: 46−54. doi: 10.1016/j.aca.2015.02.061

    [25]

    Li C, Chen L. Determination of pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis[J]. Chromatographia, 2013, 76(7−8): 409−417. doi: 10.1007/s10337-013-2393-y

    [26]

    Mi Y, Jia C, Lin X, et al. Dispersive solid-phase extraction based on β-cyclodextrin grafted hyperbranched polymers for determination of pyrethroids in environmental water samples [J/OL]. Microchemical Journal, 2019, 150: 104164 [2021−02−18]. https://doi.org/10.1016/j.microc.2019.104164.

    [27]

    He X, Yang W, Li S, et al. An amino-functionalized magnetic framework composite of type Fe 3 O 4-NH 2@ MIL-101 (Cr) for extraction of pyrethroids coupled with GC-ECD[J]. Microchimica Acta, 2018, 185(2): 1−8.

  • 期刊类型引用(4)

    1. 李桂,曹文华,马建业,马波,王阳修,王秋月. 小麦秸秆覆盖量对坡面流水动力学特性影响. 农业工程学报. 2023(01): 108-116 . 百度学术
    2. 安妙颖,韩玉国,王金满,徐磊,王秀茹,庞丹波. 黄土丘陵区坡面薄层水流动力学特性及其对土壤侵蚀的影响. 中国农业大学学报. 2020(02): 142-150 . 百度学术
    3. 李志刚,梁心蓝,黄洪粮,李和谋,赵小东. 坡耕地地表起伏对坡面漫流的影响. 水土保持学报. 2020(02): 71-77+85 . 百度学术
    4. 杨坪坪,李瑞,盘礼东,王云琦,黄凯,张琳卿. 地表粗糙度及植被盖度对坡面流曼宁阻力系数的影响. 农业工程学报. 2020(06): 106-114 . 百度学术

    其他类型引用(27)

图(10)  /  表(4)
计量
  • 文章访问数:  1376
  • HTML全文浏览量:  467
  • PDF下载量:  62
  • 被引次数: 31
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-03-30
  • 网络出版日期:  2021-06-03
  • 发布日期:  2021-10-14

目录

/

返回文章
返回