Determination of five pyrethroid pesticides in water using on-site DLLME-GC
-
摘要:
目的 由于森林病虫害频发,大量化学农药用于病害虫防治。而农药残留进入水体造成了水资源的污染,因此,拟建立一种新颖的实现现场处理的样品前处理方法,对环境水体中的农药进行检测。 方法 称量0.499 2 g柠檬酸、0.405 6 g磷酸二氢钠、0.218 4 g碳酸氢钠和0.180 0 g己酸钠,研磨混合均匀,使用压片机压制成泡腾片待用。将吸油棉裁卷为2 cm高度和60 mg/cm密度的圆柱体,填装入过滤柱,手动制成聚丙烯吸油棉过滤柱。将10 mL样品盛于注射器中,加入泡腾片,待完全反应后,经自制过滤柱过滤,200 μL乙腈洗脱,气相色谱-电子捕获检测器检测。 最佳条件下,该方法在5 ~ 500 μg/L范围内,相关系数均大于0.999 0,具有良好的线性。按照3倍信噪比和10倍信噪比计算检出限和定量限,检测限为0.22 ~ 1.88 μg/L,定量限为0.75 ~ 6.25 μg/L。加标回收率在88.2% ~ 113.0%之间,相对标准偏差为4.5% ~ 11.8%,富集倍数在65 ~ 108之间。 结论 本研究建立了一种基于可转换亲水性溶剂的泡腾片辅助现场分散液液微萃取−气相色谱法,检测了环境水样中的5种拟除虫菊酯类农药。该方法不需要使用用电设备,能够实现样品现场预处理,减少了人力物力的消耗,具有广阔的应用前景。 Abstract:Objective Due to the frequent occurrence of forest pests and diseases, a large number of chemical pesticides were used for pest control which enter the water and pollute the water resources. Therefore, it is planned to establish a novel sample pretreatment method for on-site processing to detect pesticides in environmental water bodies. Method 0.499 2 g of citric acid, 0.405 6 g of sodium dihydrogen phosphate, 0.218 4 g of sodium bicarbonate and 0.180 0 g of sodium caproate are weighed, ground and mixed evenly. The powder was compressed by a tablet machine into effervescent tablets for use. The polypropylene oil-absorbent cotton was cut into a cylinder with a height of 2 cm and a density of 60 mg/cm and packed into a filter column, and a novel homemade filter column was accomplished finally. The 10 mL sample was placed in a syringe and added with effervescent tablets. After the reaction was complete, it was filtered through a self-made filter column. After the filter column being eluted with 200 μL of acetonitrile, the filtrate was detected by gas chromatography-electron capture detector. Result Under the optimal conditions, the linearity was in the concentration ranges of 5−500 μg/L, with coefficients greater than 0.999 0. The limit of detection and limit of quantification were calculated based on 3 times signal-to-noise ratio and 10 times signal-to-noise ratio. The limit of detection and the limit of quantitation were in the range of 0.22−1.88 μg/L and 0.75−6.25 μg/L. The recovery rate ranged between 88.2%−113.0%, the relative standard deviation was 0.8%−6.1%, and the enrichment factor was between 65−108. Conclusion In this study, a new method named switchable hydrophilic solvent-based effervescent tablet assisted on-site dispersion liquid-liquid microextraction-gas chromatography was established to determine five pyrethroid pesticides in environmental waters. This method does not require the use of electrical equipment and can realize on-site pretreatment, which reduces the consumption of manpower and material resources and has broad application prospects. -
表 1 不同泡腾片成分方案
Table 1. Scheme of different effervescent tablets
编号 No. 方案 Scheme 反应时间 Reaction time/s A 柠檬酸 + 磷酸二氢钠 + 碳酸氢钠 + 己酸钠
Citric acid + sodium dihydrogen phosphate + sodium bicarbonate + sodium hexanoate60 B 柠檬酸 + 磷酸二氢钠 + 碳酸钠 + 己酸钠
Citric acid + sodium dihydrogen phosphate + sodium carbonate + sodium hexanoate80 C 柠檬酸 + 碳酸氢钠 + 己酸钠 Citric acid + sodium bicarbonate + sodium hexanoate 15 D 柠檬酸 + 碳酸钠 + 己酸钠 Citric acid + sodium carbonate + sodium hexanoate 30 表 2 5种菊酯的线性方程、相关系数及检出限
Table 2. Linear equation, correlation coefficients and detection limits of five pyrethroids
化合物
Compounds线性范围
Range of
linearity/
(μg·L−1)线性方程
Linearity
equation相关系数
Correlation
coefficient检出限
Limit of
detection/
(μg·L−1)定量限
Limit of
quantitation/
(μg·L−1)日内标准差
Intra-day
SD/%日间标准差
Inter-day
SD/%富集倍数
Enrichment
factor联苯菊酯 Bifenthrin 5 ~ 500 y = 94.8x − 217.5 0.999 0 0.22 0.75 6.1 0.8 108 氟氯氰菊酯 Cyfluthrin 5 ~ 500 y = 24.916x + 67.895 0.999 4 1.03 3.45 2.2 5.4 71 氯氰菊酯 Cypermethrin 5 ~ 500 y = 13.341x + 42.416 0.999 6 1.65 5.49 3.0 4.6 65 氰戊菊酯 Fenvalerate 5 ~ 500 y = 68.004x + 165.82 0.999 6 0.39 1.29 4.3 2.9 66 溴氰菊酯 Deltamethrin 5 ~ 500 y = 21.184x − 51.306 0.999 9 1.88 6.25 1.9 1.3 93 表 3 使用建立的方法对3种实际水样进行分析
Table 3. Analytical performance of the proposed method for three real samples
化合物
Compounds自来水 Tap water 水库水 Reservoir water 河流水 River water 添加水平
Spiked level/(μg·L−1)回收率
Relative recovery/%标准差
SD/%回收率
Relative recovery/%标准差
SD/%回收率
Relative recovery/%标准差
SD/%联苯菊酯
Bifenthrin50 92.3 8.3 94.5 4.5 105.1 6.8 200 113.0 5.7 97.8 8.1 107.6 10.0 氟氯氰菊酯
Cyfluthrin50 106.2 6.1 104.8 7.3 104.6 7.9 200 109.7 7.4 103.2 8.3 99.5 7.5 氯氰菊酯
Cypermethrin50 98.2 7.5 96.4 7.9 97.5 9.3 200 108.5 5.7 99.1 9.2 100.2 8.9 氰戊菊酯
Fenvalerate50 96.8 6.9 96.5 6.1 104.4 6.4 200 110.8 5.0 93.7 8.6 102.7 8.2 溴氰菊酯
Deltamethrin50 88.2 8.6 88.7 5.2 97.1 8.8 200 101.6 6.0 89.6 10.2 98.8 11.8 表 4 与其他方法在水中拟除虫菊酯测定中的比较
Table 4. Comparison of the proposed method and some other methods for pyrethroids determination in water
方法
Method检测器
Detector萃取剂
Extraction
solvent线性范围
Range of linearity检出限
Limit of
detection/
(μg·L−1)是/否使用耗电设备
Yes/no use of
power-consuming
equipment是/否现场
Yes/no on-site参考文献
Reference固相萃取
Solid phase extraction高效液相色谱仪
HPLCFe3O4@TiO2 25 ~ 2 500 2.8 ~ 6.1 是 Yes 否 No [25] 分散固相萃取
Dispersive solid
phase extraction高效液相色谱仪
HPLCβ-环糊精连接的
超支化聚合物
CD-HBP5 ~ 500
10 ~ 5000.96 ~ 2.06 是 Yes 否 No [26] 固相萃取
Solid phase extraction气相色谱仪
GCFe3O4-NH2@MIL-101(Cr) 0.002 ~ 2.000 0.005 ~ 0.009 是 Yes 否 No [27] 现场分散液液微萃取
On-site DLLME气相色谱仪
GC己酸钠
Sodium hexanoate5 ~ 500 0.22 ~ 1.88 否 No 是 Yes 本工作
This work -
[1] Ma E, Feng Z, Zheng Y. The effect of forest on soil erosion control based on remote sensing technology[J]. Ekoloji Dergisi, 2019, 28(108): 2213−2217. [2] Matyjaszczyk E, Karmilowicz E, Skrzecz I. How European Union accession and implementation of obligatory integrated pest management influenced forest protection against harmful insects: A case study from Poland[J]. Forest Ecology and Management, 2019, 433: 146−152. doi: 10.1016/j.foreco.2018.11.001 [3] Jeong D, Kang J S, Kim K M, et al. Simultaneous determination of pyrethroids and their metabolites in human plasma using liquid chromatography tandem mass spectrometry[J/OL]. Forensic Science International, 2019, 302: 109846 [2021−01−08]. https://doi.org/10.1016/j.forsciint.2019.06.004. [4] Lidova J, Buric M, Kouba A, et al. Acute toxicity of two pyrethroid insecticides for five non-indigenous crayfish species in Europe[J]. Veterinární Medicína, 2019, 64(3): 125−133. [5] Deng W, Yu L, Li X, et al. Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices[J]. Food Chemistry, 2019, 274: 891−899. doi: 10.1016/j.foodchem.2018.09.048 [6] Chen S, Gu S, Wang Y, et al. Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China[J]. Environmental Pollution, 2016, 218: 1128−1134. doi: 10.1016/j.envpol.2016.08.066 [7] Sicupira L C, Tiago J P F, Pinho G P, et al. Simultaneous determination of 2, 3, 7, 8-TCDD and 2, 3, 7, 8-TCDF in water samples by LLE-LTP and HPLC-DAD[J]. Journal of the Brazilian Chemical Society, 2019, 30(6): 1284−1292. [8] Ebrahimi M R, Ghasemian A, Resalati H, et al. Facile isolation of LCC-fraction from organosolv lignin by simple soxhlet extraction[J/OL]. Polymers, 2019, 11(2): 225 [2021−01−19]. https://doi.org/10.3390/polym11020225. [9] Fracassetti D, Vigentini I, Lo Faro A F F, et al. Assessment of tryptophan, tryptophan ethylester, and melatonin derivatives in red wine by SPE-HPLC-FL and SPE-HPLC-MS methods[J]. Foods, 2019, 8(3): 99. doi: 10.3390/foods8030099 [10] Jouyban A, Farajzadeh M A, Mogaddam M R A. Dispersive liquid-liquid microextraction based on solidification of deep eutectic solvent droplets for analysis of pesticides in farmer urine and plasma by gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 2019, 1124: 114−121. doi: 10.1016/j.jchromb.2019.06.004 [11] Rezaee M, Assadi Y, Hosseini M R M, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(1−2): 1−9. doi: 10.1016/j.chroma.2006.03.007 [12] Xue J, Zhu X, Wu X, et al. Self-acidity induced effervescence and manual shaking-assisted microextraction of neonicotinoid insecticides in orange juice[J]. Journal of Separation Science, 2019, 42(18): 2993−3001. doi: 10.1002/jssc.201900473 [13] Psillakis E. Vortex-assisted liquid-liquid microextraction revisited[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 332−339. doi: 10.1016/j.trac.2018.11.007 [14] Elik A, Altunay N, Gürkan R. Ultrasound-assisted low-density solvent-based dispersive liquid-liquid microextraction coupled to spectrophotometry for the determination of low levels of histamine in fish and meat products[J]. Food Analytical Methods, 2019, 12(2): 489−502. doi: 10.1007/s12161-018-1380-1 [15] Zhong Z, Li G, Luo Z, et al. Microwave-assisted dispersive liquid-liquid microextraction coupling to solidification of floating organic droplet for colorants analysis in selected cosmetics by liquid chromatography[J]. Talanta, 2019, 194: 46−54. doi: 10.1016/j.talanta.2018.09.105 [16] Lasarte-Aragonés G, Lucena R, Cárdenas S, et al. Effervescence assisted dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles[J]. Analytica Chimica Acta, 2014, 807: 61−66. doi: 10.1016/j.aca.2013.11.029 [17] Shishov A, Sviridov I, Timofeeva I, et al. An effervescence tablet-assisted switchable solvent-based microextraction: on-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination[J]. Journal of Molecular Liquids, 2017, 247: 246−253. doi: 10.1016/j.molliq.2017.09.120 [18] Hassan M, Alshana U. Switchable-hydrophilicity solvent liquid-liquid microextraction of non-steroidal anti-inflammatory drugs from biological fluids prior to HPLC-DAD determination[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174: 509−517. doi: 10.1016/j.jpba.2019.06.023 [19] Vakh C, Pochivalov A, Andruch V, et al. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples[J]. Analytica Chimica Acta, 2016, 907: 54−59. doi: 10.1016/j.aca.2015.12.004 [20] Moghadam A G, Rajabi M, Hemmati M, et al. Development of effervescence-assisted liquid phase microextraction based on fatty acid for determination of silver and cobalt ions using micro-sampling flame atomic absorption spectrometry[J]. Journal of Molecular Liquids, 2017, 242: 1176−1183. doi: 10.1016/j.molliq.2017.07.038 [21] Piao H, Jiang Y, Qin Z, et al. Development of a novel acidic task-specific ionic liquid-based effervescence-assisted microextraction method for determination of triazine herbicides in tea beverage [J/OL]. Talanta, 2020, 208: 120414 [2021−01−19]. https://doi.org/10.1016/j.talanta.2019.120414. [22] Liu X, Shen Z, Wang P, et al. Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water[J]. Journal of Chromatography A, 2014, 1371: 58−64. doi: 10.1016/j.chroma.2014.10.068 [23] Talaee M, Lorestani B, Ramezani M, et al. Microfunnel-filter-based emulsification microextraction followed by gas chromatography for simple determination of organophosphorus pesticides in environmental water samples[J]. Journal of Separation Science, 2019, 42(14): 2418−2425. doi: 10.1002/jssc.201900132 [24] Li S, Hu L, Chen K, et al. Extensible automated dispersive liquid–liquid microextraction[J]. Analytica Chimica Acta, 2015, 872: 46−54. doi: 10.1016/j.aca.2015.02.061 [25] Li C, Chen L. Determination of pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis[J]. Chromatographia, 2013, 76(7−8): 409−417. doi: 10.1007/s10337-013-2393-y [26] Mi Y, Jia C, Lin X, et al. Dispersive solid-phase extraction based on β-cyclodextrin grafted hyperbranched polymers for determination of pyrethroids in environmental water samples [J/OL]. Microchemical Journal, 2019, 150: 104164 [2021−02−18]. https://doi.org/10.1016/j.microc.2019.104164. [27] He X, Yang W, Li S, et al. An amino-functionalized magnetic framework composite of type Fe 3 O 4-NH 2@ MIL-101 (Cr) for extraction of pyrethroids coupled with GC-ECD[J]. Microchimica Acta, 2018, 185(2): 1−8. -