高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

现场分散液液微萃取−气相色谱法检测水体中5种拟除虫菊酯类农药

韩文涛 胡克娇 赵婉凝 李松卿 陆鹏飞

韩文涛, 胡克娇, 赵婉凝, 李松卿, 陆鹏飞. 现场分散液液微萃取−气相色谱法检测水体中5种拟除虫菊酯类农药[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210075
引用本文: 韩文涛, 胡克娇, 赵婉凝, 李松卿, 陆鹏飞. 现场分散液液微萃取−气相色谱法检测水体中5种拟除虫菊酯类农药[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210075
Han Wentao, Hu Kejiao, Zhao Wanning, Li Songqing, Lu Pengfei. Determination of Five Pyrethroid Pesticides in Water Using On-site DLLME-GC[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210075
Citation: Han Wentao, Hu Kejiao, Zhao Wanning, Li Songqing, Lu Pengfei. Determination of Five Pyrethroid Pesticides in Water Using On-site DLLME-GC[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210075

现场分散液液微萃取−气相色谱法检测水体中5种拟除虫菊酯类农药

doi: 10.12171/j.1000-1522.20210075
基金项目: 国家自然科学基金青年基金项目(21707008)
详细信息
    作者简介:

    韩文涛。主要研究方向:化学防治中的农药分析。E-mail:wentaohan2020@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    李松卿,博士,讲师。主要研究方向:化学防治及农药环境毒理。E-mail:songqingli@bjfu.edu.cn 地址:同上

    陆鹏飞,博士,教授。主要研究方向:昆虫化学生态学。E-mail:lpengfei224@126.com 地址:同上

  • 中图分类号: S767.3+4

Determination of Five Pyrethroid Pesticides in Water Using On-site DLLME-GC

  • 摘要:   目的  由于森林病虫害频发,大量化学农药用于病害虫防治。而农药残留进入水体造成了水资源的污染,因此,拟建立一种新颖的实现现场处理的样品前处理方法,对环境水体中的农药进行检测。  方法  称量0.499 2 g柠檬酸、0.405 6 g磷酸二氢钠、0.218 4 g碳酸氢钠和0.18 g己酸钠,研磨混合均匀,使用压片机压制成泡腾片待用。将吸油棉裁卷为2 cm高度和60 mg/cm密度的圆柱体,填装入过滤柱,手动制成聚丙烯吸油棉过滤柱。将10 mL样品盛于注射器中,加入泡腾片,待完全反应后,经自制过滤柱过滤,200 μL乙腈洗脱,气相色谱-电子捕获检测器检测。最佳条件下,该方法在5 ~ 500 μg/L范围内,相关系数均大于0.999 0,具有良好的线性。按照3倍信噪比和10倍信噪比计算检出限和定量限,检测限为0.22 ~ 1.88 μg/L,定量限为0.75 ~ 6.25 μg/L。加标回收率在88.2 ~ 113.0%之间,相对标准偏差为0.8 ~ 6.1%,富集倍数在65 ~ 108之间。  结论  本研究建立了一种基于可转换亲水性溶剂的泡腾片辅助现场分散液液微萃取−气相色谱法,检测了环境水样中的5种拟除虫菊酯类农药。该方法不需要使用用电设备,能够实现样品现场预处理,减少了人力物力的消耗,具有广阔的应用前景。

     

  • 图  1  过滤柱的制备

    Figure  1.  Preparation of filter column

    图  2  萃取剂种类的影响

    Figure  2.  Effect of the type of extractant

    图  3  萃取剂用量的影响

    Figure  3.  Effect of the amount of extractant.

    图  4  泡腾片类型的影响

    Figure  4.  Effect of different effervescent tablets

    图  5  酸碱比例影响

    Figure  5.  Effect of acid-base ratio

    图  6  盐效应的影响

    Figure  6.  Effect of salt effect

    图  7  填料类型影响

    Figure  7.  Effect of homemade filter column packing type

    图  8  自制过滤柱填料高度影响

    Figure  8.  Effect of height of homemade filter column packing

    图  9  自制过滤柱填料密度影响

    Figure  9.  Effect of density of homemade filter column packing

    图  10  空白样品(a)和加标样品(b)的气相色谱图

    添加浓度为50 μg•L−1;1为联苯菊酯;峰2为氟氯氰菊酯;峰3为氯氰菊酯;峰4为氰戊菊酯;峰5为溴氰菊酯。Spiked concentration, 50 μg•L−1; Peak 1, Bifenthrin; Peak 2, Cyfluthrin; Peak 3, Cypermethrin; Peak 4, Fenvalerate; Peak 5, Deltamethrin.

    Figure  10.  Gas chromatogram of blank sample (a) and spiked sample (b)

    表  1  不同泡腾片成分方案

    Table  1.   Scheme of different effervescent tablets

    编号 Number方案 Scheme反应时间 Reaction time
    A 柠檬酸 + 磷酸二氢钠 + 碳酸氢钠 + 己酸钠
    Citric acid + Sodium dihydrogen phosphate + Sodium bicarbonate + Sodium hexanoate
    60 s
    B 柠檬酸 + 磷酸二氢钠 + 碳酸钠 + 己酸钠
    Citric acid + Sodium dihydrogen phosphate + Sodium carbonate + Sodium hexanoate
    80 s
    C 柠檬酸 + 碳酸氢钠 + 己酸钠 Citric acid + Sodium bicarbonate + Sodium hexanoate 15 s
    D 柠檬酸 + 碳酸钠 + 己酸钠 Citric acid + Sodium carbonate + Sodium hexanoate 30 s
    下载: 导出CSV

    表  2  5种菊酯的线性方程、相关系数及检出限

    Table  2.   Linear equation, correlation coefficients and detection limits of five pyrethroids

    化合物
    Compounds
    线性范围
    Linearity/
    (μg·L−1
    线性方程
    Linearity
    equation
    相关系数
    Correlation
    coefficient
    检出限
    Limit of
    detection/(μg·L−1
    定量限
    Limit of
    quantitation/(μg·L−1
    日间标准差
    Intra-day
    SD/%
    日间标准差
    Inter-day
    SD/%
    富集倍数
    Enrichment
    factor
    联苯菊酯 Bifenthrin 5 ~ 500 y = 94.8x − 217.5 0.999 0 0.22 0.75 6.1 0.8 108
    氟氯氰菊酯 Cyfluthrin 5 ~ 500 y = 24.916x + 67.895 0.999 4 1.03 3.45 2.2 5.4 71
    氯氰菊酯 Cypermethrin 5 ~ 500 y = 13.341x + 42.416 0.999 6 1.65 5.49 3.0 4.6 65
    氰戊菊酯 Fenvalerate 5 ~ 500 y = 68.004x + 165.82 0.999 6 0.39 1.29 4.3 2.9 66
    溴氰菊酯 Deltamethrin 5 ~ 500 y = 21.184x − 51.306 0.999 9 1.88 6.25 1.9 1.3 93
    下载: 导出CSV

    表  3  使用建立的方法对3种实际水样进行分析

    Table  3.   Analytical performance of the proposed method for three real samples.

    化合物
    Compounds
    自来水 Tap water水库水 Reservoir water河流水 River water
    添加水平
    Spiked level /(μg·L−1
    回收率
    Relative recovery /%
    标准差
    SD /%
    回收率
    Relative recovery /%
    标准差
    SD/%
    回收率
    Relative recovery /%
    标准差
    SD /%
    联苯菊酯
    Bifenthrin
    50 92.3 8.3 94.5 4.5 105.1 6.8
    200 113.0 5.7 97.8 8.1 107.6 10.0
    氟氯氰菊酯
    Cyfluthrin
    50 106.2 6.1 104.8 7.3 104.6 7.9
    200 109.7 7.4 103.2 8.3 99.5 7.5
    氯氰菊酯
    Cypermethrin
    50 98.2 7.5 96.4 7.9 97.5 9.3
    200 108.5 5.7 99.1 9.2 100.2 8.9
    氰戊菊酯
    Fenvalerate
    50 96.8 6.9 96.5 6.1 104.4 6.4
    200 110.8 5.0 93.7 8.6 102.7 8.2
    溴氰菊酯
    Deltamethrin
    50 88.2 8.6 88.7 5.2 97.1 8.8
    200 101.6 6.0 89.6 10.2 98.8 11.8
    下载: 导出CSV

    表  4  与其他方法在水中拟除虫菊酯测定中的比较

    Table  4.   Comparison of the proposed method and some other methods for pyrethroids determination in waters.

    方法
    Methods
    检测器
    Detector
    萃取剂
    Extraction
    solvents
    线性范围
    Linearity
    检出限
    Limit of
    detection/(μg·L−1
    是/否使用耗电设备
    Power-consuming
    equipment
    是/否现场
    On-site
    参考文献
    References
    固相萃取
    Solid phase extraction
    高效液相色谱仪
    (HPLC)
    Fe3O4@TiO2 25 ~ 2 500 2.8 ~ 6.1 是 Yes 否 No [25]
    分散固相萃取
    Dispersive solid
    phase extraction
    高效液相色谱仪
    (HPLC)
    β-环糊精连接的
    超支化聚合物(CD-HBP)
    5 ~ 500
    10 ~ 500
    0.96 ~ 2.06 是 Yes 否 No [26]
    固相萃取
    Solid phase extraction
    气相色谱仪
    (GC)
    Fe3O4-NH2@MIL-101(Cr) 0.002 ~ 2.000 0.005 ~ 0.009 是 Yes 否 No [27]
    现场分散液液微萃取
    On-site DLLME
    气相色谱仪
    (GC)
    己酸钠
    Sodium hexanoate
    5 ~ 500 0.22 ~ 1.88 否 No 是 Yes 本工作
    This work
    下载: 导出CSV
  • [1] Ma E, Feng Z, Zheng Y. The effect of forest on soil erosion control based on remote sensing technology[J]. Ekoloji Dergisi, 2019, 28(108): 2213−2217.
    [2] Matyjaszczyk E, Karmilowicz E, Skrzecz I. How European Union accession and implementation of obligatory integrated pest management influenced forest protection against harmful insects: A case study from Poland[J]. Forest Ecology and Management, 2019, 433: 146−152. doi: 10.1016/j.foreco.2018.11.001
    [3] Jeong D, Kang J S, Kim K M, et al. Simultaneous determination of pyrethroids and their metabolites in human plasma using liquid chromatography tandem mass spectrometry[J]. Forensic science international, 2019, 302: 109846. doi: 10.1016/j.forsciint.2019.06.004
    [4] Lidova J, Buric M, Kouba A, et al. Acute toxicity of two pyrethroid insecticides for five non-indigenous crayfish species in Europe[J]. Veterinární medicína, 2019, 64(3): 125−133.
    [5] Deng W, Yu L, Li X, et al. Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices[J]. Food chemistry, 2019, 274: 891−899. doi: 10.1016/j.foodchem.2018.09.048
    [6] Chen S, Gu S, Wang Y, et al. Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China[J]. Environmental pollution, 2016, 218: 1128−1134. doi: 10.1016/j.envpol.2016.08.066
    [7] Sicupira L C, Tiago J P F, Pinho G P, et al. Simultaneous determination of 2, 3, 7, 8-TCDD and 2, 3, 7, 8-TCDF in water samples by LLE-LTP and HPLC-DAD[J]. Journal of the Brazilian Chemical Society, 2019, 30(6): 1284−1292.
    [8] Ebrahimi Majdar R, Ghasemian A, Resalati H, et al. Facile isolation of LCC-fraction from organosolv lignin by simple soxhlet extraction[J]. Polymers, 2019, 11(2): 225. doi: 10.3390/polym11020225
    [9] Fracassetti D, Vigentini I, Lo Faro A F F, et al. Assessment of tryptophan, tryptophan ethylester, and melatonin derivatives in red wine by SPE-HPLC-FL and SPE-HPLC-MS methods[J]. Foods, 2019, 8(3): 99. doi: 10.3390/foods8030099
    [10] Jouyban A, Farajzadeh M A, Mogaddam M R A. Dispersive liquid-liquid microextraction based on solidification of deep eutectic solvent droplets for analysis of pesticides in farmer urine and plasma by gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 2019, 1124: 114−121. doi: 10.1016/j.jchromb.2019.06.004
    [11] Rezaee M, Assadi Y, Hosseini M R M, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(1-2): 1−9. doi: 10.1016/j.chroma.2006.03.007
    [12] Xue J, Zhu X, Wu X, et al. Self-acidity induced effervescence and manual shaking-assisted microextraction of neonicotinoid insecticides in orange juice[J]. Journal of separation science, 2019, 42(18): 2993−3001. doi: 10.1002/jssc.201900473
    [13] Psillakis E. Vortex-assisted liquid-liquid microextraction revisited[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 332−339. doi: 10.1016/j.trac.2018.11.007
    [14] Elik A, Altunay N, Gürkan R. Ultrasound-assisted low-density solvent-based dispersive liquid-liquid microextraction coupled to spectrophotometry for the determination of low levels of histamine in fish and meat products[J]. Food Analytical Methods, 2019, 12(2): 489−502. doi: 10.1007/s12161-018-1380-1
    [15] Zhong Z, Li G, Luo Z, et al. Microwave-assisted dispersive liquid-liquid microextraction coupling to solidification of floating organic droplet for colorants analysis in selected cosmetics by liquid chromatography[J]. Talanta, 2019, 194: 46−54. doi: 10.1016/j.talanta.2018.09.105
    [16] Lasarte-Aragonés G, Lucena R, Cárdenas S, et al. Effervescence assisted dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles[J]. Analytica chimica acta, 2014, 807: 61−66. doi: 10.1016/j.aca.2013.11.029
    [17] Shishov A, Sviridov I, Timofeeva I, et al. An effervescence tablet-assisted switchable solvent-based microextraction: On-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination[J]. Journal of Molecular Liquids, 2017, 247: 246−253. doi: 10.1016/j.molliq.2017.09.120
    [18] Hassan M, Alshana U. Switchable-hydrophilicity solvent liquid-liquid microextraction of non-steroidal anti-inflammatory drugs from biological fluids prior to HPLC-DAD determination[J]. Journal of pharmaceutical and biomedical analysis, 2019, 174: 509−517. doi: 10.1016/j.jpba.2019.06.023
    [19] Vakh C, Pochivalov A, Andruch V, et al. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples[J]. Analytica chimica acta, 2016, 907: 54−59. doi: 10.1016/j.aca.2015.12.004
    [20] Moghadam A G, Rajabi M, Hemmati M, et al. Development of effervescence-assisted liquid phase microextraction based on fatty acid for determination of silver and cobalt ions using micro-sampling flame atomic absorption spectrometry[J]. Journal of Molecular Liquids, 2017, 242: 1176−1183. doi: 10.1016/j.molliq.2017.07.038
    [21] Piao H, Jiang Y, Qin Z, et al. Development of a novel acidic task-specific ionic liquid-based effervescence-assisted microextraction method for determination of triazine herbicides in tea beverage[J]. Talanta, 2020, 208: 120414. doi: 10.1016/j.talanta.2019.120414
    [22] Liu X, Shen Z, Wang P, et al. Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water[J]. Journal of Chromatography A, 2014, 1371: 58−64. doi: 10.1016/j.chroma.2014.10.068
    [23] Talaee M, Lorestani B, Ramezani M, et al. Microfunnel-filter-based emulsification microextraction followed by gas chromatography for simple determination of organophosphorus pesticides in environmental water samples[J]. Journal of separation science, 2019, 42(14): 2418−2425. doi: 10.1002/jssc.201900132
    [24] Li S, Hu L, Chen K, et al. Extensible automated dispersive liquid–liquid microextraction[J]. Analytica chimica acta, 2015, 872: 46−54. doi: 10.1016/j.aca.2015.02.061
    [25] Li C, Chen L. Determination of pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis[J]. Chromatographia, 2013, 76(7-8): 409−417. doi: 10.1007/s10337-013-2393-y
    [26] Mi Y, Jia C, Lin X, et al. Dispersive solid-phase extraction based on β-cyclodextrin grafted hyperbranched polymers for determination of pyrethroids in environmental water samples[J]. Microchemical Journal, 2019, 150: 104164. doi: 10.1016/j.microc.2019.104164
    [27] He X, Yang W, Li S, et al. An amino-functionalized magnetic framework composite of type Fe 3 O 4-NH 2@ MIL-101 (Cr) for extraction of pyrethroids coupled with GC-ECD[J]. Microchimica Acta, 2018, 185(2): 1−8.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  40
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2021-03-31
  • 网络出版日期:  2021-06-04

目录

    /

    返回文章
    返回