高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

朝鲜崖柏枝叶精油的最佳提取工艺及其抑菌性

付聪 兰雪涵 李黎明 苑景淇 李成宏 杜凤国

付聪, 兰雪涵, 李黎明, 苑景淇, 李成宏, 杜凤国. 朝鲜崖柏枝叶精油的最佳提取工艺及其抑菌性[J]. 北京林业大学学报, 2021, 43(6): 141-151. doi: 10.12171/j.1000-1522.20210076
引用本文: 付聪, 兰雪涵, 李黎明, 苑景淇, 李成宏, 杜凤国. 朝鲜崖柏枝叶精油的最佳提取工艺及其抑菌性[J]. 北京林业大学学报, 2021, 43(6): 141-151. doi: 10.12171/j.1000-1522.20210076
Fu Cong, Lan Xuehan, Li Liming, Yuan Jingqi, Li Chenghong, Du Fengguo. Optimum extraction technology and antibacterial activity of essential oil from the branches and leaves of Thuja koraiensis[J]. Journal of Beijing Forestry University, 2021, 43(6): 141-151. doi: 10.12171/j.1000-1522.20210076
Citation: Fu Cong, Lan Xuehan, Li Liming, Yuan Jingqi, Li Chenghong, Du Fengguo. Optimum extraction technology and antibacterial activity of essential oil from the branches and leaves of Thuja koraiensis[J]. Journal of Beijing Forestry University, 2021, 43(6): 141-151. doi: 10.12171/j.1000-1522.20210076

朝鲜崖柏枝叶精油的最佳提取工艺及其抑菌性

doi: 10.12171/j.1000-1522.20210076
基金项目: 国家林业和草原局野生动植物保护管理项目(2017),吉林省教育厅“十三五”科学技术项目(JJKH20200052KJ)
详细信息
    作者简介:

    付聪。主要研究方向:资源利用与植物保护研究。Email:939578904@qq.com  地址:132013 吉林省吉林市北华大学林学院

    责任作者:

    杜凤国,教授,博士生导师。主要研究方向:长白山濒危植物保育生物学研究。Email:dfg4656@qq.com 地址:同上

  • 中图分类号: TQ654.2

Optimum extraction technology and antibacterial activity of essential oil from the branches and leaves of Thuja koraiensis

  • 摘要:   目的  朝鲜崖柏是集芳香、观赏、药用于一身的珍贵经济树种,其精油具有良好抑菌性。对朝鲜崖柏枝叶精油的提取工艺优化、成分分析和抑菌性进行研究,旨在为朝鲜崖柏精油的开发利用提供科学依据。  方法  采用水蒸气蒸馏法提取朝鲜崖柏枝叶的精油,进行单因素试验,并采用正交试验法和响应面优化法对提取工艺进行优化。采取GC-MS(气相色谱–质谱联用)技术对其化学成分进行分析。并用滤纸片抑菌法和平板涂布法检测精油的抑菌活性。  结果  水蒸气蒸馏法提取朝鲜崖柏枝叶精油的单因素试验显示:液料比7.0 mL/g,NaCl质量分数2.0%,蒸馏时间2.0 h,新鲜枝叶时提取率较高。通过正交试验分析,蒸馏时间2.0 h、液料比7.0 mL/g、NaCl质量分数2.0%为最优组合,其精油提取率为4.2%。响应面优化法得到的最优组合为:液料比6.9 mL/g、蒸馏时间2.7 h、NaCl质量分数2.6%,在此条件下的精油提取率为4.3%,实际值为4.4%,两者拟合良好。通过化学成分分析,从精油中共检出48种化合物,占所提取精油总量的93.79%,其中以乙酸香芹酯含量最高。烯类物质17种,醇类物质15种,酯类物质6种,酮类物质5种,酚类等物质5种,分别占总质量的26.79%、25.40%、28.47%、11.84%和1.11%。精油对金黄葡萄球菌抑菌圈直径为13.28 mm,枯草芽孢杆菌的为12.04 mm、大肠杆菌的为12.94 mm,均表现为中度敏感。精油对金黄葡萄球菌的MIC值为0.005 μg/L,对枯草芽孢杆菌和大肠杆菌的MIC值均为0.010 μg/L。  结论  水蒸气蒸馏法提取朝鲜崖柏枝叶精油的最佳工艺研究,既节省了溶剂用量,缩短了蒸馏时间,又保证了提取率,有利于后续的研究,对企业生产有一定的借鉴价值。朝鲜崖柏枝叶精油的抑菌效果明显,有较大开发潜力,建议加以收集利用。

     

  • 图  1  液料比对朝鲜崖柏枝叶精油提取率的影响

    Figure  1.  Effects of liquid-solid ratio on the extraction rate of essential oil from Thuja koraiensis branches and leaves

    图  2  NaCl质量分数对朝鲜崖柏枝叶精油提取率的影响

    Figure  2.  Effects of NaCl mass fraction on extraction rate of essential oil from Thuja koraiensis branches and leaves

    图  3  蒸馏时间对朝鲜崖柏枝叶精油提取率的影响

    Figure  3.  Effects of distillation time on extraction rate of essential oil from Thuja koraiensis branches and leaves

    图  4  保存条件对朝鲜崖柏枝叶精油提取率的影响

    Figure  4.  Effects of preservation conditions on extraction rate of the essential oil from Thuja koraiensis branches and leaves

    图  5  蒸馏时间与液料比对精油提取率影响的等高线图与响应面

    Figure  5.  Contour plot and response surface of effect of distillation time and liquid-solid ratio on essential oil yield

    图  7  液料比与NaCl质量分数对精油提取率影响的等高线图与响应面

    Figure  7.  Concontour plot and response surface of the effect of liquid-solid ratio and NaCl mass fraction on essential oil yield

    图  6  蒸馏时间与NaCl质量分数对精油提取率影响的等高线图与响应面

    Figure  6.  Contour plot and response surface of the effect of distillation time and NaCl mass fraction on essential oil yield

    图  8  朝鲜崖柏枝叶精油的离子流色谱图

    Figure  8.  Ion flow chromatography of the essential oil from Thuja koraiensis branches and leaves

    图  9  朝鲜崖柏枝叶精油对不同菌种的抑菌圈图片

    1. 朝鲜崖柏枝叶精油;2. 1%青霉素;3. 无菌生理盐水;4. 正己烷。1, essential oil from the branches and leaves of Thuja koraiensis; 2, 1% penicillin; 3, sterile saline; 4, n-hexane.

    Figure  9.  Inhibitory zone of the essential oil from Thuja koraiensis branches and leaves to different strains

    表  1  试验因素水平表

    Table  1.   Levels of test factors

    水平
    Level
    蒸馏时间
    Distillation time
    (A)/h
    液料比
    Liquid-solid ratio
    (B)/(mL·g−1)
    NaCl质量分数
    Mass fraction of NaCl
    (C)/%
    −1 1.0 6.0 1.0
    0 2.0 7.0 2.0
    1 3.0 8.0 4.0
    下载: 导出CSV

    表  2  朝鲜崖柏枝叶精油提取工艺正交试验结果

    Table  2.   Orthogonal experiment results of extraction technology of the essential oil from Thuja koraiensis branches and leaves

    试验序号
    Experiment No.
    因素 Factor提取率
    Extraction rate/%
    ABC
    1 −1 −1 −1 3.0
    2 −1 0 0 3.6
    3 −1 1 1 2.3
    4 0 −1 0 3.8
    5 0 0 1 3.8
    6 0 1 −1 3.4
    7 1 −1 1 3.1
    8 1 0 −1 3.9
    9 1 1 0 3.5
    K1 2.967 3.567 3.433
    K2 3.667 3.767 3.633
    K3 3.500 3.067 3.067
    极差 Range 0.700 0.700 0.566
    下载: 导出CSV

    表  3  朝鲜崖柏枝叶精油的正交试验方差分析

    Table  3.   Analysis of variance in orthogonal test of the essential oil from Thuja koraiensis branches and leaves

    因素
    Factor
    平方和
    Sum of
    square
    自由度
    Degree of
    freedom
    均方
    Mean
    square
    FP
    A 0.802 2 0.401 51.571 0.019
    B 0.762 2 0.381 49.000 0.020
    C 0.496 2 0.248 31.857 0.030
    误差 Error 0.016 2 0.008
    下载: 导出CSV

    表  4  响应面试验设计和结果

    Table  4.   Design and results of response surface test

    试验序号
    Experiment No.
    因素 Factor提取率
    Extraction rate (Y)/%
    ABC
    1 1 0 1 3.9
    2 1 0 −1 3.8
    3 −1 0 1 3.3
    4 0 −1 1 3.3
    5 0 1 1 3.1
    6 0 −1 −1 3.2
    7 0 0 0 4.1
    8 −1 −1 0 3.0
    9 0 0 0 4.0
    10 −1 1 0 2.4
    11 0 0 0 4.1
    12 0 1 −1 3.0
    13 0 0 0 4.2
    14 1 1 0 3.6
    15 −1 0 −1 2.8
    16 1 −1 0 3.8
    17 0 0 0 4.3
    下载: 导出CSV

    表  5  响应面试验方差分析

    Table  5.   ANOVA for response surface

    项目 Item平方和 Sum of square自由度 Degree of freedom均方 Mean squareFP
    模型 Model 4.860 9 0.540 33.74 < 0.000 1
    A 1.620 1 1.620 101.25 < 0.000 1
    B 0.180 1 0.180 11.25 0.012 2
    C 0.080 1 0.080 5.00 0.040 4
    AB 0.040 1 0.040 2.50 0.157 9
    AC 0.040 1 0.040 2.50 0.157 9
    BC 0.000 1 0.000 0.00 1.000 0
    A2 0.430 1 0.430 26.95 0.001 3
    B2 1.620 1 1.620 101.16 < 0.000 1
    C2 0.580 1 0.580 36.03 0.000 5
    残差 Residual 0.110 1 0.016 1.54 0.334 8
    失拟误差 Lack of fit error 0.060 1 0.020
    纯误差 Pure error 0.052 4 0.013
    总误差 Total error 4.970 16
    下载: 导出CSV

    表  6  朝鲜崖柏枝叶精油的成分分析鉴定结果

    Table  6.   Compound analysis and identification of the essential oil from Thuja koraiensis branches and leaves

    峰号 Peak No.化合物名称 Compound name分子式 Formula分子量 Molecular mass质量分数 Mass fraction/%
    1 葑烯 Feoehene C10H16 136 0.07
    2 α-侧柏烯 α-thujene C10H16 136 0.59
    3 马鞭草烯酮 Trimethylbicyclo C10H14O 150 1.80
    4 β-水芹烯 β-phellandrene C10H16 136 11.62
    5 莰烯 Camphene C10H16 136 1.84
    6 β-蒎烯 β-phellandrene C10H16 136 0.08
    7 月桂烯 Myrcene C10H16 136 2.82
    8 α-水芹烯 α-phellandrene C10H16 136 0.09
    9 松油烯 Terpinene C10H16 136 1.00
    10 d-柠檬烯 d-limonene C10H16 136 2.13
    11 萜品烯Terpinene C10H16 136 1.41
    12 降樟脑 Norcamphor C7H10O 110 14.27
    13 山梨酸乙酯 2,4-hexadienoic acid C8H12O2 140 0.14
    14 芳樟醇 Linalool C10H18O 154 0.35
    15 α-侧柏酮 α-bicyclo C10H16O 152 1.05
    16 小茴香酮 Fenehone C10H18O 154 0.07
    17 侧柏酮 Thujone C10H16O 152 8.86
    18 2-环己烯-1-醇 2-cyclohexen-1-ol C9H16O 140 0.26
    19 双环[3.1.0]-3-己醇 Bicyclo[3.1.0]hexan-3-ol C6H10O 98 0.46
    20 樟脑 Camphor C10H16O 152 0.20
    21 双环[2.2.1]-2-庚醇 Bicyclo[2.2.1]heptan-2-ol C7H12O 112 0.28
    22 冰片 Borneol C10H18O 154 0.22
    23 1-羟基-3-环己烯 3-cyclohexen-1-ol C6H10O 98 2.14
    24 α-松油醇 α-terpineol C10H18O 154 0.39
    25 2-环己烯-1-醇 2-cyclohexen-1-ol C6H10O 98 0.08
    26 双环[2.2.1]-2-庚醇 Bicyclo[2.2.1]heptan-2-ol C7H12O 112 0.19
    27 香茅醇 Citronellol C10H20O 156 0.22
    28 香茅酸 Citronellic acid C10H18O2 170 0.32
    29 乙酸龙脑酯 Bornyl acetate C12H20O2 196 7.58
    30 乙酸香芹酯 Carvyl acetate C12H18O2 194 20.43
    31 乙酸萜品酯 Terpinyl acetate C12H20O2 196 0.10
    32 乙酸松油酯 3-cyclohexene-1-methanol C12H20O2 196 0.06
    33 β-榄香烯 β-cyclohexane C15H24 204 0.43
    34 石竹烯 Caryophyllene C15H24 204 0.07
    35 肉桂酸乙酯 2-propenoic acid C11H12O2 176 0.16
    36 β-番茄红素 β-copaene C15H24 204 0.35
    37 α-摩勒烯 α-muurolene C15H24 204 0.18
    38 环己醇 Cyclohexanol C6H12O 244 5.76
    39 α-毕橙茄醇 α-cadinol C15H24 204 0.25
    40 2-萘酚 2-hydroxy naphthalene
    C15H18O 214 0.12
    41 异前列腺素 8-epi-prostaglandin F2α C20H34O5 354 0.10
    42 γ-桉叶醇 γ-naphthalenemethanol C15H26O 222 1.36
    43 β-桉叶醇 β-naphthalenemethanol C15H26O 222 1.08
    44 芮木泪柏烯 Phenanthrene C20H32 272 2.35
    45 蛇麻烯 Humulene C15H24 204 0.08
    46 γ-摩勒烯 γ-muurolene C15H24 204 0.07
    47 2-异丙基-5-甲基-3-环己烯-1-酮
    2-isopropyl-5-methyl-3-cyclohexen-1-one
    C10H16O 152 0.06
    48 τ-松油醇 τ-terpineol C15H26O 222 0.25
    下载: 导出CSV

    表  7  朝鲜崖柏枝叶精油的最低抑菌质量浓度

    Table  7.   Minimum inhibitory concentration of the essential oil from Thuja koraiensis branches and leaves

    菌种 Strain菌种类型 Strain type最低抑菌质量浓度 Minimum inhibitory concentration/(μg·L−1)
    金黄葡萄球菌 Staphylococcus aureus G+ 0.005
    枯草芽孢杆菌 Bacillus subtilis G+ 0.010
    大肠杆菌 Escherichia coli G 0.010
    下载: 导出CSV
  • [1] 苑景淇, 于忠亮, 李成宏, 等. 濒危植物朝鲜崖柏研究现状和保育对策[J]. 安徽农业科学, 2019, 47(19):135−137. doi: 10.3969/j.issn.0517-6611.2019.19.040

    Yuan J Q, Yu Z L, Li C H, et al. Research status and conservation strategy of endangered species Thuja koraiensis Nakai[J]. Journal of Anhui Agricultural Sciences, 2019, 47(19): 135−137. doi: 10.3969/j.issn.0517-6611.2019.19.040
    [2] 尹航, 赵莹, 崔凯峰, 等. 朝鲜崖柏无性繁育技术[J]. 中国野生植物资源, 2013, 32(1):68−69. doi: 10.3969/j.issn.1006-9690.2013.01.018

    Yin H, Zhao Y, Cui K F, et al. Asexual reproduction technique of Thuja koraiensis Nakai[J]. Chinese Wild Plant Resources, 2013, 32(1): 68−69. doi: 10.3969/j.issn.1006-9690.2013.01.018
    [3] 崔玉柱, 万淑荣, 唐剑波, 等. 朝鲜崖柏的育苗技术[J]. 中国林副特产, 1997, 2(2):37.

    Cui Y Z, Wan S R, Tang J B, et al. Seedling raising techniques of Thuja koraiensis Nakai[J]. Forest By-Product and Speciality in China, 1997, 2(2): 37.
    [4] 尹航, 赵莹, 金慧, 等. 长白山区防治朝鲜崖柏扦插苗冻拔害的试验[J]. 吉林林业科技, 2017, 46(3):1−2, 6.

    Yin H, Zhao Y, Jin H, et al. The experiment of preventing Thuja koraiensis cutting seedling frost heaving damage in Changbai Mountain[J]. Journal of Jilin Forestry Science and Technology, 2017, 46(3): 1−2, 6.
    [5] 杜凤国, 苑景淇, 高纯, 等. 濒危植物朝鲜崖柏球果与种子性状[J]. 北华大学学报(自然科学版), 2019, 20(5):600−604.

    Du F G, Yuan J Q, Gao C, et al. Characteristics of cones and seeds of endangered species Thuja koraiensis Nakai[J]. Journal of Beihua University (Natural Science), 2019, 20(5): 600−604.
    [6] 苑景淇, 于忠亮, 高纯, 等. 朝鲜崖柏种子形态质量及萌发特性的初步研究[J]. 吉林林业科技, 2019, 48(4):1−3, 48.

    Yuan J Q, Yu Z L, Gao C, et al. Preliminary study on the morphology quality and germination characteristics of Thuja koraiensis seed[J]. Journal of Jilin Forestry Science and Technology, 2019, 48(4): 1−3, 48.
    [7] 王戈戎, 夏富才, 刘宝东, 等. 朝鲜崖柏生境及高生长规律分析[J]. 北华大学学报(自然科学版), 2017, 18(3):312−314.

    Wang G R, Xia F C, Liu B D, et al. Habitat and height growth rhythm of Thuja koraiensis[J]. Journal of Beihua University (Natural Science), 2017, 18(3): 312−314.
    [8] 尹航, 金慧, 赵莹, 等. 长白山珍稀濒危植物朝鲜崖柏种群现状及保育对策[J]. 北华大学学报(自然科学版), 2016, 17(1):40−42.

    Yin H, Jin H, Zhao Y, et al. Present situation and conservation strategy of rare and endangered species Thuja koraiensis in Changbai Mountain[J]. Journal of Beihua University (Natural Science), 2016, 17(1): 40−42.
    [9] 陈可贵, 戚继忠, 孟凡华, 等. 长白侧柏资源及其生长规律的调查[J]. 吉林林学院学报, 1993, 9(2):33−39.

    Chen K G, Qi J Z, Meng F H, et al. Investigation on Thuja koraiensis Nakai resources and its growth law[J]. Journal of Jilin Forestry University, 1993, 9(2): 33−39.
    [10] 倪妍妍, 张玉婷, 刘建锋, 等. 崖柏属5种植物叶片挥发油成分分析[J]. 南京林业大学学报(自然科学版), 2018, 42(6):179−185.

    Ni Y Y, Zhang Y T, Liu J F, et al. Comparison of chemical constituents in volatile compounds from leaves of five Thuja species[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 179−185.
    [11] 戚继忠, 孙广仁, 杨文胜, 等. 长白侧柏枝叶精油化学成分分析[J]. 植物资源与环境, 1995, 4(2):61−62.

    Qi J Z, Sun G R, Yang W S, et al. Chemical constituents of essential oils from branches and leaves of Thuja koraiensis Nakai[J]. Journal of Plant Resources and Environment, 1995, 4(2): 61−62.
    [12] 杨智蕴, 田作霖, 刘群, 等. 朝鲜崖柏叶挥发油化学成分研究[J]. 东北师大学报(自然科学版), 1994, 32(1):136−140.

    Yang Z Y, Tian Z L, Liu Q, et al. Studies on the chemical constituents of the volatile oil from leaves of Thuja Koraiensis Nakai maxim[J]. Journal of Northeast Normal University (Natural Science Edition), 1994, 32(1): 136−140.
    [13] 변준기, 천광일, 이동혁, et al. The character of community structure and distribution for Thuja koraiensis Nakai, South Korea[J]. Korean Journal of Plant Resources, 2020, 33(2): 93−105.
    [14] Chang H A, Kweon H, Hyeong S P, et al. In vitro propagation and cryopreservation of Thuja koraiensis Nakai via somatic embryogenesis[J]. In Vitro Cellular & Developmental Biology-Plant, 2019, 55(5): 605−614.
    [15] Zhang X W, Choe Y H, Park Y J, et al. Effect of Korean arbor vitae (Thuja koraiensis) extract on antimicrobial and antiviral activity[J]. African Journal of Pharmacy and Pharmacology, 2014, 8(10): 274−277. doi: 10.5897/AJPP2013.3979
    [16] 王朏斐, 杨姝婷, 宋宇琴, 等. ‘丰花’玫瑰不同部位芳香特征研究[J]. 西北林学院学报, 2020, 35(5):213−218. doi: 10.3969/j.issn.1001-7461.2020.05.33

    Wang F F, Yang S T, Song Y Q, et al. Aromatic characteristics of ‘Feng Hua’ rose flower in different parts[J]. Journal of Northwest Forestry University, 2020, 35(5): 213−218. doi: 10.3969/j.issn.1001-7461.2020.05.33
    [17] Pooran G, Nima M, Seyed A. Essential oils, chemical constituents, antioxidant, antibacterial and in vitro cytotoxic activity of different Thymus species and Zataria multiflora collected from Iran[J]. South African Journal of Botany, 2020, 130: 250−258. doi: 10.1016/j.sajb.2019.12.005
    [18] Francisco C, Fabricio C, Carlos A, et al. Eupatorium buniifolium aroma profile assessment by HS-SPME, steam distillation and organic solvent extraction[J]. Journal of Essential Oil Research, 2021, 33(1): 80−93. doi: 10.1080/10412905.2020.1839584
    [19] 肖娟, 周康, 胡滨, 等. 超声波辅助水蒸气提取柠檬精油工艺优化及成分分析[J]. 食品与机械, 2018, 34(9):172−178, 190.

    Xiao J, Zhou K, Hu B, et al. Ultrasonic-assisted extraction essential oil of lemon and chemical composition analysis[J]. Food & Machinery, 2018, 34(9): 172−178, 190.
    [20] Ramic M, Vidovic S, Zekovic Z, et al. Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory[J]. Ultrasonics Sonochemistry, 2015, 23: 360−368. doi: 10.1016/j.ultsonch.2014.10.002
    [21] Soto-Armenta C, Rivero J C S, Ruiz-Mercado C A, et al. Bioactivity and kinetic study of Jatropha curcas essential oil extraction using supercritical CO2[J]. American Journal of Analytical Chemistry, 2020, 11(8): 322−334. doi: 10.4236/ajac.2020.118026
    [22] 张圆圆, 孟永斌, 张琳, 等. 响应面法优化微波辅助水蒸气蒸馏法提取油樟精油工艺[J]. 化工进展, 2020, 39(增刊 2):291−299.

    Zhang Y Y, Meng Y B, Zhang L, et al. Optimization of microwave-assisted steam distillation extraction of Cinnamomum longepaniculatum essential oil by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39(Suppl. 2): 291−299.
    [23] 许鹏翔, 贾卫民, 毕良武, 等. 芳香植物精油气相色谱分析进展[J]. 分析科学学报, 2004, 20(3):312−316. doi: 10.3969/j.issn.1006-6144.2004.03.028

    Xu P X, Jia W M, Bi L W, et al. Gas chromatographic technologies for the analysis of essential oil of aromatic plants[J]. Journal of Analytical Science, 2004, 20(3): 312−316. doi: 10.3969/j.issn.1006-6144.2004.03.028
    [24] 王雪薇, 李德海. 红松不同部位精油的成分分析及抑菌活性[J]. 中南林业科技大学学报, 2021, 41(2):153−161, 170.

    Wang X W, Li D H. Phytochemical composition and antibacterial activity of the essential oils from different parts of Korean pine[J]. Journal of Central South University of Forestry & Technology, 2021, 41(2): 153−161, 170.
    [25] 胡文杰, 高捍东, 江香梅, 等. 樟树油樟、脑樟和异樟化学型的叶精油成分及含量分析[J]. 中南林业科技大学学报, 2012, 32(11):186−194.

    Hu W J, Gao H D, Jiang X M, et al. Analysis on constituents and contents in leaf essential oil from three chemical types of Cinnamum camphora[J]. Journal of Central South University of Forestry & Technology, 2012, 32(11): 186−194.
    [26] 陈韵如, 孙俊颖, 陈心瑜, 等. 山苍子精油的提取方法、组成成分及抗菌活性的研究进展[J]. 现代牧业, 2020, 4(1):38−41.

    Chen Y R, Sun J Y, Chen X Y, et al. Advances in extraction methods, components and antibacterial activity of Litsea cubeba essential oil[J]. Modern Animal Husbandry, 2020, 4(1): 38−41.
    [27] 王凤, 温桃群, 桑文涛, 等. 荆芥挥发油化学成分及药理作用研究现状[J]. 中南药学, 2017, 15(3):312−318. doi: 10.7539/j.issn.1672-2981.2017.03.014

    Wang F, Wen T Q, Sang W T, et al. Chemical constituents in essential oils of Schizonepeta tenuifolia Briq. and their pharmacological activities[J]. Central South Pharmacy, 2017, 15(3): 312−318. doi: 10.7539/j.issn.1672-2981.2017.03.014
    [28] 陈可欣, 骆郑航, 李玲, 等. 香樟精油抑制灰绿曲霉的活性与机理研究[J/OL]. 中国粮油学报, 2021 [2021−03−25]. https://DOI:kns.cnki.net/kcms/detail/11.2864.ts.20210118.1133.040.html" target="_blank">kns.cnki.net/kcms/detail/11.2864.ts.20210118.1133.040.html">https://DOI:kns.cnki.net/kcms/detail/11.2864.ts.20210118.1133.040.html.

    Chen K X, Luo Z H, Li L, et al. Inhibitory activity and mechanism of Cinnamomum camphora essential oil on Aspergillus glaucus[J/OL]. Journal of the Chinese Cereals and Oils Association, 2021 [2021−03−25]. https://DOI:kns.cnki.net/kcms/detail/11.2864.ts.20210118.1133.040.html" target="_blank">kns.cnki.net/kcms/detail/11.2864.ts.20210118.1133.040.html">https://DOI:kns.cnki.net/kcms/detail/11.2864.ts.20210118.1133.040.html.
    [29] 钱卫东, 刘婵婵, 王婷, 等. 丁香酚对多重耐药大肠杆菌的抑菌活性及其作用机制研究[J]. 现代食品科技, 2019, 35(1):14,31−36.

    Qian W D, Liu C C, Wang T, et al. Antibacterial activity and mechanism of eugenol against multidrug-resistant Escherichia coli[J]. Modern Food Science and Technology, 2019, 35(1): 14,31−36.
    [30] Selivanova N V, Krasikova A A, Gusakova M A, et al. Composition and antimicrobial activity of the essential oil and supercritical extracts of Pinus sylvestris tree greenery[J]. Russian Journal of Physical Chemistry B, 2021, 14(8): 1287−1297.
    [31] 赵俊淇. 柏木、圆柏的精油提取及其抑菌性研究[D]. 雅安: 四川农业大学, 2018.

    Zhao J Q. The extraction and antibacterial effect of Cupressus funebris and Sabina chinensis[D]. Ya’an: Sichuan Agricultural University, 2018.
    [32] 戴余军, 石会军, 周红阳, 等. 香柏精油提取工艺研究[J]. 安徽农业科学, 2011, 39(32):19791−19792. doi: 10.3969/j.issn.0517-6611.2011.32.053

    Dai Y J, Shi H J, Zhou H Y, et al. Study on extraction technology of essential oil from Thuja occidentalis L.[J]. Journal of Anhui Agricultural Sciences, 2011, 39(32): 19791−19792. doi: 10.3969/j.issn.0517-6611.2011.32.053
    [33] 马希汉, 王永红, 尉芹, 等. 玫瑰精油提取工艺研究[J]. 林产化学与工业, 2004, 24(1):80−84.

    Ma X H, Wang Y H, Wei Q, et al. Study on processing technology of rose essential oil[J]. Chemistry and Industry of Forest Products, 2004, 24(1): 80−84.
    [34] 李双. 牡丹花精油的提取、分析及抗氧化性研究[D]. 济南: 齐鲁工业大学, 2015.

    Li S. The extraction, analysis and antioxidant research in peony essential oil[D]. Jinan: Qilu University of Technology, 2015.
    [35] 赵英杰, 姜永嘉, 刘延奇, 等. 人工合成储粮保护剂—β-水芹烯对几种储粮害虫作用的研究[J]. 中国粮油学报, 1997(6):1−4. doi: 10.3321/j.issn:1003-0174.1997.06.001

    Zhao Y J, Jiang Y J, Liu Y Q, et al. The toxicity of synthetic β-phellandrene on some stored-grain insect pests[J]. Journal of the Chinese Cereals and Oils Association, 1997(6): 1−4. doi: 10.3321/j.issn:1003-0174.1997.06.001
    [36] 邹志平, 孟中磊, 刘六军, 等. 二步法松油醇生产工艺的问题与改进[J]. 广西林业科学, 2020, 49(3):458−461. doi: 10.3969/j.issn.1006-1126.2020.03.027

    Zou Z P, Meng Z L, Liu L J, et al. Problems and improvements of two-step process for terpineol[J]. Guangxi Forestry Science, 2020, 49(3): 458−461. doi: 10.3969/j.issn.1006-1126.2020.03.027
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  94
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 修回日期:  2021-04-02
  • 网络出版日期:  2021-05-25
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回