高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红松优树无性系及其子代的生长评价与选择研究

李岩 朱嘉瑶 王喜和 孙权 李玉磊 吴蕴洋 李德尧 李平扬 于海洋 赵曦阳

李岩, 朱嘉瑶, 王喜和, 孙权, 李玉磊, 吴蕴洋, 李德尧, 李平扬, 于海洋, 赵曦阳. 红松优树无性系及其子代的生长评价与选择研究[J]. 北京林业大学学报, 2021, 43(10): 38-46. doi: 10.12171/j.1000-1522.20210080
引用本文: 李岩, 朱嘉瑶, 王喜和, 孙权, 李玉磊, 吴蕴洋, 李德尧, 李平扬, 于海洋, 赵曦阳. 红松优树无性系及其子代的生长评价与选择研究[J]. 北京林业大学学报, 2021, 43(10): 38-46. doi: 10.12171/j.1000-1522.20210080
Li Yan, Zhu Jiayao, Wang Xihe, Sun Quan, Li Yulei, Wu Yunyang, Li Deyao, Li Pingyang, Yu Haiyang, Zhao Xiyang. Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis[J]. Journal of Beijing Forestry University, 2021, 43(10): 38-46. doi: 10.12171/j.1000-1522.20210080
Citation: Li Yan, Zhu Jiayao, Wang Xihe, Sun Quan, Li Yulei, Wu Yunyang, Li Deyao, Li Pingyang, Yu Haiyang, Zhao Xiyang. Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis[J]. Journal of Beijing Forestry University, 2021, 43(10): 38-46. doi: 10.12171/j.1000-1522.20210080

红松优树无性系及其子代的生长评价与选择研究

doi: 10.12171/j.1000-1522.20210080
基金项目: 吉林农业大学人才引进科研启动费(2021002)
详细信息
    作者简介:

    李岩。主要研究方向:红松遗传改良。Email:ly2019nefu@163.com 地址:130118 吉林省长春市新城大街2888号吉林农业大学林学与草学学院

    责任作者:

    赵曦阳,博士,教授。主要研究方向:红松、杨树遗传改良。Email:zhaoxyphd@163.com 地址:同上

  • 中图分类号: S722.5

Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis

  • 摘要:   目的  评价和选择优质红松种质资源,为种子园升级换代提供材料。  方法  本研究以吉林省汪清林业局国家红松良种基地相同优树的30个37年生亲本无性系和35年生生子代半同胞家系为材料,对其生长性状进行评价分析。  结果  方差分析结果表明,无性系和家系各测定指标差异均达极显著水平(P < 0.01)。无性系或家系各指标表型变异系数变化范围分别为4.19% ~ 25.88%和4.51% ~ 34.33%,无性系各指标重复力变化范围为0.45 ~ 0.74,家系各指标遗传力变化范围为0.70 ~ 0.85,家系单株遗传力变化范围为0.29 ~ 0.66,属于中高重复力和遗传力。相关性分析结果表明,无性系和家系间胸径、树高、材积和冠幅均呈极显著正相关(r > 0.47,r > 0.57)。主成分分析结果表明,无性系和家系的两个主成分的累计贡献率分别达68.50%和73.37%,胸径、树高、材积和冠幅对主成分Ⅰ的贡献最大,因此可以作为红松种质资源评价的指标。利用多性状综合评价法对无性系和家系进行筛选,以10%为入选率,分别筛选出3个优良无性系和3个优良家系,入选无性系和家系胸径、树高、材积和冠幅遗传增益变化范围为3.03% ~ 14.40%。对优良家系内单株进行综合评价选择,筛选出9株优良单株,入选优良单株胸径、树高、材积和冠幅遗传增益变化范围为6.98% ~ 37.37%。  结论  利用生长性状初选出优良无性系、优良家系和优良单株,可用于红松良种申报,并为红松良种选育提供理论基础。

     

  • 图  1  30个无性系和家系各性状相关性

    A. 无性系胸径(DBH);B. 无性系树高(H);C. 无性系材积(V);D. 无性系枝下高(HFB);E. 无性系分支角(BRA);F. 无性系冠幅(CW);G. 家系胸径(DBH);H. 家系树高(H);I. 家系材积(V);J. 家系枝下高(HFB);K. 家系分支角(BRA);L. 家系冠幅(CW)。*表示相关达显著水平(P < 0.05),**相关达极显著水平(P < 0.01),***相关达最显著水平(P < 0.001)。A, the DBH for clone (DBH); B, tree height for clone (H); C, volume for clone (V); D, tree height under the first branch for clone (HFB); E, branch angle for clone (BRA); F, crown width for clone (CW); G, the DBH for family (DBH); H, tree height for family (H); I, volume for family (V); J, tree height under the first branch for family (HFB); K, branch angle for family (BRA); L, crown width for family (CW). * represents correlation is significant at the 0.05 level, ** represents correlation is significant at the 0.01 level, *** represents correlation is the most significant at P < 0.001 level.

    Figure  1.  Correlation coefficients among different traits in 30 clones and families

    表  1  30个无性系和家系各性状方差分析

    Table  1.   Variance analysis of different traits in 30 clones and families

    项目 Item性状 Trait变异来源 Source of variation自由度 df均方 MsFF value
    无性系 Clone DBH 无性系 Clone 29 33.776 3.890**
    H 无性系 Clone 29 4.338 2.502**
    HFB 无性系 Clone 29 0.242 2.585**
    V 无性系 Clone 29 0.030 2.912**
    BRA 无性系 Clone 29 23.167 1.822**
    CW 无性系 Clone 29 4.024 3.751**
    家系 Family 家系 Family 29 26.720 4.139**
    DBH 区组 Block 2 8.977 1.390
    家系 × 区组 Family × block 58 6.541 1.013
    家系 Family 29 34.596 3.362**
    H 区组 Block 2 1.072 0.838
    家系 × 区组 Family × block 58 1.109 0.866
    家系 Family 29 2.830 5.572**
    HFB 区组 Block 2 0.337 0.663
    家系 × 区组 Family × block 58 0.835 1.645**
    家系 Family 29 0.008 3.349**
    V 区组 Block 2 0.003 1.492
    家系 × 区组 Family × block 58 0.002 1.021
    家系 Family 29 66.740 5.071**
    BRA 区组 Block 2 9.956 0.756
    家系 × 区组 Family × block 58 12.588 0.956
    家系 Family 29 6.234 7.222**
    CW 区组 Block 2 2.675 3.098**
    家系 × 区组 Family × block 58 1.047 1.213
    注:DBH. 胸径;H. 树高;HFB. 枝下高;V. 材积;BRA. 分支角;CW. 冠幅。下同。Notes: DBH, diameter at breast height; H, tree height; HFB, tree height under the first branch; V, volume; BRA, branch angle; CW, crown width. The same below.
    下载: 导出CSV

    表  2  30个无性系和家系各性状平均值及表型变异

    Table  2.   Average and phenotypic variation of different traits in 30 clones and families

    性状 Trait平均值 Average标准差 SD变幅 Variable amplitudePCVRh2$h_N^2$
    无性系 Clone DBH/cm 31.61 3.08 28.95 ~ 32.88 9.75 0.74
    H/m 12.38 1.35 11.79 ~ 13.22 10.89 0.60
    HFB/m 2.13 0.31 1.94 ~ 2.34 14.71 0.61
    V/m3 0.41 0.10 0.33 ~ 0.49 25.88 0.66
    BRA/(°) 86.24 3.61 84.22 ~ 87.69 4.19 0.45
    CW/m 9.00 1.08 8.37 ~ 9.88 12.01 0.73
    家系 Family DBH/cm 18.90 2.67 17.13 ~ 20.81 14.12 0.76 0.38
    H/m 11.98 1.21 11.14 ~ 13.04 10.09 0.85 0.56
    HFB/m 3.90 0.78 3.25 ~ 4.52 19.91 0.70 0.44
    V/m3 0.14 0.05 0.11 ~ 0.18 34.33 0.70 0.29
    BRA/(°) 85.35 3.85 81.63 ~ 87.80 4.51 0.81 0.48
    CW/m 3.83 1.03 3.07 ~ 4.60 26.79 0.83 0.66
    注:PCV. 表型变异系数;R. 重复力;h2. 遗传力;$h_N^2$. 单株遗传力。Notes: PCV, phenotypic variation coefficients; R, repeatability; h2, heritability; $h_N^2$, individual heritability.
    下载: 导出CSV

    表  3  各性状主成分分析

    Table  3.   Principal component analysis of different traits

    主要成分因子
    Principal component factor
    无性系 Clone 家系 Family
    主成分 Ⅰ Component Ⅰ主成分 Ⅱ Component Ⅱ主成分 Ⅰ Component Ⅰ主成分 Ⅱ Component Ⅱ
    特征值 Eigenvalue 3.00 1.11 3.19 1.22
    贡献率 Contribution/% 50.06 18.44 53.08 20.29
    累计贡献率 Cumulative contribution/% 50.06 68.50 53.08 73.37
    DBH 0.91 −0.09 0.91 −0.20
    H 0.81 0.06 0.85 0.14
    HFB 0.07 0.75 0.15 0.80
    V 0.97 −0.05 0.96 −0.15
    BRA 0.08 0.73 0.23 0.70
    CW 0.75 −0.04 0.81 −0.10
    下载: 导出CSV

    表  4  无性系Qi

    Table  4.   Qi values of different clones

    无性系
    Clone
    Qi
    Qi value
    无性系
    Clone
    Qi
    Qi value
    无性系
    Clone
    Qi
    Qi value
    251.98101.9171.89
    221.97301.90111.88
    271.9551.90241.88
    211.93291.9011.88
    231.9261.90141.88
    281.92131.9021.88
    171.92261.8991.87
    81.91181.89121.84
    191.91201.8941.82
    161.9131.89151.82
    下载: 导出CSV

    表  5  家系Qi

    Table  5.   Qi value of different families

    家系
    Family
    Qi
    Qi value
    家系
    Family
    Qi
    Qi value
    家系
    Family
    Qi
    Qi value
    21.97121.89171.83
    61.97181.8831.83
    191.95211.87271.81
    141.94241.87161.80
    41.93111.87291.79
    231.92201.87101.79
    151.92221.87281.78
    251.9011.85131.78
    51.9081.8591.76
    301.8971.84261.75
    下载: 导出CSV

    表  6  优良家系内单株Qi

    Table  6.   Qi value of different single plants in excellent families

    家系 Family区组 Block株号 Plant No. Qi
    6191.87
    2351.81
    19 221.78
    2291.78
    19 121.78
    19 281.75
    2221.74
    6211.74
    2171.73
    2281.73
    6221.46
    19 161.45
    2371.44
    2391.43
    6381.43
    19 241.42
    19 110 1.40
    19 310 1.39
    19 381.39
    19 321.37
    下载: 导出CSV
  • [1] Shi S L, Yan S Y, Zhao C, et al. Deep sequencing and analysis of transcriptomes of Pinus koraiensis Sieb. & Zucc.[J/OL]. Forests, 2020, 11(3): 350 [2021−01−20]. https://doi.org/10.3390/f11030350.
    [2] Tong Y W, Lewis B J, Zhou W M, et al. Genetic diversity and population structure of natural Pinus koraiensis populations [J/OL]. Forests, 2019, 11(1): 39 [2020−12−26]. https://doi.org/10.3390/f11010039.
    [3] Aizawa M, Kim Z S, Yoshimaru H. Phylogeography of the Korean pine (Pinus koraiensis) in northeast Asia: inferences from organelle gene sequences[J]. Journal of Plant Research, 2012, 125(6): 713−723. doi: 10.1007/s10265-012-0488-4
    [4] Liang D Y, Ding C J, Zhao G H, et al. Variation and selection analysis of Pinus koraiensis clones in northeast China[J]. Journal of Forestry Research, 2018, 29(3): 611−622. doi: 10.1007/s11676-017-0471-y
    [5] Li X, Liu X T, Wei J T, et al. Development and transferability of EST-SSR markers for Pinus koraiensis from cold-stressed transcriptome through illumina sequencing[J/OL]. Genes, 2020, 11(5): 500 [2021−01−02]. https://doi.org/10.3390/genes11050500.
    [6] Tuan N T, Shen H L, Wang Q X, et al. Response of photosynthetic physiology to top pruning of young Pinus koraiensis[J]. Forest Engineering, 2017, 33(4): 1−7.
    [7] Zhang S T, Zhang L G, Wang L, et al. Total phenols, flavonoids, and procyanidins levels and total antioxidant activity of different Korean pine (Pinus koraiensis) varieties[J]. Journal of Forestry Research, 2019, 30(5): 1743−1754. doi: 10.1007/s11676-018-0744-0
    [8] 蒋路平, 王景源, 张鹏, 等. 170个红松无性系生长及结实性状变异及选择[J]. 林业科学研究, 2019, 32(1):58−64.

    Jiang L P, Wang J Y, Zhang P, et al. Variation and selection of growth and fruit traits among 170 Pinus koraiensis clones[J]. Forest Research, 2019, 32(1): 58−64.
    [9] Liang D Y, Wang B Y, Song S L, et al. Analysis of genetic effects on a complete diallel cross test of Pinus koraiensis[J]. Euphytica, 2019, 215(5): 1−12.
    [10] 张振, 张含国, 张磊. 红松自由授粉子代家系生产力年度变异与家系选择[J]. 植物研究, 2016, 36(2):305−309. doi: 10.7525/j.issn.1673-5102.2016.02.021

    Zhang Z, Zhang H G, Zhang L. Age variations in productivity and family selection of open-pollinated families of Korean pine (Pinus koraiensis)[J]. Bulletin of Botanical Research, 2016, 36(2): 305−309. doi: 10.7525/j.issn.1673-5102.2016.02.021
    [11] Wang F, Zhang Q H, Tian Y G, et al. Comprehensive assessment of growth traits and wood properties in half-sib Pinus koraiensis families[J]. Euphytica, 2018, 214(11): 1−15.
    [12] 吴强, 赖俊声, 胡青素, 等. 锥栗无性系间杂交种实性状变异分析[J]. 南方林业科学, 2016, 44(4):23−24,40.

    Wu Q, Lai J S, Hu Q S, et al. Genetic variation analysis on fruits characters of Castanea henryi clones[J]. South China Forestry Science, 2016, 44(4): 23−24,40.
    [13] 缪小飞, 张含国, 侯丹, 等. 杂种落叶松家系遗传变异及多点稳定性[J]. 东北林业大学学报, 2018, 46(12):1−8. doi: 10.3969/j.issn.1000-5382.2018.12.001

    Miao X F, Zhang H G, Hou D, et al. Genetic variation and stability of families in multiple sites of hybrid larch[J]. Journal of Northeast Forestry University, 2018, 46(12): 1−8. doi: 10.3969/j.issn.1000-5382.2018.12.001
    [14] 洪舟, 杨曾奖, 张宁南, 等. 越南黄花梨种源家系生长遗传变异及早期选择[J]. 南京林业大学学报 (自然科学版), 2020, 44(1):25−30.

    Hong Z, Yang Z J, Zhang N N, et al. Genetic variation and juvenile selection of growth traits of Dalbergia tonkinensis prain[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1): 25−30.
    [15] Zhao X Y, Hou W, Zheng H Q, et al. Analyses of genotypic variation in white poplar clones at four sites in China[J]. Silvae Genetica, 2013, 62(4−5): 187−195.
    [16] 凌娟娟, 肖遥, 杨桂娟, 等. 灰楸无性系生长和形质性状变异与选择[J]. 林业科学研究, 2019, 32(5):149−156.

    Ling J J, Xiao Y, Yang G J, et al. Variation and selection of growth and trunk shape traits of Catalpa fargesii clones[J]. Forest Research, 2019, 32(5): 149−156.
    [17] 栾柯权, 张恒, 田永刚, 等. 不同树龄水曲柳半同胞家系生长性状变异研究[J]. 植物研究, 2019, 39(2):239−245. doi: 10.7525/j.issn.1673-5102.2019.02.009

    Luan K Q, Zhang H, Tian Y G, et al. Variation analysis of growth traits in different growth year of half-sib Fraxinus mandshurica families[J]. Bulletin of Botanical Research, 2019, 39(2): 239−245. doi: 10.7525/j.issn.1673-5102.2019.02.009
    [18] 解孝满, 李景涛, 赵合娥, 等. 柳树无性系苗期遗传测定与选择[J]. 江苏林业科技, 2008, 35(3):6−14. doi: 10.3969/j.issn.1001-7380.2008.03.002

    Xie X M, Li J T, Zhao H E, et al. Willow clonal seedling genetic determination and selection[J]. Journal of Jiangsu Forestry Science and Technology, 2008, 35(3): 6−14. doi: 10.3969/j.issn.1001-7380.2008.03.002
    [19] 续九如. 林木数量遗传学[M]. 北京: 中国林业出版社, 2006.

    Xu J R. Trees quantitative genetics [M]. Beijing: China Forestry Publishing House, 2006.
    [20] 朱之悌. 林木遗传学研究[M]. 北京: 中国林业出版社, 1989.

    Zhu Z D. Forest tree genetics foundation [M]. Beijing: China Forestry Publishing House, 1989.
    [21] Mwase W F, Savill P S, Hemery G. Genetic parameter estimates for growth and form traits in common ash (Fraxinus excelsior L.) in a breeding seedling orchard at Little Wittenham in England[J]. New Forests, 2008, 36(3): 225−238. doi: 10.1007/s11056-008-9095-6
    [22] 周雪燕, 高海燕, 李召珉, 等. 基于生长与结实评价红松种子园亲本[J]. 植物研究, 2020, 40(3):376−385. doi: 10.7525/j.issn.1673-5102.2020.03.008

    Zhou X Y, Gao H Y, Li Z M, et al. Evaluating parents of Pinus koraiensis seeds orchard with growth and fruiting[J]. Bulletin of Botanical Research, 2020, 40(3): 376−385. doi: 10.7525/j.issn.1673-5102.2020.03.008
    [23] 张秦徽, 王洪武, 姜国云, 等. 红松半同胞家系变异分析及选择研究[J]. 植物研究, 2019, 39(4):557−567. doi: 10.7525/j.issn.1673-5102.2019.04.010

    Zhang Q H, Wang H W, Jiang G Y, et al. Variation analysis and selection of Pinus koraiensis half-sib families[J]. Bulletin of Botanical Research, 2019, 39(4): 557−567. doi: 10.7525/j.issn.1673-5102.2019.04.010
    [24] Pan Y Y, Li S C, Wang C L, et al. Early evaluation of growth traits of Larix kaempferi clones[J]. Journal of Forestry Research, 2018, 29(4): 1031−1039. doi: 10.1007/s11676-017-0492-6
    [25] 梁德洋, 金允哲, 赵光浩, 等. 50个红松无性系生长与木材性状变异研究[J]. 北京林业大学学报, 2016, 38(6):51−59.

    Liang D Y, Jin Y Z, Zhao G H, et al. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51−59.
    [26] 刘明国, 张欣, 董胜君, 等. 西伯利亚杏优选无性系间数量性状的差异与重复力研究[J]. 沈阳农业大学学报, 2015, 46(5):548−554. doi: 10.3969/j.issn.1000-1700.2015.05.007

    Liu M G, Zhang X, Dong S J, et al. Differences and repeatabilities of quantitative characters of Prunus sibirica superior clones[J]. Journal of Shenyang Agricultural University, 2015, 46(5): 548−554. doi: 10.3969/j.issn.1000-1700.2015.05.007
    [27] 王庆娜. 红松种子园优良亲本及子代评价选择[D]. 哈尔滨: 东北林业大学, 2017.

    Wang Q N. Evaluated and selected analyses on excellent parents and offspring in Pinus koraiensis seed orchard [D]. Harbin: Northeast Forestry University, 2017.
    [28] 史加亮, 李凤瑞, 赵文超, 等. 陆地棉特异种质主要性状配合力和遗传力分析[J]. 山东农业科学, 2021, 53(1):14−19.

    Shi J L, Li F R, Zhao W C, et al. Analysis on combining ability and heritability of main traits for special heteroplasm in upland cotton[J]. Shandong Agricultural Sciences, 2021, 53(1): 14−19.
    [29] 王芳, 王元兴, 王成录, 等. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征[J]. 应用生态学报, 2019, 30(5):1679−1686.

    Wang F, Wang Y X, Wang C L, et al. Variation of the growth, fruiting and resistance to disease and insect of the half-sib families of Pinus koraiensis superior trees[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1679−1686.
    [30] Meena B L, Das S P, Meena S K, et al. Assessment of GCV, PCV, heritability and genetic advance for yield and its components in field pea (Pisum sativum L.)[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(5): 1025−1033. doi: 10.20546/ijcmas.2017.605.111
    [31] Fukatsu E, Hiraoka Y, Matsunaga K, et al. Genetic relationship between wood properties and growth traits in Larix kaempferi obtained from a diallel mating test[J]. Journal of Wood Science, 2015, 61(1): 10−18. doi: 10.1007/s10086-014-1436-9
    [32] Anjani K, Singh D N, Krishna P, et al. Comparing correlation coefficients and path analysis in different populations of rice (Oryza sativa L.)[J]. Current Journal of Applied Science and Technology, 2020, 39(37): 1−11.
    [33] 王璧莹, 赵曦阳, 王洪武, 等. 依据生长性状对红松半同胞家系的评价选择[J]. 东北林业大学学报, 2019, 47(4):8−11, 20.

    Wang B Y, Zhao X Y, Wang H W, et al. Variance analysis of growth characteristics of 30 Pinus koraiensis half-sib families[J]. Journal of Northeast Forestry University, 2019, 47(4): 8−11, 20.
    [34] Zhang H, Zhang Y H Y, Zhang D W, et al. Progeny performance and selection of superior trees within families in Larix olgensis[J]. Euphytica, 2020, 216(3): 212−222.
    [35] 赵吉平, 任杰成, 郭鹏燕, 等. 我国小麦育种方向的创新与实践分析[J]. 山西农业科学, 2019, 47(1):139−142. doi: 10.3969/j.issn.1002-2481.2019.01.34

    Zhao J P, Ren J C, Guo P Y, et al. Innovation and practice analysis of wheat breeding direction in China[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(1): 139−142. doi: 10.3969/j.issn.1002-2481.2019.01.34
    [36] Max H, Karl S. Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding[J]. Plant Cell and Environment, 2020, 43(6): 1421−1436. doi: 10.1111/pce.13761
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  49
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-04-28
  • 网络出版日期:  2021-09-26
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回