高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿山羊步态的林地底盘设计及仿真

张建婷 刘晋浩 黄青青 隋婷婷

张建婷, 刘晋浩, 黄青青, 隋婷婷. 仿山羊步态的林地底盘设计及仿真[J]. 北京林业大学学报, 2021, 43(6): 152-162. doi: 10.12171/j.1000-1522.20210086
引用本文: 张建婷, 刘晋浩, 黄青青, 隋婷婷. 仿山羊步态的林地底盘设计及仿真[J]. 北京林业大学学报, 2021, 43(6): 152-162. doi: 10.12171/j.1000-1522.20210086
Zhang Jianting, Liu Jinhao, Huang Qingqing, Sui Tingting. Design and simulation of woodland chassis imitating goat gait[J]. Journal of Beijing Forestry University, 2021, 43(6): 152-162. doi: 10.12171/j.1000-1522.20210086
Citation: Zhang Jianting, Liu Jinhao, Huang Qingqing, Sui Tingting. Design and simulation of woodland chassis imitating goat gait[J]. Journal of Beijing Forestry University, 2021, 43(6): 152-162. doi: 10.12171/j.1000-1522.20210086

仿山羊步态的林地底盘设计及仿真

doi: 10.12171/j.1000-1522.20210086
基金项目: 国家重点研发计划战略性国际科技创新合作重点专项(2016YFE0203400)
详细信息
    作者简介:

    张建婷。主要研究方向:森林工程装备及其自动化。Email:zhangjianting0414@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学工学院

    责任作者:

    刘晋浩,教授,博士生导师。主要研究方向:林业装备自动化和智能化研究。Email:liujinhao@bjfu.edu.cn 地址:同上

  • 中图分类号: S776

Design and simulation of woodland chassis imitating goat gait

  • 摘要:   目的  我国林区地形较为复杂,林地底盘性能决定了林地装备能否“上山入林”,是林业现代化进程中需要解决的基础问题。相比轮式和履带式底盘,足式底盘腿部独立运动使得足式底盘在林区复杂地形环境中工作具有更强的灵活性和适应性。因此,研发针对我国林区环境的林地足式底盘对我国林业发展有重要意义。  方法  针对林地底盘步态规划的研究,首先分析山羊一般的行进步态,得到行走迈步顺序、各关节角关系以及变化范围。设计一种林地底盘,对其左前腿结构简图进行运动学分析,利用蒙特卡洛方法计算底盘足端的工作空间,是否能满足要求。根据实际需求,确定林地底盘的步态和关节驱动,使用ADAMS仿真软件设计简化林地底盘虚拟样机模型,进行对角小跑步态仿真,通过林地底盘质心的位移和速度变化曲线分析林地底盘的运行性能。  结果  平面运动的林地底盘质心在前进方向上位移变化稳定,前进速度0.2 m/s左右;底盘质心横向偏移程度较小,基本沿着设定轨迹前进;质心在竖直方向存在上下波动的情况,波动范围约占底盘总高度的1.04%,林地底盘在前进过程中没有发生跳跃情况或倾翻情况。  结论  仿真结果表明,步态规划可以满足林地底盘的运动要求,可以提升林地底盘的运动稳定性和地形适应能力,安全可靠,适用于林业动力底盘。

     

  • 图  1  山羊骨骼示意图

    1. 肩胛骨 Scapula;2. 肩关节 Shoulder;3. 肱骨 Humerus;4. 肘关节 Elbow;5. 尺骨 Ulna;6. 桡骨 Radius;7. 腕关节 Wrist;8. 掌骨Metacarpus;9. 掌指关节 Metacarpophalangeal joint;10. 指骨 Palanx;11. 趾骨 Palanx;12. 跖趾关节 Metatarsophalangeal joint;13. 跖骨Metatarsal bone;14. 踝关节 Ankle;15. 胫骨 Tibia;16. 膝关节 Knee;17. 股骨 Femur;18. 髋关节 Hip;19. 髋骨 Hipbone

    Figure  1.  Schematic figure of goat bone

    图  2  山羊运动实验图

    Figure  2.  Pictures of goat movement experiment

    图  3  关节位移、角度和速度变化图

    Figure  3.  Joint displacement, angle and velocity maps

    图  4  山羊关节图

    Figure  4.  Joint diagram of goat

    图  5  林地底盘三维结构

    Figure  5.  Three-dimensional structure of woodland chassis

    图  6  单腿结构简图

    Figure  6.  Single leg structure diagram

    图  7  单腿运动学模型

    O为肩关节坐标系原点;L1为杆件OQ长度(mm);L2为杆件QR长度(mm);L3为杆件RP长度(mm);$ {\theta _1} $为OQx轴夹角(°);$ {\theta _2} $为OQ延长线与QR的夹角(°)。O is the origin of shoulder joint coordinate system; L1 is the OQ length of the member (mm); L2 is the QR length of the member (mm); L3 is the length of RP (mm); $\theta _1 $ is the angle between OQ and x axis (°); $ \theta _2 $ is the angle between OQ extension line and QR (°).

    Figure  7.  Single leg kinematics model

    图  8  逆运动学图解

    O为肩关节坐标系原点;L1为杆件OQ长度(mm);L2为杆件QR长度(mm);θ1OQx轴夹角(°);θ2OQ'延长线与x轴的夹角(°)。O is the origin of shoulder joint coordinate system; L1 is the OQ length of the member (mm); L2 is the QR length of the member (mm); θ1 is the angle between OQ and x axis (°); θ2 is the angle between OQ extension line and QR (°).

    Figure  8.  Diagram of inverse kinematics

    图  9  足端工作空间

    Figure  9.  Foot workspace

    图  10  林地底盘简图

    Figure  10.  Woodland chassis diagram

    图  11  Trot步态时序图

    Figure  11.  Trot gait sequence diagram

    图  12  单腿一个步态周期的运动规律

    S为行走的步长(mm);L为平衡时机体离地高度(mm);HQRQ旋转竖直方向的位移(mm);机体处于平衡位置时,θh0为杆件OQ与竖直方向的夹角(°),θk0为杆件QR与竖直方向的夹角(°);AhOQ绕点O旋转的最大转动角度(°);AkQR绕点Q旋转的最大转动角度(°)。S is the step length of walking (mm); H is the vertical displacement of QR around Q (mm); L is the height of the body above the ground at equilibrium (mm); when the body is in the balance position, θh0 is the angle between OQ and vertical direction (°); θk0 is the angle between QR and vertical direction (°); Ah is the maximum rotation angle of OQ around point O (°); Ak is the maximum rotation angle of QR around point Q (°).

    Figure  12.  Movement law of one leg in one gait cycle

    图  13  林地底盘运动仿真

    Figure  13.  Motion simulation of woodland chassis

    图  14  trot步态仿真截图

    Figure  14.  Trot gait simulation screenshot

    图  15  左右腿髋关节驱动曲线

    Figure  15.  Driving curves of left and right hip joints

    图  16  左前腿髋关节和膝关节驱动曲线

    Figure  16.  Driving curves of hip joint and knee joint of left foreleg

    图  17  质心在各方向的位移和速度

    Figure  17.  Displacement and velocity of mass center in each direction

    图  18  底盘机体横滚角

    Figure  18.  Change of horizontal rolling angle of chassis body

    表  1  关节角度和速度变化范围

    Table  1.   Range of joint angle and velocity

    关节
    Joint
    关节角度
    Joint angle/(°)
    关节角速度
    Joint angular velocity/(m·s−1)
    肩关节 Shoulder 79 ~ 96 0.08 ~ 1.06
    肘关节 Elbow 44 ~ 117 0.12 ~ 1.26
    腕关节 Wrist 56 ~ 151 0.08 ~ 2.21
    髋关节 Hip 69 ~ 150 0.48 ~ 0.94
    膝关节 Knee 58 ~ 93 0.26 ~ 1.33
    踝关节 Ankle 58 ~ 142 0.21 ~ 2.42
    下载: 导出CSV

    表  2  林地底盘结构参数

    Table  2.   Structural parameters of woodland chassis

    参数 Parameter数值 Value
    整机尺寸 Overall size 690 mm × 455 mm × 400 mm
    整机质量 Overall quality 19.22 kg
    大腿长 Thigh length 168 mm
    小腿长 Crus length 177 mm
    足长 Foot length 88 mm
    下载: 导出CSV
  • [1] 国家林业局. 中国林业统计年鉴2018[M]. 北京: 中国林业出版社, 2018: 2−3.

    State Forestry Administration. China forestry statistical yearbook 2018[M]. Beijing: China Forestry Publishing House, 2018: 2−3.
    [2] 沈文娟, 徐婷, 李明诗. 中国三大林区森林破碎化及干扰模式变动分析[J]. 南京林业大学学报(自然科学版), 2013, 37(4):75−79.

    Shen W J, Xu T, Li M S. Spatio-temporal changes in forest fragmentation, disturbance patterns over the three giant forested regions of China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(4): 75−79.
    [3] 朱阅. 林用装备底盘研究综述[J]. 林业和草原机械, 2020, 1(2):42−46.

    Zhu Y. A review on the chassis research of forest equipment[J]. Forestry and Grassland Machinery, 2020, 1(2): 42−46.
    [4] 陈建, 石军锋, 李云伍. 中国西南地区农业机械化现状及发展战略[J]. 农业工程学报, 2003, 19(5):1−6. doi: 10.3321/j.issn:1002-6819.2003.05.001

    Chen J, Shi J F, Li Y W. Present status and developing strategy of agricultural mechanization in Southwest China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(5): 1−6. doi: 10.3321/j.issn:1002-6819.2003.05.001
    [5] 高焕文, 李问盈, 李洪文. 我国农业机械化的跨世纪展望[J]. 农业工程学报, 2000, 16(2):9−12. doi: 10.3321/j.issn:1002-6819.2000.02.003

    Gao H W, Li W Y, Li H W. Prospects of China agricultural mechanization facing the 21st century[J]. Transactions of the Chinese Society of Agricultural Engineering, 2000, 16(2): 9−12. doi: 10.3321/j.issn:1002-6819.2000.02.003
    [6] 王鹏飞, 孙立宁, 黄博. 地面移动机器人系统的研究现状与关键技术[J]. 机械设计, 2006, 23(7):1−4. doi: 10.3969/j.issn.1001-2354.2006.07.001

    Wang P F, Sun L N, Huang B. Present situation and key technology of ground mobile robot system[J]. Journal of Machine Design, 2006, 23(7): 1−4. doi: 10.3969/j.issn.1001-2354.2006.07.001
    [7] 田海波, 方宗德, 古玉锋. 轮腿式机器人越障动力学建模与影响因素分析[J]. 机器人, 2010, 32(3):390−397. doi: 10.3724/SP.J.1218.2010.00390

    Tian H B, Fang Z D, Gu Y F. Dynamic modeling for obstacle negotiation of wheel-legged robot and analysis on its influential factors[J]. Robot, 2010, 32(3): 390−397. doi: 10.3724/SP.J.1218.2010.00390
    [8] Li Y B, Li B, Ruan J H, et al. Research of mammal bionic quadruped robots: a review[C]//IEEE. International Conference on Robotics, Automation and Mechatronics. Qingdao: IEEE, 2011: 166−171.
    [9] 刘静, 赵晓光, 谭民. 腿式机器人的研究综述[J]. 机器人, 2006, 28(1):81−88. doi: 10.3321/j.issn:1002-0446.2006.01.017

    Liu J, Zhao X G, Tan M. Legged robots: a review[J]. Robot, 2006, 28(1): 81−88. doi: 10.3321/j.issn:1002-0446.2006.01.017
    [10] 宋磊. 四足移动机器人步态规划与足力控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    Song L. Research on gait planning and foot force control of the quadruped robot[D]. Harbin: Harbin Institute of Technology, 2007.
    [11] 陈君杰, 李攀磊, 韩威, 等. Delta机器人动力学建模与弹性误差分析[J]. 机电工程, 2018, 35(1):33−37. doi: 10.3969/j.issn.1001-4551.2018.01.006

    Chen J J, Li P L, Han W, et al. Dynamics modeling and elastic error analysis of delta robot[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(1): 33−37. doi: 10.3969/j.issn.1001-4551.2018.01.006
    [12] Hirose S, Kato K. Study on quadruped walking robot in Tokyo Institute of Technology-past, present and future[C]//Proceedings of the 2000 IEEE lntemational Conference on Robotics & Automation. San Francisco: IEEE, 2000: 414−419.
    [13] Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822−10825. doi: 10.3182/20080706-5-KR-1001.01833
    [14] Wooden D, Malchano M, Blankespoor K, et al. Autonomous navigation for BigDog[C]//IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 4736−4741.
    [15] Playter R, Buehler M, Raibert M. BigDog[C]//Grant R. Defense and security symposium. Orlando: International Society for Optics and Photonics, 2006: 1−6.
    [16] 杨钧杰, 孙浩, 王常虹, 等. 四足机器人研究综述[J]. 导航定位与授时, 2019, 6(5):61−73.

    Yang J J, Sun H, Wang C H, et al. An overview of quadruped robots[J]. Navigation Positioning and Timing, 2019, 6(5): 61−73.
    [17] 罗红艳, 魏莉, 李彰, 等. 仿生四足机器人运动规划与步态转换[J]. 数字制造科学, 2018, 16(1):6−11.

    Luo H Y, Wei L, Li Z, et al. Motion planning and gait transition of bionic quadruped robot[J]. Digital Manufacture Science, 2018, 16(1): 6−11.
    [18] 邢伯阳, 潘峰, 冯肖雪. 智能决策改进的四足机器人ZMP爬行步态算法[J]. 计算机工程与应用, 2019, 55(22):206−211, 257. doi: 10.3778/j.issn.1002-8331.1808-0082

    Xing B Y, Pan F, Feng X X. Improved ZMP crawling gait algorithm for quadruped robot based on intelligent decision making[J]. Computer Engineering and Applications, 2019, 55(22): 206−211, 257. doi: 10.3778/j.issn.1002-8331.1808-0082
    [19] 孔垂麟, 姜秀梅, 岳永铭, 等. 四足仿生机器人斜面行走的运动研究[J]. 机械与电子, 2019, 37(7):58−63. doi: 10.3969/j.issn.1001-2257.2019.07.012

    Kong C L, Jiang X M, Yue Y M, et al. Research on the movement of bionic quadruped robot walking on a slope[J]. Machinery & Electronics, 2019, 37(7): 58−63. doi: 10.3969/j.issn.1001-2257.2019.07.012
    [20] 俞文雅, 陶红武, 曾顺, 等. 四足机器人斜坡对角小跑运动控制研究[J]. 武汉科技大学学报, 2021, 44(1):60−67.

    Yu W Y, Tao H W, Zeng S, et al. Motion control of quadruped robot trotting on a slope[J]. Journal of Wuhan University of Science and Technology, 2021, 44(1): 60−67.
    [21] Lee D V, McGuigan M P, Yoo E H, et al. Compliance, actuation, and work characteristics of the goat foreleg and hindleg during level, uphill, and downhill running[J]. Journal of Applied physiology, 2008, 104(1): 130−141. doi: 10.1152/japplphysiol.01090.2006
    [22] Biancardi C M, Minetti A E. Gradient limits and safety factor of Alpine ibex (Capra ibex) locomotion[J]. Hystrix, the Italian Journal of Mammalogy, 2017, 28(1): 56−60.
    [23] 王亚飞. 仿山羊坡地行走四足机器人单腿研究[D]. 洛阳: 河南科技大学, 2019.

    Wang Y F. Study on the single leg of a four-legged robot walking on a slope in imitation of a goat[D]. Luoyang: Henan University of Science and Technology, 2019.
    [24] 郑莉敏. 头部调节对山羊坡地行走平衡控制的影响研究[D]. 洛阳: 河南科技大学, 2018.

    Zheng L M. Study on influence of regulation on balance control of goats walking on slope[D]. Luoyang: Henan University of Science and Technology, 2018.
    [25] 钟斌. 仿生岩羊四足机器人机构设计研究[D]. 合肥: 中国科学技术大学, 2018.

    Zhong B. Study on the mechanical design of a blue-sheep inspired quadruped robot[D]. Hefei: University of Science and Technology of China, 2018.
    [26] 李华师. 四足机器人仿生运动控制理论与方法的研究[D]. 北京: 北京理工大学, 2014.

    Li H S. Biomimetic locomotion control theories and methods of quadruped robot[D]. Beijing: Beijing Institute of Technology, 2014.
    [27] 王潍, 王劲, 王艳芳, 等. Solid Edge基础应用与实践[M]. 北京: 清华大学出版社, 2011.

    Wang W, Wang J, Wang Y F, et al. Application and practice of Solid Edge[M]. Beijing: Tsinghua University Press, 2011.
    [28] 张立先. 基于几何代数的机构运动学及特性分析[D]. 秦皇岛: 燕山大学, 2008.

    Zhang L X. Kinematics and character of mechanism based on geometric algebra[D]. Qinhuangdao: Yanshan University, 2008.
    [29] 田为军. 德国牧羊犬运动特性及其运动模型研究[D]. 长春: 吉林大学, 2011.

    Tian W J. Research on kinetics analysis and simulation of German shepherd dog’s gait[D]. Changchun: Jilin University, 2011.
    [30] 王立鹏. 液压四足机器人驱动控制与步态规划研究[D]. 北京: 北京理工大学, 2014.

    Wang L P. Research on control and gait planning for a hydraulic quadruped robot[D]. Beijing: Beijing Institute of Technology, 2014.
    [31] 赵文涛, 李军, 刘志忠. 四足仿生机器人单腿机构工作空间的优化设计[J]. 机械与电子, 2011(7):57−61. doi: 10.3969/j.issn.1001-2257.2011.07.016

    Zhao W T, Li J, Liu Z Z. Mechanical optimization of quadruped bio-robot leg body workspace[J]. Machinery & Electronics, 2011(7): 57−61. doi: 10.3969/j.issn.1001-2257.2011.07.016
    [32] 赵燕江, 张永德, 姜金刚, 等. 基于Matlab的机器人工作空间求解方法[J]. 机械科学与技术, 2009, 28(12):1657−1661, 1666. doi: 10.3321/j.issn:1003-8728.2009.12.027

    Zhao Y J, Zhang Y D, Jiang J G, et al. A method for solving robot workspace based on Matlab[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(12): 1657−1661, 1666. doi: 10.3321/j.issn:1003-8728.2009.12.027
    [33] 阮沈勇, 王永利, 桑群芳. MATLAB程序设计[M]. 北京: 电子工业出版社, 2004.

    Ruan S Y, Wang Y L, Sang Q F. MATLAB programming[M]. Beijing: Publishing House of Electronics Industry, 2004.
    [34] 宋明辉. 基于虚拟样机技术的四足机器人步态规划与研究[D]. 北京: 北京理工大学, 2015.

    Song M H. Gait planning and research of quadruped robot based on virtual prototype technology[D]. Beijing: Beijing Institute of Technology, 2015.
    [35] 李满天, 蒋振宇, 王鹏飞, 等. 基于多虚拟元件的直腿四足机器人Trot步态控制[J]. 吉林大学学报(工学版), 2015, 45(5):1502−1511.

    Li M T, Jiang Z Y, Wang P F, et al. Trotting gait control of quadruped robot with straight legs based on virtual elements[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(5): 1502−1511.
    [36] 张越今, 宋健. 多体动力学仿真软件ADAMS理论及应用研讨[J]. 机械科学与技术, 1997, 16(5):753−758, 776. doi: 10.3321/j.issn:1003-8728.1997.05.001

    Zhang Y J, Song J. Modeling theory and application techniques in ADAMS[J]. Mechanical Science and Technology, 1997, 16(5): 753−758, 776. doi: 10.3321/j.issn:1003-8728.1997.05.001
    [37] 张秀丽. 四足机器人节律运动及环境适应性的生物控制研究[D]. 北京: 清华大学, 2004.

    Zhang X L. Biological-inspired rhythmic motion& environmental adaptability for quadruped robot[D]. Beijing: Tsinghua University, 2004.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  61
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-07
  • 网络出版日期:  2021-06-03
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回