Analysis of hydraulic and isohydraulic characteristics of leaves of four common trees in Gaotang area of North China
-
摘要:
目的 研究相同环境中不同树种采取的水分适应策略多样性,为适地适树造林提供参考。 方法 在山东省高唐地区选取分别在根系分布深度、材性和生长速度方面有着较大差异的4个典型适生树种,元宝枫、紫叶李、毛白杨和刺槐。比较了4个树种叶片的水力学特性和等水评价,其中水力学特性包括栓塞脆弱性参数,压力−容积(PV)曲线参数,水力结构和功能性状。 结果 结果表明,适应相同的环境的不同树种采取的水分适应策略差异较大,其中紫叶李和元宝枫的水分适应策略较为保守,而刺槐和毛白杨则采取了较为冒险的水分适应策略:浅根性散孔材速生树种紫叶李,其叶片栓塞抗性最强(栓塞脆弱性P50为−2.67 MPa),用水安全性非常高(水力安全边际HSM为1.57 MPa),水分适应策略较为保守;浅根性散孔材慢生树种元宝枫,其叶片偏向于等水调节(水力学面积为0.049 MPa2),可以在水分胁迫时更早的关闭气孔来维持叶片水势和膨压稳定,由于P50比较高而HSM比较低,表现出了低抗栓塞能力和低水力安全性,叶水势的调节范围较窄,但其高Huber值(Hv)显示其具有较高的抗旱性,采用了较为保守的水分适应策略;浅根性环孔材速生树种刺槐,其叶片偏向不等水调节方式,抗栓塞能力较强,叶水势调节范围较广,水分适应策略较为冒险;深根性散孔材速生树种毛白杨,栓塞抗性不强,用水安全系数接近极限(HSM为0.002 MPa),其叶片维持膨压能力最强(膨压损失点水势ψtlp为−3.36 MPa),确保其在缺水情况下从土壤深处获取水分,采取的水分适应策略较为冒险。 结论 综上所述,树木可以采用不同的水力学特性、等水特性、形态结构特征,应用不同的水分适应策略来适应相同的环境,这种水分适应策略的多样性有利于维持生态系统的稳定性。 Abstract:Objective This paper aims to study the diversity of water adaptation strategies adopted by different tree species in same environment to provide reference for better silviculture of tree species in the suitable sites. Method We selected four typical suitable tree species with great differences in root distribution depth, wood properties and growth speed, they were Acer truncatum, Prunus cerasifera, Populus tomentosa and Robinia pseudoacacia and planted in Gaotang region, Shandong Province of North China. We compared the hydraulic traits and isohydraulic evaluation of the leaves of these four species. The hydraulic traits included embolism vulnerability parameters, pressure-volume (PV) curve parameters, hydraulic structure and functional properties. Result Different species selected varied water adaptation strategies to adjust to the same environment. Among them, P. cerasifera and A. truncatum owned more conservative water adaptation strategies, while R. pseudoacacia and P. tomentosa adopted more adventurous water adaptation strategies; P. cerasifera is a fast-growing tree species with shallow-rooted diffuse-porous wood, it had the strongest leaf embolism resistance (embolism vulnerability P50 was −2.67 MPa). Meanwhile, the water safety of P. cerasifera was very high (hydraulic safety margin HSM was 1.57 MPa), the water adaptation strategy was conservative; A. truncatum is a slow-growing tree species with shallow-rooted diffuse-porous wood, its leaves inclined to isohydraulic regulation (the hydraulic area was 0.049 MPa2). When drought stress was encountered, the stomata can be closed early to keep the leaf water potential and turbulence stable. Its P50 was relatively high and HSM was relatively low, showing low anti-embolism ability and low hydraulic safety. The adjustment range of leaf water potential was narrow. Its high Huber value (Hv) showed that it had high drought resistance. A more conservative water adaptation strategy had been adopted by it. R. pseudoacacia is a kind of fast-growing tree species, its leaves were inclined to aniso-hydraulic regulation, having strong anti-embolism ability, the range of leaf water potential was wide, and the water adaptation strategy was more adventurous. P. tomentosa is a fast-growing tree species with deep-rooted diffuse-porous wood and low sieve resistance. The water safety factor was close to limit (HSM was 0.002 MPa). Its leaves owned the strongest ability to maintain turgor pressure (water potential at turgor pressure loss point ψtlp was −3.36 MPa), to ensure that they can get water from the deep soil in case of water shortage, the water adaptation strategy is more risky. Conclusion In summary, trees can adopt different hydraulic characteristics, isohydraulic characteristics, morphological and structural characteristics, and apply different water adaptation strategies to adapt to the same environment. The diversity of water adaptation strategies is conducive to maintaining the stability of the ecosystem. -
图 1 试验树种的PV曲线参数比较
ψsat为饱和含水量时的渗透势;ψtlp为膨压损失点时的水势;RWCtlp为膨压损失点时的相对含水量;εmax为饱和含水时的弹性模量;Cl为叶水容。误差线为标准误差,不同字母表示差异显著(P < 0.05)。ψsat is water potential at full turgor; ψtlp is water potential at turgor pressure loss point; RWCtlp is relative water content at turgor loss point; εmax is modulus of elasticity at full turgor; Cl is leaf capacitance. Error bars are standard errors, different letters indicate significant differences at P < 0.05 level.
Figure 1. Comparison of PV curve parameters of test tree species
表 1 试验树种的基本特性
Table 1. Basic characteristics of test trees
树种 Tree species 根系分布深度 Root distribution depth 材性 Wood property 生长速度 Growth speed 元宝枫 Acer truncatum 浅根系 Shallow root system 散孔材 Diffuse porous wood 慢生树种 Slow-growing tree species 紫叶李 Prunus cerasifera 浅根系 Shallow root system 散孔材 Diffuse porous wood 速生树种 Fast-growing tree species 毛白杨 Populus tomentosa 深根系 Deep root system 散孔材 Diffuse porous wood 速生树种 Fast-growing tree species 刺槐 Robinia pseudoacacia 浅根系 Shallow root system 环孔材 Ring porous wood 速生树种 Fast-growing tree species 表 2 试验树种的栓塞脆弱性参数
Table 2. Embolic vulnerability parameters of test tree species
树种
Tree speciesP50/MPa HSM/MPa Kl-max/
(mmol·m−2·s−1·MPa−1)元宝枫 A. truncatum −0.774 0.362 9.89 紫叶李 P. cerasifera −2.668 1.572 10.21 毛白杨 P. tomentosa −1.355 0.002 7.60 刺槐 R. pseudoacacia −1.966 0.978 5.51 注:P50为栓塞脆弱性;HSM为水力安全边际;Kl-max为最大叶导水率。Notes: P50 is embolism vulnerability; HSM is hydraulic safety margin; Kl-max is the maximum leaf hydraulic conductivity. 表 3 试验树种的水力结构及功能性状
Table 3. Hydraulic structure and functional properties of test tree species
树种
Tree species叶比导率
Leaf specific conductivity
(LSC)/(g·MPa−1·min−1·m−1)Huber 值
Huber value
(Hv)比叶面积
Specific leaf area
(SLA)/(cm2·g−1)叶干物质含量
Leaf dry matter content
(LDMC)/(g·g−1)元宝枫 A. truncatum 0.005 ± 0.002a 0.063 ± 0.001a 126.0 ± 7.6a 0.36 ± 0.01a 紫叶李 P. cerasifera 0.010 ± 0.001a 0.015 ± 0.002c 205.4 ± 13.6b 0.28 ± 0.03a 毛白杨 P. tomentosa 0.014 ± 0.001a 0.027 ± 0.001b 85.1 ± 3.8 a 0.39 ± 0.03a 刺槐 R. pseudoacacia 0.032 ± 0.004b 0.007 ± 0.001d 244.7 ± 24.7b 0.29 ± 0.02a 注:均值 ± 标准误,同列不同字母表示差异显著(P < 0.05)。Notes: mean ± standard error, different letters in the same column indicate significant differences (P < 0.05). -
[1] Xu X, Medvigy D, Powers J S, et al. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests[J]. New Phytologist, 2016, 212(1): 80−95. doi: 10.1111/nph.14009 [2] Anderegg W R L, Konings A G, Trugman A T, et al. Hydraulic diversity of forests regulates ecosystem resilience during drought[J]. Nature, 2018, 561: 538−541. doi: 10.1038/s41586-018-0539-7 [3] 侯东杰, 刘长成, 乔鲜果, 等. 基于叶片水势的内蒙古典型草原植物水分适应特征研究[J]. 生态学报, 2020, 40(8): 2763−2774.Hou D J, Liu C C, Qiao X G, et al. The adaptability of plants to water based on leaf water potential in typical steppe in Inner Mongolia[J]. Acta Ecologica Sinica, 2020, 40(8): 2763−2774. [4] 崔之鑫, 关晋宏, 张文辉, 等. 延安公路山辽东栎林优势植物水分适应性及适应类型分析[J]. 西北植物学报, 2010, 30(1): 111−119.Cui Z X, Guan J H, Zhang W H, et al. Analysis of water adaptation characteristics and adapted patterns of dominant species in Quercus liaotungensis forest of Gonglu Mountain‚Yan’an[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(1): 111−119. [5] Scoffoni C, Sack L. The causes and consequences of leaf hydraulic decline with dehydration[J]. Journal of Experimental Botany, 2017, 68(16): 4479−4496. doi: 10.1093/jxb/erx252 [6] Wraight I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403 [7] Johnson D M, Mcculloh K A, Woodruff D R, et al. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different?[J]. Plant Science, 2012, 195: 48−53. doi: 10.1016/j.plantsci.2012.06.010 [8] Chen Z, Liu S, Lu H, et al. Interaction of stomatal behaviour and vulnerability to xylem cavitation determines the drought response of three temperate tree species[J/OL]. Aob Plants, 2019, 11(5): plz058[2021−01−14]. https://academic.oup.com/aobpla/article/11/5/plz058/5572636. [9] Feng X, Ackerly D D, Dawson T E, et al. Beyond isohydricity: the role of environmental variability in determining plant drought responses[J]. Plant Cell & Environment, 2018, 42(4): 1104−1111. [10] 李俊辉, 李秧秧. 散孔材和环孔材树种叶水分传输能力及其与抗旱性的关系[J]. 西北植物学报, 2011, 31(7): 1441−1446.Li J H, Li Y Y. Leaf water transport capabilities in diffuse-porous and ring-porous tree species and its relationship with drought resistance[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(7): 1441−1446. [11] Martínez-Vilalta J, Garcia-Forner N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept[J]. Plant Cell & Environment, 2017, 40(6): 962−976. [12] Sanchez-Martinez P, Martínez-Vilalta J, Dexter K G, et al. Adaptation and coordinated evolution of plant hydraulic traits[J]. Ecology Letters, 2020, 23(11): 1599−1610. doi: 10.1111/ele.13584 [13] Fu X L, Frederick C M, et al. Metrics and proxies for dtringency of regulation of plant water status (iso/anisohydry): a global data set reveals coordination and trade-offs among water transport traits[J]. Tree Physiology, 2018, 39(1): 122−134. [14] Li X, Blackman C J, Peters J M R, et al. More than iso/anisohydry: hydroscapes integrate plant water use and drought tolerance traits in 10 eucalypt species from contrasting climates[J]. Functional Ecology, 2019, 33(6): 1035−1049. doi: 10.1111/1365-2435.13320 [15] 左力翔. 黄土高原不同树龄小叶杨水分利用特性及其传输模拟[D]. 杨凌: 西北农林科技大学, 2013.Zuo L X. The water use traits and simulation for different age of Populus simonii in Loess Plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2013. [16] 金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报, 2015, 39(10): 1021−1032. doi: 10.17521/cjpe.2015.0099Jin Y, Wang C K. Trade-offs between plant leaf hydraulic and economic traits[J]. Chinese Journal of Plant Ecology, 2015, 39(10): 1021−1032. doi: 10.17521/cjpe.2015.0099 [17] Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought[J/OL]. Nature, 2012, 491: 752[2021−01−17]. https://www.nature.com/articles/nature11688. [18] Zhang L, Liu L, Zhao H, et al. Differences in near isohydric and anisohydric behavior of contrasting poplar hybrids (i-101 (Populus alba L.) × 84k (Populus alba L. × Populus glandulosa Uyeki)) under drought-rehydration treatments[J/OL]. Forests, 2020, 11(4): 402[2021−01−15]. https://doi.org/10.3390/f11040402. [19] Bartlet M K, Scoffoni C, Sack L. The seterminants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis[J]. Ecology Letters, 2012, 15(5): 393−405. doi: 10.1111/j.1461-0248.2012.01751.x [20] 安锋, 张硕新, 赵平娟. 8种木本植物木质部栓塞变化与生理生态指标关系的研究 Ⅰ. 与植物木质部水势的关系[J]. 西北植物学报, 2005, 25(8): 1595−1600. doi: 10.3321/j.issn:1000-4025.2005.08.018An F, Zhang S X, Zhao P J. Relations between xylem embolismsand physiological indexes in eight woody plants (Ⅰ): relationships with xylem water potentials[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(8): 1595−1600. doi: 10.3321/j.issn:1000-4025.2005.08.018 [21] Blackman C J, Brodribb T J, Jordan G J. Leaf hydraulic vulnerability influences species’ bioclimatic limits in a diverse group of woody angiosperms[J]. Oecologia, 2012, 168(1): 1−10. doi: 10.1007/s00442-011-2064-3 [22] Nardini A, Luglio J. Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes[J]. Functional Ecology, 2014, 28(4): 810−818. doi: 10.1111/1365-2435.12246 [23] Brodribb T J, Holbrook N M, Zwieniecki M A, et al. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima[J]. New Phytologist, 2010, 165(3): 839−846. [24] Yao G, Nie Z, Turner N C, et al. Combined highleaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation[J]. New Phytologist, 2020, 229(1): 230−244. [25] 刘晓燕, 李吉跃, 翟洪波, 等. 从树木水力结构特征探讨植物耐旱性[J]. 北京林业大学学报, 2003, 25(3): 48−54. doi: 10.3321/j.issn:1000-1522.2003.03.010Liu X Y, Li J Y, Zhai H B, et al. Discussion on drought resistance through hydraulic architecture of trees[J]. Journal of Beijing Forestry University, 2003, 25(3): 48−54. doi: 10.3321/j.issn:1000-1522.2003.03.010 [26] Atkin O, Tjoelker M. Thermal dcclimation and the dynamicresponse of plant respiration to temperature[J]. Trends in Plant Science, 2003, 8(7): 343−351. doi: 10.1016/S1360-1385(03)00136-5 [27] 邓东周, 刘成, 贺丽, 等. 川西北高寒沙区主要灌木叶片功能性状研究[J]. 四川林业科技, 2020, 41(3): 1−6. doi: 10.12172/201908090001Deng D Z, Liu C, He L, et al. Study on leaf functional traits of five shrub plants in alpine sand region of northwest Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(3): 1−6. doi: 10.12172/201908090001 [28] Martinez-Vilalta P, Aguade R M. A new look at water transport regulation in plants[J]. New Phytologist, 2014, 204(1): 105−115. [29] Villalobos-González L, Muoz-Araya M, Franck M, et al. Controversies in midday water potential regulation and stomatal behavior might result from the environment, genotype, and/or rootstock: evidence from carménère and syrah grapevine varieties[J/OL]. Frontiers in Plant Science, 2019, 10: 1522[2021−01−10]. https://doi.org/10.3389/fpls.2019.01522. [30] Powell T L, Wheeler J K, de Oliveira A A R, et al. Differences in xylem and leaf hydraulic traits explain differences in droughttolerance among mature amazon rainforest trees[J]. Global Change Biology, 2017, 23(10): 4280−4293. doi: 10.1111/gcb.13731 [31] 陈志成. 不同条件下树木死亡的水力失衡和碳饥饿机制[D]. 北京: 中国林业科学研究院, 2016.Chen Z C. The mechanisms of hydraulic failure and carbon starvation resulting in tree mortality under different conditions[D]. Beijing: Chinese Academy of Forestry, 2016. [32] 刘利民, 齐华, 罗新兰, 等. 植物气孔气态失水与SPAC系统液态供水的相互调节作用研究进展[J]. 应用生态学报, 2008, 19(9): 2067−2073.Liu L M, Qi H, Luo X L, et al. Coordination effect between vaperwater loss trough plant stomata and liquid eater supply in soil-plant-atmosphere contimuum (SPAC): a review[J]. Chinese Joumal of Applied Ecology, 2008, 19(9): 2067−2073. [33] 刘存海, 李秧秧. 黄龙山南缘典型木本植物叶性状与叶压力-容积曲线参数间的关系[J]. 西北林学院学报, 2013, 28(6): 1−5, 24. doi: 10.3969/j.issn.1001-7461.2013.06.01Liu C H, Li Y Y. Relationship between leaf traits and PV cure parameters in the typical deciduous woody plants occurring in southern Huanglong Mountain[J]. Journal of Northwest Forestry University, 2013, 28(6): 1−5, 24. doi: 10.3969/j.issn.1001-7461.2013.06.01 [34] Hochberg U, Rockwell F E, Holbrook N M, et al. Iso/anisohydry: a plant-environment interaction rather than a simple hydraulic trait[J]. Trends in Plant Science, 2018, 23(2): 112−120. doi: 10.1016/j.tplants.2017.11.002 [35] Oliveira R S, Costa F R C, van Baalen E, et al. Embolism resistance drives the distribution of amazonian rainforest tree species along hydro-topographic gradients[J]. New Phytologist, 2019, 221(3): 1457−1465. doi: 10.1111/nph.15463 [36] Markesteijn L, Poorter L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance[J]. Journal of Ecology, 2009, 97(2): 311−325. doi: 10.1111/j.1365-2745.2008.01466.x [37] Blackman C J, Brodribb T J, Jordan G J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms[J]. New Phytologist, 2010, 188(4): 1113−1123. doi: 10.1111/j.1469-8137.2010.03439.x [38] O’Brien M J, Leuzinger S, Philipson C D, et al. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels[J]. Nature Climate Change, 2014, 4(8): 710−714. doi: 10.1038/nclimate2281 [39] 时慧君. 黄土区六种常见植物对水分胁迫的生理生态响应[D]. 杨凌: 西北农林科技大学, 2010.Shi H J. Physiological and ecological characteristics of six common plants under water stress in loess area[D]. Yangling: Northwest Agriculture and Forestry University, 2010. [40] Fichot R, Brignolas F, Cochard H, et al. Vulnerability to drought-induced cavitation in poplars: synthesis and future portunities[J]. Plant Cell & Environment, 2015, 38(7): 1233−1251. [41] Jackson R B, Sperry J S, Dawson T E. Root water uptake and transport: using physiological processes in global predictions.[J]. Trends in Plant Science, 2000, 5(11): 482−488. doi: 10.1016/S1360-1385(00)01766-0 [42] Lopez O, Kursar T, Cochard H, et al. Interspecific variation in xylem vulnerability to cavitationamong tropical tree and shrub species[J]. Tree Physiology, 2005, 25(12): 1553−1562. doi: 10.1093/treephys/25.12.1553 [43] Jacobsen A L, Pratt R B, Davis S D, et al. Comparative community physiology: nonconvergence in water relations among three semi-arid shrub communities[J]. New Phytologist, 2008, 180(1): 100−113. doi: 10.1111/j.1469-8137.2008.02554.x [44] Aguade D, Poyatos R, Rosas T, et al. Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. in a montane forest undergoing a vegetation shift[J]. Forests, 2015, 6(8): 2505−2529. [45] Sperry J S, Hacke U G, Oren R, et al. Water deficits and hydraulic limits to leaf water supply[J]. Plant Cell & Environment, 2010, 25(2): 251−263. [46] 刘存海, 李秧秧, 陈伟月. 子午岭林区3种典型树木的水力结构特性比较[J]. 西北植物学报, 2014, 34(4): 835−842. doi: 10.7606/j.issn.1000-4025.2014.04.0835Liu C H, Li Y Y, Chen W Y. Hydraulic architecture of three typical woody plants in Ziwuling forest zone on the Loess Plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(4): 835−842. doi: 10.7606/j.issn.1000-4025.2014.04.0835 [47] 朋措吉, 宋明华, 周春丽, 等. 放牧影响下不同盖度金露梅灌丛草本植物叶功能性状与土壤因子的关系[J]. 西北植物学报, 2020, 40(5): 870−881.Peng C J, Song M H, Zhou C L, et al. Relationship between leaf functional traits of herbaceous plants and soil factors in different coverrage gradients of Potentilla fruticosa shrub under grazing[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(5): 870−881. [48] Tyree M T, Hammel H T. The measurement of the turgor pressure and the sater relations of plants by the pressure-bomb technique[J]. Journal of Experimental Botany, 1972, 23(1): 267−282. doi: 10.1093/jxb/23.1.267 [49] Sack L, Pasquet-Kok J. Leaf pressure-volume curve parameters [EB/OL]. [2021−01−18]. http://prometheuswiki. [50] Brodribb T, Holbrook N. Stomatal closure during leaf dehydration, correlation with other leaf physiological traits[J]. Plant Physiology, 2003, 132(4): 2166−2173. doi: 10.1104/pp.103.023879 [51] Meinzer F C, Woodruff D R, Marias D E, et al. Mapping “hydroscapes ” along the iso- to anisohydric continuum of stomatal regulation of plant water status[J]. Ecology Letters, 2016, 19(11): 1343−1352. doi: 10.1111/ele.12670 [52] Johnson D M, Berry Z C, Baker K V, et al. Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials[J]. Functional Ecology, 2018, 32(4): 894−903. doi: 10.1111/1365-2435.13049 [53] Sperry J S, Donnelly J R, Tyree M T. A method for measuring hydraulic conductivity and embolism in xylem[J]. Plant Cell & Environment, 1988, 11(1): 35−40. [54] Savi T, Love V L, Borgo A D, et al. Morpho-anatomical and physiological traits in saplings of drought-tolerant mediterranean woody species[J]. Trees, 2017, 31(4): 1137−1148. doi: 10.1007/s00468-017-1533-7 [55] Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant, Cell & Environment, 2002, 25(2): 275−294. [56] Jenks M A, Wood A J. Plant desiccation tolerance[M]. New York: Wiley, 2007: 1−311. [57] Chaves M M, Pereira J S, Maroco J, et al. How plants cope with water stress in the field: photosynthesis and growth[J]. Annals of Botany, 2002, 89: 907−916. [58] Ogbur N M, Edwdars E J, Kadeer J C, et al. The ecological water-use strategies of succulent plants[J]. Advances in Botanical Research, 2010, 55: 179−225. [59] 左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16): 5087−5094. doi: 10.5846/stxb201110281610Zuo L X, Li J H, Li Y Y, et al. Comparison of hydraulic traits in branches and leaves of diffuse- and ring-porous species[J]. Acta Ecologica Sinica, 2012, 32(16): 5087−5094. doi: 10.5846/stxb201110281610 [60] 张 皓, 冯利平. 近50年华北地区降水量时空变化特征研究[J]. 自然资源学报, 2010, 25(2): 270−279. doi: 10.11849/zrzyxb.2010.02.011Zhang H, Feng L P. Characteristics of spatio-temporal variation of precipitation in North China in recent 50 years[J]. Journal of Natural Resources, 2010, 25(2): 270−279. doi: 10.11849/zrzyxb.2010.02.011 [61] Nardini A, Ounapuu-Pikas E, Savi T. When smaller is better: leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four coffea arabica genotypes[J]. Functional Plant Biology, 2014, 41(9): 972−982. doi: 10.1071/FP13302 [62] 张晋岚, 张祥雪, 冉苒, 等. 基于植物分割理论的毛白杨干旱落叶研究[J]. 北京林业大学学报, 2020, 42(9): 19−27. doi: 10.12171/j.1000-1522.20190411Zhang J L, Zhang X X, Ran R, et la. Leaf shedding of Populus tomentosa under drought stress based on the theory of plant segmentation hypothesis[J]. Journal of Beijing Forestry University, 2020, 42(9): 19−27. doi: 10.12171/j.1000-1522.20190411 [63] Nguyen H T, Meir P, Sack L, et al. Leaf water storage increases with salinity and aridity in the mangrove avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources[J]. Plant Cell & Environment, 2017, 40(8): 1576−1591. [64] Carter J L, White D A. Plasticity in the huber value contributes to homeostasis in leaf water relations of a mallee eucalypt with variation to groundwater depth[J]. Tree Physiology, 2009, 29(11): 1407−1418. doi: 10.1093/treephys/tpp076 [65] Ramirez-Valiente J A, Center A, Sparks J P, et al. Population-level differentiation in growth rates and leaf traits in seedlings of the neotropical live Oak Quercus oleoides grown under natural and manipulated precipitation regimes[J/OL]. Frontiers in Plant Science, 2017, 8: 585[2021−01−10]. https://doi.org/10.3389/fpls.2017.00585. [66] Pritzkow C, Williamson V, Szota C, et al. Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific cariation in hydraulic efficiency and safety[J]. Tree Physiology, 2020, 40(2): 215−229. doi: 10.1093/treephys/tpz121 [67] 孟凤. 七种槭树科植物木质部栓塞及其恢复与植物抗旱性的关系[D]. 杨凌: 西北农林科技大学, 2019.Meng F. The relationship between xylem embolism and embolism recovery and plant drought resistance in seven genus Acer[D]. Yangling: Northwest Agriculture and Forestry University, 2019. [68] Li Y, Sperry J S, Taneda H, et al. Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms[J]. New Phytologist, 2008, 177(2): 558−568. doi: 10.1111/j.1469-8137.2007.02272.x [69] Cochard H, Barigah S T, Kleinhentz M, et al. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species?[J]. Journal of Plant Physiology, 2008, 165(9): 976−982. doi: 10.1016/j.jplph.2007.07.020 [70] Pivovaroff A L, Cook V M W, Santiago L S. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions[J]. Plant Cell and Environment, 2018, 41(11): 2617−2626. doi: 10.1111/pce.13367 [71] Steppe K, Lemeur R. Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model[J]. Tree Physiology, 2007, 27(1): 43−52. doi: 10.1093/treephys/27.1.43 [72] Taneda H, Sperry J S. A case-study of water transport in co-occurring ring-versus diffuse-porous trees: contrasts in water-status, conducting capacity, cavitation and vessel refilling[J]. Tree Physiology, 2008, 28(11): 1641−1651. doi: 10.1093/treephys/28.11.1641 [73] Zwieniecki M A, Holbrook N M. Confronting maxwell’s demon: biophysics of xylem embolism repair[J]. Trends in Plant Science, 2009, 14(10): 530−534. doi: 10.1016/j.tplants.2009.07.002 [74] 王林, 代永欣, 郭晋平, 等. 刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用[J]. 林业科学, 2016, 52(6): 1−9.Wang L, Dai Y X, Guo J P, et al. Studies of root sand shoots vulnerability to xylem embolism in seven woody plants[J]. Scientia Silvae Sinicae, 2016, 52(6): 1−9. [75] 党维, 姜在民, 李荣, 等. 6个树种1年生枝木质部的水力特征及与栓塞修复能力的关系[J]. 林业科学, 2017, 53(3): 49−59. doi: 10.11707/j.1001-7488.20170306Dang W, Jiang Z M, Li R, et al. Relationship between hydraulic traits and refilling of embolism in the xylem of one-year-old twigs of six tree species[J]. Scientia Silvae Sinicae, 2017, 53(3): 49−59. doi: 10.11707/j.1001-7488.20170306 -